vm_manifest_builder/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Crate to help build a VM manifest.
//!
//! The VM's _manifest_ is a list of device handles (and, for now, legacy device
//! configuration for [`vmotherboard`]) for devices that are present in a VM.
//!
//! This crate helps build the manifest via the [`VmManifestBuilder`] type. This
//! can be used to construct common manifests for different VM types, such as
//! Hyper-V generation 1 and 2 VMs, unenlightened Linux VMs, and Underhill VMs.
//!
//! For now, this crate only builds handles and configuration for "chipset"
//! devices. In the future, it will also build handles for PCI and VMBus
//! devices.

use chipset_resources::battery::BatteryDeviceHandleAArch64;
use chipset_resources::battery::BatteryDeviceHandleX64;
use chipset_resources::battery::HostBatteryUpdate;
use chipset_resources::i8042::I8042DeviceHandle;
use input_core::MultiplexedInputHandle;
use missing_dev_resources::MissingDevHandle;
use serial_16550_resources::Serial16550DeviceHandle;
use serial_core::resources::DisconnectedSerialBackendHandle;
use serial_debugcon_resources::SerialDebugconDeviceHandle;
use serial_pl011_resources::SerialPl011DeviceHandle;
use std::iter::zip;
use thiserror::Error;
use vm_resource::IntoResource;
use vm_resource::Resource;
use vm_resource::kind::SerialBackendHandle;
use vmotherboard::ChipsetDeviceHandle;
use vmotherboard::options::BaseChipsetManifest;

/// Builder for a VM manifest.
pub struct VmManifestBuilder {
    ty: BaseChipsetType,
    arch: MachineArch,
    serial: Option<[Option<Resource<SerialBackendHandle>>; 4]>,
    serial_wait_for_rts: bool,
    proxy_vga: bool,
    stub_floppy: bool,
    battery_status_recv: Option<mesh::Receiver<HostBatteryUpdate>>,
    framebuffer: bool,
    guest_watchdog: bool,
    psp: bool,
    debugcon: Option<(Resource<SerialBackendHandle>, u16)>,
}

/// The VM's base chipset type, which determines the set of core devices (such
/// as timers, interrupt controllers, and buses) that are present in the VM.
pub enum BaseChipsetType {
    /// Hyper-V generation 1 VM, with a PCAT firmware and PIIX4 chipset.
    HypervGen1,
    /// Hyper-V generation 2 VM, with a UEFI firmware and no legacy devices.
    HypervGen2Uefi,
    /// Hyper-V generation 2 VM, booting directly from Linux with no legacy
    /// devices.
    HyperVGen2LinuxDirect,
    /// VM hosting an HCL (Underhill) instance, with no architectural devices at
    /// all.
    ///
    /// The HCL will determine the actual devices presented to the guest OS;
    /// this VMM just needs to present the devices needed by the HCL.
    HclHost,
    /// Unenlightened Linux VM, with a PCI bus and basic architectural devices.
    UnenlightenedLinuxDirect,
}

/// The machine architecture of the VM.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum MachineArch {
    /// x86_64 (AMD64) architecture.
    X86_64,
    /// AArch64 (ARM64) architecture.
    Aarch64,
}

/// The result of building a VM manifest.
pub struct VmChipsetResult {
    /// The base chipset manifest for the VM.
    pub chipset: BaseChipsetManifest,
    /// The list of chipset devices present in the VM.
    pub chipset_devices: Vec<ChipsetDeviceHandle>,
}

/// Error type for building a VM manifest.
#[derive(Debug, Error)]
#[error(transparent)]
pub struct Error(#[from] ErrorInner);

#[derive(Debug, Error)]
enum ErrorInner {
    #[error("unsupported architecture")]
    UnsupportedArch,
    #[error("unsupported serial port count")]
    UnsupportedSerialCount,
    #[error("unsupported debugcon architecture")]
    UnsupportedDebugconArch,
    #[error("wait for RTS not supported with this serial type")]
    WaitForRtsNotSupported,
}

impl VmManifestBuilder {
    /// Create a new VM manifest builder for the given chipset type and
    /// architecture.
    pub fn new(ty: BaseChipsetType, arch: MachineArch) -> Self {
        VmManifestBuilder {
            ty,
            arch,
            serial: None,
            serial_wait_for_rts: false,
            proxy_vga: false,
            stub_floppy: false,
            battery_status_recv: None,
            framebuffer: false,
            guest_watchdog: false,
            psp: false,
            debugcon: None,
        }
    }

