vmbus_async/core.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Internal types for performing asynchronous channel IO.
use inspect::Inspect;
use inspect_counters::Counter;
use pal_async::multi_waker::MultiWaker;
use std::task::Context;
use std::task::Poll;
use vmbus_channel::ChannelClosed;
use vmbus_channel::RawAsyncChannel;
use vmbus_channel::SignalVmbusChannel;
use vmbus_ring as ring;
use vmbus_ring::IncomingRing;
use vmbus_ring::OutgoingOffset;
use vmbus_ring::OutgoingRing;
use vmbus_ring::RingMem;
pub struct Core<M: RingMem> {
signal: Box<dyn SignalVmbusChannel>,
multi_waker: MultiWaker<2>,
in_ring: IncomingRing<M>,
out_ring: OutgoingRing<M>,
}
impl<M: RingMem> Inspect for Core<M> {
fn inspect(&self, req: inspect::Request<'_>) {
req.respond()
.field("incoming_ring", &self.in_ring)
.field("outgoing_ring", &self.out_ring);
}
}
impl<M: RingMem> Core<M> {
pub fn new(channel: RawAsyncChannel<M>) -> Self {
let RawAsyncChannel {
in_ring,
out_ring,
signal,
} = channel;
Self {
signal,
multi_waker: MultiWaker::new(),
in_ring,
out_ring,
}
}
pub fn in_ring(&self) -> &IncomingRing<M> {
&self.in_ring
}
pub fn out_ring(&self) -> &OutgoingRing<M> {
&self.out_ring
}
}
#[derive(Debug)]
pub(crate) enum PollError {
Ring(ring::Error),
Closed,
}
impl<M: RingMem> Core<M> {
fn poll_ready(&self, cx: &mut Context<'_>, for_outgoing: bool) -> Poll<Result<(), PollError>> {
// Poll, wrapping the context with a multi waker context so that both
// the incoming and outgoing tasks will be woken when there is a signal.
self.multi_waker
.poll_wrapped(cx, for_outgoing.into(), |cx| {
self.signal
.poll_for_signal(cx)
.map_err(|ChannelClosed| PollError::Closed)
})
}
}
impl<M: RingMem> Core<M> {
pub fn signal(&self) {
self.signal.signal_remote();
}
}
#[derive(Debug, Inspect)]
pub struct ReadState {
#[inspect(flatten)]
pub ptrs: ring::IncomingOffset,
pub polls: Counter,
pub signals: Counter,
ready: bool,
masked: bool,
}
impl ReadState {
pub fn new(ptrs: ring::IncomingOffset) -> Self {
Self {
ptrs,
polls: Counter::new(),
signals: Counter::new(),
ready: false,
// It's safe to assume interrupts are initially masked, since
// setting the mask is an optimization but clearing it is required
// to avoid missing notifications.
masked: true,
}
}
/// Polls the incoming ring for readiness.
pub fn poll_ready<M: RingMem>(
&mut self,
cx: &mut Context<'_>,
core: &Core<M>,
) -> Poll<Result<(), PollError>> {
while !self.ready {
// The ring buffer is believed to be empty. Unmask interrupts before
// double checking the ring buffer.
if self.masked {
core.in_ring.set_interrupt_mask(false);
self.masked = false;
} else {
// Interrupts are not supposed to be masked at this point.
// Detect ring control corruption here to avoid hard to diagnose
// issues later.
core.in_ring
.verify_interrupts_unmasked()
.map_err(PollError::Ring)?;
}
if core
.in_ring
.can_read(&mut self.ptrs)
.map_err(PollError::Ring)?
{
// The ring has packets.
//
// N.B. There is no need to mask interrupts again until just
// before packets are removed from the ring, since the opposite
// endpoint will not signal until there is an empty-to-non-empty
// transition.
self.ready = true;
} else {
std::task::ready!(core.poll_ready(cx, false))?;
self.polls.increment();
}
}
Poll::Ready(Ok(()))
}
/// Clears the cached ready state. Should be called when the ring buffer is
/// known to be empty.
pub fn clear_ready(&mut self) {
self.ready = false;
}
/// Clears the request for a wakeup when the ring is ready.
///
/// Should be called just before removing packets from the ring so that the
/// opposite endpoint does not signal the ring-non-empty condition
/// unnecessarily.
pub fn clear_poll<M: RingMem>(&mut self, core: &Core<M>) {
if !self.masked {
core.in_ring.set_interrupt_mask(true);
self.masked = true;
}
}
}
#[derive(Debug, Inspect)]
pub struct WriteState {
#[inspect(flatten)]
pub ptrs: OutgoingOffset,
pub signals: Counter,
pub polls: Counter,
ready: bool,
pending_size: usize,
}
impl WriteState {
pub fn new(ptrs: OutgoingOffset) -> Self {
Self {
ptrs,
signals: Counter::new(),
polls: Counter::new(),
ready: false,
pending_size: 0,
}
}
/// Polls the outgoing ring for readiness to send `send_size` bytes.
pub fn poll_ready<M: RingMem>(
&mut self,
cx: &mut Context<'_>,
core: &Core<M>,
send_size: usize,
) -> Poll<Result<(), PollError>> {
while !self.ready {
// The ring buffer is believed to be full. Set the pending send size
// before double checking the ring buffer.
if self.pending_size < send_size {
// Since there is no rush to get data into a full ring,
// delay the signal until at least 1/4 of the ring is
// available (and until this packet fits) to avoid ping
// ponging with the opposite endpoint.
self.pending_size = send_size.max(core.out_ring().maximum_packet_size() / 4);
core.out_ring
.set_pending_send_size(self.pending_size)
.map_err(PollError::Ring)?;
}
if core
.out_ring
.can_write(&mut self.ptrs, send_size)
.map_err(PollError::Ring)?
{
self.ready = true;
// Clear the pending send size now if it's larger than the
// requested send size, since otherwise spurious interrupts may
// arrive.
if self.pending_size > send_size {
self.clear_poll(core);
}
} else {
std::task::ready!(core.poll_ready(cx, true))?;
self.polls.increment();
}
}
Poll::Ready(Ok(()))
}
/// Clears the cached ready state. Should be called when the ring buffer is
/// known to be full.
pub fn clear_ready(&mut self) {
self.ready = false;
}
/// Clears the request for a wakeup when the ring is ready.
///
/// Should be called just before inserting packets into the ring so that the
/// opposite endpoint does not signal the ring-non-full condition
/// unnecessarily.
pub fn clear_poll<M: RingMem>(&mut self, core: &Core<M>) {
if self.pending_size != 0 {
core.out_ring.set_pending_send_size(0).unwrap();
self.pending_size = 0;
}
}
}