x86emu/emulator/
rep.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

use super::AlignmentMode;
use super::Emulator;
use super::InternalError;
use super::arith::ArithOp;
use crate::Cpu;
use iced_x86::Instruction;
use iced_x86::OpKind;
use iced_x86::Register;

/// Maximum number of repetitions that will be completed in a single run for rep prefixed instructions.
/// After this many iterations we'll return control to the processor to process any outstanding interrupts
/// or other events. However we won't increment RIP, so we'll be re-entered where we left off.
pub const MAX_REP_LOOPS: u64 = 1024;

/// State for rep ops. See [`Emulator::rep_op`].
struct RepState {
    pub count_reg: Register,
    pub done: u64,
    pub requested: u64,
    pub rep: Option<RepPrefix>,
    pub size: usize,
    pub delta: u64,
}

/// Repe and Repne contain the current status of the zero flag.
#[derive(Clone, Copy)]
enum RepPrefix {
    Rep,
    Repe(bool),
    Repne(bool),
}

impl RepState {
    fn update_zero(&mut self, new_zero: bool) {
        self.rep = match self.rep {
            Some(RepPrefix::Repe(_)) => Some(RepPrefix::Repe(new_zero)),
            Some(RepPrefix::Repne(_)) => Some(RepPrefix::Repne(new_zero)),
            Some(RepPrefix::Rep) => unreachable!(),
            None => None,
        }
    }

    fn check_done<E>(&self) -> Result<(), InternalError<E>> {
        if !self.is_done() {
            return Err(InternalError::Retry);
        }
        Ok(())
    }

    fn is_done(&self) -> bool {
        match self.rep {
            Some(RepPrefix::Repe(zero)) if !zero => return true,
            Some(RepPrefix::Repne(zero)) if zero => return true,
            _ => {}
        }

        self.done == self.requested
    }
}

/// Gets the RCX register of the appropriate size for the given `op_kind`.
fn sized_rcx(op_kind: OpKind) -> Register {
    match op_kind {
        OpKind::MemorySegSI | OpKind::MemorySegDI | OpKind::MemoryESDI => Register::CX,
        OpKind::MemorySegESI | OpKind::MemorySegEDI | OpKind::MemoryESEDI => Register::ECX,
        OpKind::MemorySegRSI | OpKind::MemorySegRDI | OpKind::MemoryESRDI => Register::RCX,
        _ => unreachable!(),
    }
}

/// Gets the RDI register of the appropriate size for the given `op_kind`.
fn sized_rdi(op_kind: OpKind) -> Register {
    match op_kind {
        OpKind::MemorySegDI | OpKind::MemoryESDI => Register::DI,
        OpKind::MemorySegEDI | OpKind::MemoryESEDI => Register::EDI,
        OpKind::MemorySegRDI | OpKind::MemoryESRDI => Register::RDI,
        _ => unreachable!(),
    }
}

/// Gets the RSI register of the appropriate size for the given `op_kind`.
fn sized_rsi(op_kind: OpKind) -> Register {
    match op_kind {
        OpKind::MemorySegSI => Register::SI,
        OpKind::MemorySegESI => Register::ESI,
        OpKind::MemorySegRSI => Register::RSI,
        _ => unreachable!(),
    }
}

impl<T: Cpu> Emulator<'_, T> {
    /// Generic function for handling the optional REP op for instructions.
    fn rep_op(
        &mut self,
        instr: &Instruction,
        op_kind: OpKind,
        is_cmps_scas: bool,
    ) -> Result<RepState, InternalError<T::Error>> {
        // iced doesn't provide us a good way to disambiguate between instructions that use REP and instructions that
        // use REPE (since they're the same byte), so we just pass along a bool from each function to help us here.
        let rep = match (
            is_cmps_scas,
            instr.has_rep_prefix(),
            instr.has_repne_prefix(),
        ) {
            (_, false, false) => None,
            (false, true, false) => Some(RepPrefix::Rep),
            // Testing on actual hardware shows that a REPNE prefix on a non-cmps/scas instruction is treated as a REP
            (false, false, true) => Some(RepPrefix::Rep),
            (true, true, false) => Some(RepPrefix::Repe(true)),
            (true, false, true) => Some(RepPrefix::Repne(false)),
            (_, true, true) => unreachable!(),
        };

        let count_reg = sized_rcx(op_kind);
        let requested = if rep.is_some() {
            self.cpu.gp(count_reg.into())
        } else {
            1
        };
        let size = instr.memory_size().size();
        let delta = if !self.cpu.rflags().direction() {
            size
        } else {
            size.wrapping_neg()
        };