    /// Enable serial ports (of a type determined by the chipset type), backed
    /// by the given serial backends.
    ///
    /// For Hyper-V generation 1 VMs, serial ports are always present but are
    /// disconnected unless this method is called. For other VMs, this method
    /// must be called to add serial ports.
    ///
    /// For ARM64 VMs, only two serial ports are supported.
    pub fn with_serial(mut self, serial: [Option<Resource<SerialBackendHandle>>; 4]) -> Self {
        self.serial = Some(serial);
        self
    }

    /// Enable wait-for-RTS mode for serial ports.
    ///
    /// This ensures that the VMM will not push data into the serial port's FIFO
    /// until the guest has raised the RTS line.
    pub fn with_serial_wait_for_rts(mut self) -> Self {
        self.serial_wait_for_rts = true;
        self
    }

    /// Enable the debugcon output-only serial device at the specified port,
    /// backed by the given serial backend.
    ///
    /// Only supported on x86
    pub fn with_debugcon(mut self, serial: Resource<SerialBackendHandle>, port: u16) -> Self {
        self.debugcon = Some((serial, port));
        self
    }

    /// Enable the proxy VGA device.
    ///
    /// This is used for Underhill VMs that are emulating Hyper-V generation 1
    /// VMs.
    pub fn with_proxy_vga(mut self) -> Self {
        assert!(matches!(self.ty, BaseChipsetType::HypervGen1));
        self.proxy_vga = true;
        self
    }

    /// Enable the battery device.
    pub fn with_battery(mut self, battery_status_recv: mesh::Receiver<HostBatteryUpdate>) -> Self {
        self.battery_status_recv = Some(battery_status_recv);
        self
    }

    /// Enable the stub floppy device instead of the full floppy device
    /// implementation.
    ///
    /// This is used to support the saved states for VMs that used the stub
    /// floppy device.
    ///
    /// This is only supported for Hyper-V generation 1 VMs. Panics otherwise.
    pub fn with_stub_floppy(mut self) -> Self {
        assert!(matches!(self.ty, BaseChipsetType::HypervGen1));
        self.stub_floppy = true;
        self
    }

    /// Enable the framebuffer device.
    ///
    /// This is implicit for Hyper-V generation 1 VMs.
    ///
    /// This method will be removed once all devices depending on the
    /// framebuffer are managed through this builder type.
    pub fn with_framebuffer(mut self) -> Self {
        self.framebuffer = true;
        self
    }

    /// Enable the guest watchdog device.
    pub fn with_guest_watchdog(mut self) -> Self {
        self.guest_watchdog = true;
        self
    }

    /// Enable the AMD64 PSP device.
    pub fn with_psp(mut self) -> Self {
        self.psp = true;
        self
    }

    /// Build the VM manifest.
    pub fn build(self) -> Result<VmChipsetResult, Error> {
        let mut result = VmChipsetResult {
            chipset_devices: Vec::new(),
            chipset: BaseChipsetManifest::empty(),
        };

        if let Some((backend, port)) = self.debugcon {
            if matches!(self.arch, MachineArch::X86_64) {
                result.attach_debugcon(port, backend);
            } else {
                return Err(ErrorInner::UnsupportedDebugconArch.into());
            }
        }

