vmbus_user_channel/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Support for a vmbus channel client via the /dev/uioX devices.
//!
//! This mechanism works as follows. The `uio_vmbus_client` kernel driver can be
//! configured to bind to devices of a given vmbus device ID by writing the
//! device ID to to `/sys/bus/vmbus/uio_vmbus_client/new_id`. Then, for each vmbus
//! channel with that device ID, the driver will create a device named
//! `/dev/uioX`.
//!
//! When this device is opened, the driver will allocate a ring buffer and open
//! the corresponding vmbus channel. The channel can then be controlled in the
//! following ways:
//!
//! * Ring buffer memory can be accessed by using `mmap` to map the memory into
//!   user mode.
//!
//! * The host can be signaled by using `write` to write an 4-byte non-zero
//!   value. This is the same mechanism as `eventfd`.
//!
//! * The guest can wait for a signal by using `read` to read an 4-byte value.
//!   The file can be marked non-blocking, in which case the read will fail with
//!   `EAGAIN` if there is no signal. The guest can additionally use the
//!   kernel's `poll` infrastructure to wait for a signal to be available by
//!   waiting for `POLLIN` readiness.
//!
//! Currently there is no mechanism to discover that the channel has been
//! revoked.
//!

#![cfg(unix)]
#![forbid(unsafe_code)]

use filepath::FilePath;
use guid::Guid;
use pal_async::driver::Driver;
use pal_async::wait::PolledWait;
use parking_lot::Mutex;
use safeatomic::AtomicSliceOps;
use sparse_mmap::SparseMapping;
use std::fs::File;
use std::io::Write;
use std::path::Path;
use std::sync::Arc;
use std::task::ready;
use thiserror::Error;
use vmbus_async::pipe::BytePipe;
use vmbus_async::pipe::MessagePipe;
use vmbus_channel::RawAsyncChannel;
use vmbus_channel::SignalVmbusChannel;
use vmbus_ring::IncomingRing;
use vmbus_ring::OutgoingRing;
use vmbus_ring::RingMem;
use zerocopy::IntoBytes;

/// Ring buffer memory backed by a memory mapped channel.
#[derive(Debug)]
pub struct MappedRingMem {
    mapping: Arc<SparseMapping>,
    offset: usize,
    len: usize,
}

const CONTROL_SIZE: usize = 0x1000;
// These are currently hard-coded in the kernel driver. If this becomes
// configurable in the future, then query the device to determine these
// parameters.
const OUT_RING_SIZE: usize = 0x10000;
const IN_RING_SIZE: usize = 0x10000;

impl RingMem for MappedRingMem {
    fn control(&self) -> &[std::sync::atomic::AtomicU32; vmbus_ring::CONTROL_WORD_COUNT] {
        self.mapping
            .atomic_slice(self.offset, CONTROL_SIZE)
            .as_atomic_slice()
            .unwrap()[..vmbus_ring::CONTROL_WORD_COUNT]
            .try_into()
            .unwrap()
    }

    fn read_at(&self, mut addr: usize, data: &mut [u8]) {
        debug_assert!(addr + data.len() <= 2 * self.len);
        if addr > self.len() {
            addr -= self.len();
        }
        if addr + data.len() <= self.len() {
            self.mapping
                .read_at(self.offset + CONTROL_SIZE + addr, data)
                .unwrap();
        } else {
            let (first, last) = data.split_at_mut(self.len() - addr);
            self.mapping
                .read_at(self.offset + CONTROL_SIZE + addr, first)
                .unwrap();
            self.mapping
                .read_at(self.offset + CONTROL_SIZE, last)
                .unwrap();
        }
    }

    fn write_at(&self, mut addr: usize, data: &[u8]) {
        debug_assert!(addr + data.len() <= 2 * self.len);
        if addr > self.len() {
            addr -= self.len();
        }
        if addr + data.len() <= self.len() {
            self.mapping
                .write_at(self.offset + CONTROL_SIZE + addr, data)
                .unwrap();
        } else {
            let (first, last) = data.split_at(self.len() - addr);
            self.mapping
                .write_at(self.offset + CONTROL_SIZE + addr, first)
                .unwrap();
            self.mapping
                .write_at(self.offset + CONTROL_SIZE, last)
                .unwrap();
        }
    }

    fn len(&self) -> usize {
        self.len
    }
}

#[derive(Debug, Error)]
enum ErrorInner {
    #[error("couldn't find uio device")]
    Exist(#[source] std::io::Error),
    #[error("failed to open file")]
    Open(#[source] std::io::Error),
    #[error("failed to mmap")]
    Mmap(#[source] std::io::Error),
    #[error("ring buffer error")]
    Ring(#[source] vmbus_ring::Error),
    #[error("vmbus pipe error")]
    Pipe(#[source] std::io::Error),
    #[error("driver error")]
    Driver(#[source] std::io::Error),
}

/// An error connecting to the vmbus channel.
#[derive(Debug, Error)]
#[error(transparent)]
pub struct Error(ErrorInner);

impl<T: Into<ErrorInner>> From<T> for Error {
    fn from(t: T) -> Self {
        Self(t.into())
    }
}