        Ok(RepState {
            count_reg,
            rep,
            done: 0,
            requested,
            size,
            delta: delta as u64,
        })
    }

    fn rep_again(&mut self, rep_state: &mut RepState) -> bool {
        if rep_state.rep.is_some() {
            self.cpu.set_gp(
                rep_state.count_reg.into(),
                rep_state.requested - rep_state.done,
            );
        }
        if rep_state.is_done() || rep_state.done == MAX_REP_LOOPS {
            return false;
        }
        rep_state.done += 1;
        true
    }

    /// [rep] outs dx, seg:xsi
    ///
    /// Return true if instruction completed.
    pub(super) async fn outs(
        &mut self,
        instr: &Instruction,
    ) -> Result<(), InternalError<T::Error>> {
        let mut rep = self.rep_op(instr, instr.op1_kind(), false)?;
        let rsi = sized_rsi(instr.op1_kind());
        while self.rep_again(&mut rep) {
            let data = &mut [0; 4][..rep.size];
            let offset = self.memory_op_offset(instr, 1);
            let io_register = self.cpu.gp(instr.op0_register().into()) as u16;

            self.read_memory(
                instr.memory_segment(),
                offset,
                AlignmentMode::Standard,
                data,
            )
            .await?;
            self.write_io(io_register, data).await?;

            self.cpu.set_gp(rsi.into(), offset.wrapping_add(rep.delta));
        }
        rep.check_done()?;
        Ok(())
    }

    /// [rep] ins es:xdi, dx
    ///
    /// Return true if instruction completed.
    pub(super) async fn ins(&mut self, instr: &Instruction) -> Result<(), InternalError<T::Error>> {
        let mut rep = self.rep_op(instr, instr.op0_kind(), false)?;
        let rdi = sized_rdi(instr.op0_kind());
        while self.rep_again(&mut rep) {
            let offset = self.memory_op_offset(instr, 0);
            let io_register = self.cpu.gp(instr.op1_register().into()) as u16;

            let data = &mut [0; 4][..rep.size];
            self.read_io(io_register, data).await?;
            self.write_memory(Register::ES, offset, AlignmentMode::Standard, data)
                .await?;

            self.cpu.set_gp(rdi.into(), offset.wrapping_add(rep.delta));
        }
        rep.check_done()?;
        Ok(())
    }

    /// [rep] lods (r)ax, ds:xsi
    ///
    /// Return true if instruction completed.
    pub(super) async fn lods(
        &mut self,
        instr: &Instruction,
    ) -> Result<(), InternalError<T::Error>> {
        let mut rep = self.rep_op(instr, instr.op1_kind(), false)?;
        let rsi = sized_rsi(instr.op1_kind());
        while self.rep_again(&mut rep) {
            let offset = self.memory_op_offset(instr, 1);
            let mut data = [0; 8];
            self.read_memory(
                instr.memory_segment(),
                offset,
                AlignmentMode::Standard,
                &mut data[..rep.size],
            )
            .await?;

            self.cpu
                .set_gp(instr.op0_register().into(), u64::from_le_bytes(data));
            self.cpu.set_gp(rsi.into(), offset.wrapping_add(rep.delta));
        }
        rep.check_done()?;
        Ok(())
    }

    /// [rep] stos es:xdi, (r)ax
    ///
    /// Return true if instruction completed.
    pub(super) async fn stos(
        &mut self,
        instr: &Instruction,
    ) -> Result<(), InternalError<T::Error>> {
        let mut rep = self.rep_op(instr, instr.op0_kind(), false)?;
        let rdi = sized_rdi(instr.op0_kind());
        while self.rep_again(&mut rep) {
            let offset = self.memory_op_offset(instr, 0);
            let data = self.cpu.gp(instr.op1_register().into()).to_le_bytes();
            self.write_memory(
                Register::ES,
                offset,
                AlignmentMode::Standard,
                &data[..rep.size],
            )
            .await?;

            self.cpu.set_gp(rdi.into(), offset.wrapping_add(rep.delta));
        }
        rep.check_done()?;
        Ok(())
    }