        match self.ty {
            BaseChipsetType::HypervGen1 => {
                if self.arch != MachineArch::X86_64 {
                    return Err(Error(ErrorInner::UnsupportedArch));
                }
                result.attach_i8042();
                // This chipset always has a serial port even if not requested.
                result.attach_serial_16550(
                    self.serial_wait_for_rts,
                    self.serial.unwrap_or_else(|| [(); 4].map(|_| None)),
                );
                result.chipset = BaseChipsetManifest {
                    with_generic_cmos_rtc: false,
                    with_generic_ioapic: true,
                    with_generic_isa_dma: true,
                    with_generic_isa_floppy: false,
                    with_generic_pci_bus: false,
                    with_generic_pic: true,
                    with_generic_pit: true,
                    with_generic_psp: false,
                    with_hyperv_firmware_pcat: true,
                    with_hyperv_firmware_uefi: false,
                    with_hyperv_framebuffer: !self.proxy_vga,
                    with_hyperv_guest_watchdog: false,
                    with_hyperv_ide: true,
                    with_hyperv_power_management: false,
                    with_hyperv_vga: !self.proxy_vga,
                    with_i440bx_host_pci_bridge: true,
                    with_piix4_cmos_rtc: true,
                    with_piix4_pci_bus: true,
                    with_piix4_pci_isa_bridge: true,
                    with_piix4_pci_usb_uhci_stub: true,
                    with_piix4_power_management: true,
                    with_underhill_vga_proxy: self.proxy_vga,
                    with_winbond_super_io_and_floppy_stub: self.stub_floppy,
                    with_winbond_super_io_and_floppy_full: !self.stub_floppy,
                };
                result.attach_missing_arch_ports(self.arch, false);
                if let Some(recv) = self.battery_status_recv {
                    result.attach_battery(self.arch, recv);
                }
            }
            BaseChipsetType::UnenlightenedLinuxDirect => {
                let is_x86 = matches!(self.arch, MachineArch::X86_64);
                result.chipset = BaseChipsetManifest {
                    with_generic_cmos_rtc: is_x86,
                    with_generic_ioapic: is_x86,
                    with_generic_isa_dma: false,
                    with_generic_isa_floppy: false,
                    with_generic_pci_bus: is_x86,
                    with_generic_pic: is_x86,
                    with_generic_pit: is_x86,
                    with_generic_psp: self.psp,
                    with_hyperv_firmware_pcat: false,
                    with_hyperv_firmware_uefi: false,
                    with_hyperv_framebuffer: self.framebuffer,
                    with_hyperv_guest_watchdog: self.guest_watchdog,
                    with_hyperv_ide: false,
                    with_hyperv_power_management: is_x86,
                    with_hyperv_vga: false,
                    with_i440bx_host_pci_bridge: false,
                    with_piix4_cmos_rtc: false,
                    with_piix4_pci_bus: false,
                    with_piix4_pci_isa_bridge: false,
                    with_piix4_pci_usb_uhci_stub: false,
                    with_piix4_power_management: false,
                    with_underhill_vga_proxy: false,
                    with_winbond_super_io_and_floppy_stub: false,
                    with_winbond_super_io_and_floppy_full: false,
                };
                result
                    .maybe_attach_arch_serial(
                        self.arch,
                        self.serial_wait_for_rts,
                        true,
                        self.serial,
                    )?
                    .attach_missing_arch_ports(self.arch, false);
                if let Some(recv) = self.battery_status_recv {
                    result.attach_battery(self.arch, recv);
                }
            }
            BaseChipsetType::HypervGen2Uefi | BaseChipsetType::HyperVGen2LinuxDirect => {
                let is_x86 = matches!(self.arch, MachineArch::X86_64);
                result.chipset = BaseChipsetManifest {
                    with_generic_cmos_rtc: is_x86,
                    with_generic_ioapic: is_x86,
                    with_generic_isa_dma: false,
                    with_generic_isa_floppy: false,
                    with_generic_pci_bus: false,
                    with_generic_pic: false,
                    with_generic_pit: false,
                    with_generic_psp: self.psp,
                    with_hyperv_firmware_pcat: false,
                    with_hyperv_firmware_uefi: matches!(self.ty, BaseChipsetType::HypervGen2Uefi),
                    with_hyperv_framebuffer: self.framebuffer,
                    with_hyperv_guest_watchdog: self.guest_watchdog,
                    with_hyperv_ide: false,
                    with_hyperv_power_management: is_x86,
                    with_hyperv_vga: false,
                    with_i440bx_host_pci_bridge: false,
                    with_piix4_cmos_rtc: false,
                    with_piix4_pci_bus: false,
                    with_piix4_pci_isa_bridge: false,
                    with_piix4_pci_usb_uhci_stub: false,
                    with_piix4_power_management: false,
                    with_underhill_vga_proxy: false,
                    with_winbond_super_io_and_floppy_stub: false,
                    with_winbond_super_io_and_floppy_full: false,
                };
                result
                    .maybe_attach_arch_serial(
                        self.arch,
                        self.serial_wait_for_rts,
                        true,
                        self.serial,
                    )?
                    .attach_missing_arch_ports(self.arch, true);
                if let Some(recv) = self.battery_status_recv {
                    result.attach_battery(self.arch, recv);
                }
            }
            BaseChipsetType::HclHost => {
                result.chipset = BaseChipsetManifest {
                    with_hyperv_framebuffer: self.framebuffer,
                    ..BaseChipsetManifest::empty()
                };
                result.maybe_attach_arch_serial(
                    self.arch,
                    self.serial_wait_for_rts,
                    false,
                    self.serial,
                )?;
                if let Some(recv) = self.battery_status_recv {
                    result.attach_battery(self.arch, recv);
                }
            }
        }
        Ok(result)
    }
}

