vmbus_async/
core.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Internal types for performing asynchronous channel IO.

use inspect::Inspect;
use inspect_counters::Counter;
use pal_async::multi_waker::MultiWaker;
use std::task::Context;
use std::task::Poll;
use vmbus_channel::ChannelClosed;
use vmbus_channel::RawAsyncChannel;
use vmbus_channel::SignalVmbusChannel;
use vmbus_ring as ring;
use vmbus_ring::IncomingRing;
use vmbus_ring::OutgoingOffset;
use vmbus_ring::OutgoingRing;
use vmbus_ring::RingMem;

pub struct Core<M: RingMem> {
    signal: Box<dyn SignalVmbusChannel>,
    multi_waker: MultiWaker<2>,
    in_ring: IncomingRing<M>,
    out_ring: OutgoingRing<M>,
}

impl<M: RingMem> Inspect for Core<M> {
    fn inspect(&self, req: inspect::Request<'_>) {
        req.respond()
            .field("incoming_ring", &self.in_ring)
            .field("outgoing_ring", &self.out_ring);
    }
}

impl<M: RingMem> Core<M> {
    pub fn new(channel: RawAsyncChannel<M>) -> Self {
        let RawAsyncChannel {
            in_ring,
            out_ring,
            signal,
        } = channel;
        Self {
            signal,
            multi_waker: MultiWaker::new(),
            in_ring,
            out_ring,
        }
    }

    pub fn in_ring(&self) -> &IncomingRing<M> {
        &self.in_ring
    }

    pub fn out_ring(&self) -> &OutgoingRing<M> {
        &self.out_ring
    }
}

#[derive(Debug)]
pub(crate) enum PollError {
    Ring(ring::Error),
    Closed,
}

impl<M: RingMem> Core<M> {
    fn poll_ready(&self, cx: &mut Context<'_>, for_outgoing: bool) -> Poll<Result<(), PollError>> {
        // Poll, wrapping the context with a multi waker context so that both
        // the incoming and outgoing tasks will be woken when there is a signal.
        self.multi_waker
            .poll_wrapped(cx, for_outgoing.into(), |cx| {
                self.signal
                    .poll_for_signal(cx)
                    .map_err(|ChannelClosed| PollError::Closed)
            })
    }
}

impl<M: RingMem> Core<M> {
    pub fn signal(&self) {
        self.signal.signal_remote();
    }
}

#[derive(Debug, Inspect)]
pub struct ReadState {
    #[inspect(flatten)]
    pub ptrs: ring::IncomingOffset,
    pub polls: Counter,
    pub signals: Counter,
    ready: bool,
    masked: bool,
}

impl ReadState {
    pub fn new(ptrs: ring::IncomingOffset) -> Self {
        Self {
            ptrs,
            polls: Counter::new(),
            signals: Counter::new(),
            ready: false,
            // It's safe to assume interrupts are initially masked, since
            // setting the mask is an optimization but clearing it is required
            // to avoid missing notifications.
            masked: true,
        }
    }

    /// Polls the incoming ring for readiness.
    pub fn poll_ready<M: RingMem>(
        &mut self,
        cx: &mut Context<'_>,
        core: &Core<M>,
    ) -> Poll<Result<(), PollError>> {
        while !self.ready {
            // The ring buffer is believed to be empty. Unmask interrupts before
            // double checking the ring buffer.
            if self.masked {
                core.in_ring.set_interrupt_mask(false);
                self.masked = false;
            } else {
                // Interrupts are not supposed to be masked at this point.
                // Detect ring control corruption here to avoid hard to diagnose
                // issues later.
                core.in_ring
                    .verify_interrupts_unmasked()
                    .map_err(PollError::Ring)?;
            }

            if core
                .in_ring
                .can_read(&mut self.ptrs)
                .map_err(PollError::Ring)?
            {
                // The ring has packets.
                //
                // N.B. There is no need to mask interrupts again until just
                // before packets are removed from the ring, since the opposite
                // endpoint will not signal until there is an empty-to-non-empty
                // transition.
                self.ready = true;
            } else {
                std::task::ready!(core.poll_ready(cx, false))?;
                self.polls.increment();
            }
        }
        Poll::Ready(Ok(()))
    }

    /// Clears the cached ready state. Should be called when the ring buffer is
    /// known to be empty.
    pub fn clear_ready(&mut self) {
        self.ready = false;
    }

    /// Clears the request for a wakeup when the ring is ready.
    ///
    /// Should be called just before removing packets from the ring so that the
    /// opposite endpoint does not signal the ring-non-empty condition
    /// unnecessarily.
    pub fn clear_poll<M: RingMem>(&mut self, core: &Core<M>) {
        if !self.masked {
            core.in_ring.set_interrupt_mask(true);
            self.masked = true;
        }
    }
}

#[derive(Debug, Inspect)]
pub struct WriteState {
    #[inspect(flatten)]
    pub ptrs: OutgoingOffset,
    pub signals: Counter,
    pub polls: Counter,
    ready: bool,
    pending_size: usize,
}

impl WriteState {
    pub fn new(ptrs: OutgoingOffset) -> Self {
        Self {
            ptrs,
            signals: Counter::new(),
            polls: Counter::new(),
            ready: false,
            pending_size: 0,
        }
    }

    /// Polls the outgoing ring for readiness to send `send_size` bytes.
    pub fn poll_ready<M: RingMem>(
        &mut self,
        cx: &mut Context<'_>,
        core: &Core<M>,
        send_size: usize,
    ) -> Poll<Result<(), PollError>> {
        while !self.ready {
            // The ring buffer is believed to be full. Set the pending send size
            // before double checking the ring buffer.
            if self.pending_size < send_size {
                // Since there is no rush to get data into a full ring,
                // delay the signal until at least 1/4 of the ring is
                // available (and until this packet fits) to avoid ping
                // ponging with the opposite endpoint.
                self.pending_size = send_size.max(core.out_ring().maximum_packet_size() / 4);
                core.out_ring
                    .set_pending_send_size(self.pending_size)
                    .map_err(PollError::Ring)?;
            }
            if core
                .out_ring
                .can_write(&mut self.ptrs, send_size)
                .map_err(PollError::Ring)?
            {
                self.ready = true;
                // Clear the pending send size now if it's larger than the
                // requested send size, since otherwise spurious interrupts may
                // arrive.
                if self.pending_size > send_size {
                    self.clear_poll(core);
                }
            } else {
                std::task::ready!(core.poll_ready(cx, true))?;
                self.polls.increment();
            }
        }
        Poll::Ready(Ok(()))
    }

    /// Clears the cached ready state. Should be called when the ring buffer is
    /// known to be full.
    pub fn clear_ready(&mut self) {
        self.ready = false;
    }

    /// Clears the request for a wakeup when the ring is ready.
    ///
    /// Should be called just before inserting packets into the ring so that the
    /// opposite endpoint does not signal the ring-non-full condition
    /// unnecessarily.
    pub fn clear_poll<M: RingMem>(&mut self, core: &Core<M>) {
        if self.pending_size != 0 {
            core.out_ring.set_pending_send_size(0).unwrap();
            self.pending_size = 0;
        }
    }
}