    /// [rep] movs es:xdi seg:xsi
    ///
    /// Return true if instruction completed.
    pub(super) async fn movs(
        &mut self,
        instr: &Instruction,
    ) -> Result<(), InternalError<T::Error>> {
        let mut rep = self.rep_op(instr, instr.op0_kind(), false)?;
        let rdi = sized_rdi(instr.op0_kind());
        let rsi = sized_rsi(instr.op1_kind());
        while self.rep_again(&mut rep) {
            let data = &mut [0; 8][..rep.size];

            let di_offset = self.memory_op_offset(instr, 0);
            let si_offset = self.memory_op_offset(instr, 1);

            self.read_memory(
                instr.memory_segment(),
                si_offset,
                AlignmentMode::Standard,
                data,
            )
            .await?;
            self.write_memory(Register::ES, di_offset, AlignmentMode::Standard, data)
                .await?;

            self.cpu
                .set_gp(rsi.into(), si_offset.wrapping_add(rep.delta));
            self.cpu
                .set_gp(rdi.into(), di_offset.wrapping_add(rep.delta));
        }
        rep.check_done()?;
        Ok(())
    }

    /// [rep] cmps es:xdi seg:xsi
    ///
    /// Return true if instruction completed.
    pub(super) async fn cmps(
        &mut self,
        instr: &Instruction,
    ) -> Result<(), InternalError<T::Error>> {
        let mut rep = self.rep_op(instr, instr.op0_kind(), true)?;
        let rsi = sized_rsi(instr.op0_kind());
        let rdi = sized_rdi(instr.op1_kind());
        let mut left = 0;
        let mut right = 0;
        while self.rep_again(&mut rep) {
            let mut data_left = [0; 8];
            let mut data_right = [0; 8];

            let si_offset = self.memory_op_offset(instr, 0);
            let di_offset = self.memory_op_offset(instr, 1);

            self.read_memory(
                instr.memory_segment(),
                si_offset,
                AlignmentMode::Standard,
                &mut data_left[..rep.size],
            )
            .await?;
            self.read_memory(
                Register::ES,
                di_offset,
                AlignmentMode::Standard,
                &mut data_right[..rep.size],
            )
            .await?;

            left = u64::from_le_bytes(data_left);
            right = u64::from_le_bytes(data_right);
            rep.update_zero(left == right);

            self.cpu
                .set_gp(rsi.into(), si_offset.wrapping_add(rep.delta));
            self.cpu
                .set_gp(rdi.into(), di_offset.wrapping_add(rep.delta));
        }

        rep.check_done()?;
        if rep.requested != 0 {
            let mut rflags = self.cpu.rflags();
            let result = super::arith::CmpOp::op(left, right, rflags);
            super::arith::CmpOp::update_flags(&mut rflags, rep.size, result, left, right);
            self.cpu.set_rflags(rflags);
        }
        Ok(())
    }

    /// [rep] scas seg:xdi (r)ax
    ///
    /// Return true if instruction completed.
    pub(super) async fn scas(
        &mut self,
        instr: &Instruction,
    ) -> Result<(), InternalError<T::Error>> {
        let mut rep = self.rep_op(instr, instr.op1_kind(), true)?;
        let rax = self.cpu.gp(instr.op0_register().into());
        let rdi = sized_rdi(instr.op1_kind());
        let mut memval = 0;
        while self.rep_again(&mut rep) {
            let mut data = [0; 8];
            let di_offset = self.memory_op_offset(instr, 1);

            self.read_memory(
                Register::ES,
                di_offset,
                AlignmentMode::Standard,
                &mut data[..rep.size],
            )
            .await?;

            memval = u64::from_le_bytes(data);
            rep.update_zero(memval == rax);

            self.cpu
                .set_gp(rdi.into(), di_offset.wrapping_add(rep.delta));
        }

        rep.check_done()?;
        if rep.requested != 0 {
            let mut rflags = self.cpu.rflags();
            let result = super::arith::CmpOp::op(rax, memval, rflags);
            super::arith::CmpOp::update_flags(&mut rflags, rep.size, result, rax, memval);
            self.cpu.set_rflags(rflags);
        }
        Ok(())
    }
}