impl VmChipsetResult {
    fn attach_i8042(&mut self) -> &mut Self {
        self.chipset_devices.push(ChipsetDeviceHandle {
            name: "i8042".to_owned(),
            resource: I8042DeviceHandle {
                keyboard_input: MultiplexedInputHandle { elevation: 0 }.into_resource(),
            }
            .into_resource(),
        });
        self
    }

    fn attach_battery(
        &mut self,
        arch: MachineArch,
        battery_status_recv: mesh::Receiver<HostBatteryUpdate>,
    ) -> &mut Self {
        self.chipset_devices.push(ChipsetDeviceHandle {
            name: "battery".to_owned(),
            resource: match arch {
                MachineArch::X86_64 => BatteryDeviceHandleX64 {
                    battery_status_recv,
                }
                .into_resource(),
                MachineArch::Aarch64 => BatteryDeviceHandleAArch64 {
                    battery_status_recv,
                }
                .into_resource(),
            },
        });

        self
    }

    fn maybe_attach_arch_serial(
        &mut self,
        arch: MachineArch,
        wait_for_rts: bool,
        register_missing: bool,
        serial: Option<[Option<Resource<SerialBackendHandle>>; 4]>,
    ) -> Result<&mut Self, ErrorInner> {
        if let Some(serial) = serial {
            match arch {
                MachineArch::X86_64 => {
                    self.attach_serial_16550(wait_for_rts, serial);
                }
                MachineArch::Aarch64 => {
                    if wait_for_rts {
                        return Err(ErrorInner::WaitForRtsNotSupported);
                    }
                    self.attach_serial_pl011(serial)?;
                }
            }
        } else if register_missing && arch == MachineArch::X86_64 {
            self.chipset_devices.push(ChipsetDeviceHandle {
                name: "missing-serial".to_owned(),
                resource: MissingDevHandle::new()
                    .claim_pio("com1", 0x3f8..=0x3ff)
                    .claim_pio("com2", 0x2f8..=0x2ff)
                    .claim_pio("com3", 0x3e8..=0x3ef)
                    .claim_pio("com4", 0x2e8..=0x2ef)
                    .into_resource(),
            });
        }
        Ok(self)
    }

    fn attach_debugcon(&mut self, port: u16, backend: Resource<SerialBackendHandle>) -> &mut Self {
        self.chipset_devices.push(ChipsetDeviceHandle {
            name: format!("debugcon-{port:#x?}"),
            resource: SerialDebugconDeviceHandle { port, io: backend }.into_resource(),
        });
        self
    }

    fn attach_serial_16550(
        &mut self,
        wait_for_rts: bool,
        backends: [Option<Resource<SerialBackendHandle>>; 4],
    ) -> &mut Self {
        let mut devices = Serial16550DeviceHandle::com_ports(
            backends.map(|r| r.unwrap_or_else(|| DisconnectedSerialBackendHandle.into_resource())),
        );

        if wait_for_rts {
            devices = devices.map(|d| Serial16550DeviceHandle {
                wait_for_rts: true,
                ..d
            });
        }