/// Opens the UIO device for passing to [`channel`].
pub fn open_uio_device(instance_id: &Guid) -> Result<File, Error> {
    let paths = fs_err::read_dir(format!("/sys/bus/vmbus/devices/{instance_id}/uio"))
        .map_err(ErrorInner::Exist)?;

    let uio_path = paths
        .last()
        .unwrap_or_else(|| Err(std::io::ErrorKind::NotFound.into()))
        .map_err(ErrorInner::Exist)?;

    let uio_dev_path = Path::new("/dev").join(uio_path.file_name());
    tracing::debug!(
        dev_path = %uio_dev_path.display(),
        %instance_id,
        "opening device"
    );

    let file = fs_err::OpenOptions::new()
        .read(true)
        .write(true)
        .open(uio_dev_path)
        .map_err(ErrorInner::Open)?;

    Ok(file.into())
}

/// Opens a channel with a file from [`open_uio_device`].
pub fn channel(
    driver: &(impl Driver + ?Sized),
    file: File,
) -> Result<RawAsyncChannel<MappedRingMem>, Error> {
    let total_mapping_size = CONTROL_SIZE + IN_RING_SIZE + CONTROL_SIZE + OUT_RING_SIZE;

    let mapping = Arc::new(SparseMapping::new(total_mapping_size).map_err(ErrorInner::Mmap)?);

    // Double map the data portion of the ring buffers so that a packet spanning
    // the end of the ring buffer can be read linearly in VA space.
    let mapping_offset = 0;
    let len = CONTROL_SIZE + OUT_RING_SIZE + CONTROL_SIZE + IN_RING_SIZE;

    mapping
        .map_file(mapping_offset, len, &file, 0_u64, true)
        .map_err(ErrorInner::Mmap)?;

    let file = Arc::new(file);
    // UIO uses a 4-byte read to consume an interrupt.
    let wait = PolledWait::new_with_size(driver, file.clone(), 4).map_err(ErrorInner::Driver)?;
    let signal = UioSignal {
        wait: Mutex::new(wait),
        file,
    };

    let out_mem = MappedRingMem {
        mapping: mapping.clone(),
        offset: 0,
        len: OUT_RING_SIZE,
    };
    let out_ring = OutgoingRing::new(out_mem).map_err(ErrorInner::Ring)?;
    let in_mem = MappedRingMem {
        mapping,
        offset: CONTROL_SIZE + OUT_RING_SIZE,
        len: IN_RING_SIZE,
    };
    let in_ring = IncomingRing::new(in_mem).map_err(ErrorInner::Ring)?;

    let channel = RawAsyncChannel {
        in_ring,
        out_ring,
        signal: Box::new(signal),
    };

    Ok(channel)
}

struct UioSignal {
    file: Arc<File>,
    wait: Mutex<PolledWait<Arc<File>>>,
}

impl UioSignal {
    /// Attempt to get the interface and instance IDs for the channel.
    fn ids(&self) -> Option<(String, String)> {
        let path = self.file.path().ok()?;
        let sysfs = Path::new("/sys/bus/uio").join(path.file_name()?);
        let interface_id = fs_err::read_to_string(sysfs.join("device/class_id")).ok()?;
        let instance_id = fs_err::read_to_string(sysfs.join("device/device_id")).ok()?;
        Some((interface_id, instance_id))
    }
}

impl SignalVmbusChannel for UioSignal {
    fn signal_remote(&self) {
        // UIO uses 4-byte writes to signal the host and 4-byte reads to consume
        // a signal from the host. Use `as_bytes` to get an appropriately
        // aligned buffer.
        let n = self.file.as_ref().write(1u32.as_bytes()).unwrap();
        assert_eq!(n, 4);
    }

    fn poll_for_signal(
        &self,
        cx: &mut std::task::Context<'_>,
    ) -> std::task::Poll<Result<(), vmbus_channel::ChannelClosed>> {
        match ready!(self.wait.lock().poll_wait(cx)) {
            Ok(()) => Ok(()),
            Err(err) => {
                let (interface_id, instance_id) = self.ids().unzip();
                let interface_id = interface_id.as_ref().map(|s| s.trim_end());
                let interface_id = interface_id.as_ref().map(|s| s.trim_end());
                if err.raw_os_error() == Some(libc::EIO) {
                    tracing::info!(interface_id, instance_id, "vmbus channel revoked");
                } else {
                    tracing::error!(
                        interface_id,
                        instance_id,
                        error = &err as &dyn std::error::Error,
                        "unexpected uio error, treating as revoked channel"
                    )
                }
                Err(vmbus_channel::ChannelClosed)
            }
        }
        .into()
    }
}

/// Opens a byte pipe for the channel with a file from [`open_uio_device`].
pub fn byte_pipe(
    driver: &(impl Driver + ?Sized),
    file: File,
) -> Result<BytePipe<MappedRingMem>, Error> {
    let channel = channel(driver, file)?;
    let pipe = BytePipe::new(channel).map_err(ErrorInner::Pipe)?;
    Ok(pipe)
}

/// Opens a message pipe for the channel with a file from [`open_uio_device`].
pub fn message_pipe(
    driver: &(impl Driver + ?Sized),
    file: File,
) -> Result<MessagePipe<MappedRingMem>, Error> {
    let channel = channel(driver, file)?;
    let pipe = MessagePipe::new(channel).map_err(ErrorInner::Pipe)?;
    Ok(pipe)
}