virt_support_x86emu/translate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! x86-64 page table walking.
#![warn(missing_docs)]
use guestmem::GuestMemory;
use hvdef::hypercall::TranslateGvaControlFlagsX64;
use hvdef::hypercall::TranslateGvaResultCode;
use thiserror::Error;
use x86defs::LargePde;
use x86defs::Pte;
use x86defs::RFlags;
use x86defs::SegmentRegister;
use x86defs::X64_CR0_PG;
use x86defs::X64_CR4_LA57;
use x86defs::X64_CR4_PAE;
use x86defs::X64_CR4_PSE;
use x86defs::X64_CR4_SMAP;
use x86defs::X64_CR4_SMEP;
use x86defs::X64_EFER_LMA;
use x86defs::X64_EFER_NXE;
/// Registers needed to walk the page table.
#[derive(Debug, Clone)]
pub struct TranslationRegisters {
/// CR0
pub cr0: u64,
/// CR4
pub cr4: u64,
/// EFER
pub efer: u64,
/// CR3
pub cr3: u64,
/// RFLAGS
pub rflags: u64,
/// SS
pub ss: SegmentRegister,
/// The way the processor uses to determine if an access is to encrypted
/// memory. This is used to enforce that page tables and executable code are
/// in encrypted memory.
pub encryption_mode: EncryptionMode,
}
/// The way the processor uses to determine if an access is to encrypted memory.
#[derive(Debug, Copy, Clone)]
pub enum EncryptionMode {
/// Memory accesses below the virtual top of memory address are encrypted.
Vtom(u64),
/// No memory is encrypted.
None,
}
/// Flags to control the page table walk.
#[derive(Debug, Clone)]
pub struct TranslateFlags {
/// Validate a VP in the current state can execute from this GVA.
pub validate_execute: bool,
/// Validate a VP in the current state can read from this GVA.
pub validate_read: bool,
/// Validate a VP in the current state can write to this GVA.
pub validate_write: bool,
/// Allow access even if SMAP would prevent it.
pub override_smap: bool,
/// Enforce SMAP even if it is disabled via the AC flag.
pub enforce_smap: bool,
/// The type of privilege check to perform.
pub privilege_check: TranslatePrivilegeCheck,
/// Update the page table entries' access and dirty bits as appropriate.
pub set_page_table_bits: bool,
}
/// The type of privilege check to perform.
#[derive(Debug, Copy, Clone)]
pub enum TranslatePrivilegeCheck {
/// No privilege checks.
None,
/// Validate user-mode access.
User,
/// Validate supervisor access.
Supervisor,
/// Validate both supervisor and user-mode access.
Both,
/// Validate according to the current privilege level.
CurrentPrivilegeLevel,
}
impl TranslateFlags {
/// Return flags based on the `HvTranslateVirtualAddress` hypercall input
/// flags.
///
/// Note that not all flags are considered.
pub fn from_hv_flags(flags: TranslateGvaControlFlagsX64) -> Self {
Self {
validate_execute: flags.validate_execute(),
validate_read: flags.validate_read(),
validate_write: flags.validate_write(),
override_smap: flags.override_smap(),
enforce_smap: flags.enforce_smap(),
privilege_check: if flags.privilege_exempt() {
TranslatePrivilegeCheck::None
} else if flags.user_access() {
if flags.supervisor_access() {
TranslatePrivilegeCheck::Both
} else {
TranslatePrivilegeCheck::User
}
} else if flags.supervisor_access() {
TranslatePrivilegeCheck::Supervisor
} else {
TranslatePrivilegeCheck::CurrentPrivilegeLevel
},
set_page_table_bits: flags.set_page_table_bits(),
}
}
}
/// Result of translation
pub struct TranslateResult {
/// The translated GPA.
pub gpa: u64,
/// Information from the walk that can be used to determine memory type
pub cache_info: TranslateCachingInfo,
}
/// Information from a translation walk that can be used to determine memory
/// type.
pub enum TranslateCachingInfo {
/// Paging wasn't enabled for the translation.
NoPaging,
/// State from a page table walk
Paging {
/// Index that can be used into the pat register to determine cache type
pat_index: u64,
},
}
/// Translation error.
#[derive(Debug, Error)]
pub enum Error {
/// The page table flags were invalid.
#[error("invalid page table flags")]
InvalidPageTableFlags,
/// The requested GVA is a non-canonical address.
#[error("non-canonical address")]
NonCanonicalAddress,
/// A page table GPA was not mapped.
#[error("gpa unmapped")]
GpaUnmapped,
/// The page was not present in the page table.
#[error("page not present")]
PageNotPresent,
/// Accessing the GVA would create a privilege violation.