        self.chipset_devices.extend(
            zip(
                ["serial-com1", "serial-com2", "serial-com3", "serial-com4"],
                devices,
            )
            .map(|(name, device)| ChipsetDeviceHandle {
                name: name.to_string(),
                resource: device.into_resource(),
            }),
        );
        self
    }

    fn attach_serial_pl011(
        &mut self,
        backends: [Option<Resource<SerialBackendHandle>>; 4],
    ) -> Result<&mut Self, ErrorInner> {
        const PL011_SERIAL0_BASE: u64 = 0xEFFEC000;
        const PL011_SERIAL0_IRQ: u32 = 1;
        const PL011_SERIAL1_BASE: u64 = 0xEFFEB000;
        const PL011_SERIAL1_IRQ: u32 = 2;

        let [backend0, backend1, backend2, backend3] = backends;
        if backend2.is_some() || backend3.is_some() {
            return Err(ErrorInner::UnsupportedSerialCount);
        }
        self.chipset_devices.extend([
            ChipsetDeviceHandle {
                name: "com1".to_string(),
                resource: SerialPl011DeviceHandle {
                    base: PL011_SERIAL0_BASE,
                    irq: PL011_SERIAL0_IRQ,
                    io: backend0.unwrap_or_else(|| DisconnectedSerialBackendHandle.into_resource()),
                }
                .into_resource(),
            },
            ChipsetDeviceHandle {
                name: "com2".to_string(),
                resource: SerialPl011DeviceHandle {
                    base: PL011_SERIAL1_BASE,
                    irq: PL011_SERIAL1_IRQ,
                    io: backend1.unwrap_or_else(|| DisconnectedSerialBackendHandle.into_resource()),
                }
                .into_resource(),
            },
        ]);
        Ok(self)
    }

    fn attach_missing_arch_ports(&mut self, arch: MachineArch, pcat_missing: bool) -> &mut Self {
        if arch != MachineArch::X86_64 {
            return self;
        }

        self.chipset_devices.extend([
            // Some linux versions write to port 0xED as an IO delay mechanims.
            ChipsetDeviceHandle {
                name: "io-delay-0xed".to_owned(),
                resource: MissingDevHandle::new()
                    .claim_pio("delay", 0xed..=0xed)
                    .into_resource(),
            },
            // some windows versions try to unconditionally access these IO ports.
            ChipsetDeviceHandle {
                name: "missing-vmware-backdoor".to_owned(),
                resource: MissingDevHandle::new()
                    .claim_pio("backdoor", 0x5658..=0x5659)
                    .into_resource(),
            },
            // DOS games often unconditionally poll the gameport (e.g: Duke Nukem 1)
            ChipsetDeviceHandle {
                name: "missing-gameport".to_owned(),
                resource: MissingDevHandle::new()
                    .claim_pio("gameport", 0x201..=0x201)
                    .into_resource(),
            },
        ]);

        if pcat_missing {
            self.chipset_devices.extend([
                ChipsetDeviceHandle {
                    name: "missing-pic".to_owned(),
                    resource: MissingDevHandle::new()
                        .claim_pio("primary", 0x20..=0x21)
                        .claim_pio("secondary", 0xa0..=0xa1)
                        .into_resource(),
                },
                ChipsetDeviceHandle {
                    name: "missing-pit".to_owned(),
                    resource: MissingDevHandle::new()
                        .claim_pio("main", 0x40..=0x43)
                        .claim_pio("port61", 0x61..=0x61)
                        .into_resource(),
                },
                ChipsetDeviceHandle {
                    name: "missing-pci".to_owned(),
                    resource: MissingDevHandle::new()
                        .claim_pio("address", 0xcf8..=0xcfb)
                        .claim_pio("data", 0xcfc..=0xcff)
                        .into_resource(),
                },
                // Linux will probe 0x87 during boot to determine if there the DMA
                // device is present
                ChipsetDeviceHandle {
                    name: "missing-dma".to_owned(),
                    resource: MissingDevHandle::new()
                        .claim_pio("io", 0x87..=0x87)
                        .into_resource(),
                },
            ]);
        }
        self
    }
}