#[error("privilege violation")]
PrivilegeViolation,
}
impl From<Error> for TranslateGvaResultCode {
fn from(err: Error) -> TranslateGvaResultCode {
match err {
Error::InvalidPageTableFlags | Error::NonCanonicalAddress => {
TranslateGvaResultCode::INVALID_PAGE_TABLE_FLAGS
}
Error::GpaUnmapped => TranslateGvaResultCode::GPA_UNMAPPED,
Error::PageNotPresent => TranslateGvaResultCode::PAGE_NOT_PRESENT,
Error::PrivilegeViolation => TranslateGvaResultCode::PRIVILEGE_VIOLATION,
}
}
}
/// Translate a GVA by walking the processor's page tables.
pub fn translate_gva_to_gpa(
guest_memory: &GuestMemory,
gva: u64,
registers: &TranslationRegisters,
mut flags: TranslateFlags,
) -> Result<TranslateResult, Error> {
tracing::trace!(gva, ?registers, ?flags, "translating gva");
let long_mode = registers.efer & X64_EFER_LMA != 0;
// Truncate the address if operating in 32-bit mode.
let gva = if long_mode { gva } else { gva as u32 as u64 };
// If paging is disabled, just return the GVA as the GPA.
if registers.cr0 & X64_CR0_PG == 0 {
return Ok(TranslateResult {
gpa: gva,
cache_info: TranslateCachingInfo::NoPaging,
});
}
let address_bits;
let large_pte;
if long_mode {
large_pte = true;
address_bits = if registers.cr4 & X64_CR4_LA57 != 0 {
57
} else {
48
};
if !is_canonical_address(gva, address_bits) {
return Err(Error::NonCanonicalAddress);
}
} else if registers.cr4 & X64_CR4_PAE != 0 {
large_pte = true;
// Only 32 bits are used from the input address; higher bits are zeroed
// above. Bits 30..32 are used on x86 to index into the PDP table, but
// for simplicity the code below uses the full 9-bit range 30..39.
address_bits = 39;
} else {
large_pte = false;
address_bits = 32;
}
// Determine the permission requirements of the walk according to the
// current mode.
if registers.efer & X64_EFER_NXE == 0 {
flags.validate_execute = false;
}
let (user_access, supervisor_access) = match flags.privilege_check {
TranslatePrivilegeCheck::None => (false, false),
TranslatePrivilegeCheck::User => (true, false),
TranslatePrivilegeCheck::Both => (true, true),
TranslatePrivilegeCheck::CurrentPrivilegeLevel
if registers.ss.attributes.descriptor_privilege_level() == 3 =>
{
(true, false)
}
TranslatePrivilegeCheck::Supervisor | TranslatePrivilegeCheck::CurrentPrivilegeLevel => {
(false, true)
}
};
let mut no_user_access = supervisor_access
&& ((flags.validate_execute && registers.cr4 & X64_CR4_SMEP != 0)
|| ((flags.validate_read || flags.validate_write)
&& !flags.override_smap
&& registers.cr4 & X64_CR4_SMAP != 0
&& (flags.enforce_smap || !RFlags::from(registers.rflags).alignment_check())));
let mut gpa_base = registers.cr3 & !0xfff;
let mut remaining_bits: u32 = address_bits;
let cache_disable: bool;
let write_through: bool;
let pat_supported: bool;
loop {
// Compute the PTE address.
let pte_address = if large_pte {
// Consume the next 9 bits as an index into the table.
//
// Note that for 32-bit with PAE, the PDP table is only 4 entries,
// but the high 7 bits of the index (bits 32..39 of the address)
// were zeroed above.
remaining_bits -= 9;
gpa_base + (((gva >> remaining_bits) & 0x1ff) * 8)
} else {
// Consume the next 10 bits as an index into the table.
remaining_bits -= 10;
gpa_base + (((gva >> remaining_bits) & 0x3ff) * 4)
};
// All PTE accesses occur to encrypted memory. If VTOM is enabled, then
// just fail the translation in shared memory since there is no way to
// set the c bit. In theory we could just mask off the VTOM bit to get
// to an encrypted address, but that depends on the hypervisor aliasing
// the memory identically across VTOM, which is not guaranteed at this
// layer in the stack.
let pte_address = match registers.encryption_mode {
EncryptionMode::Vtom(vtom) => {
if pte_address >= vtom {
return Err(Error::InvalidPageTableFlags);
}
pte_address
}
EncryptionMode::None => pte_address,
};
let mut pte_access = if large_pte {
guest_memory.read_plain::<u64>(pte_address).map(Pte::from)
} else {
guest_memory
.read_plain::<u32>(pte_address)
.map(|n| Pte::from(n as u64))
};
// Loop on updating PTE a/d flags.
let (pte, done) = loop {
// TODO: different fault for VTL violation
let pte = pte_access.map_err(|_| Error::GpaUnmapped)?;
gpa_base = pte.pfn() << 12;
if registers.efer & X64_EFER_LMA == 0 {
if pte.available1() != 0 || (registers.efer & X64_EFER_NXE != 0 && pte.no_execute())
{
return Err(Error::InvalidPageTableFlags);
}
}
if !pte.present() {
tracing::trace!(pte_address, ?pte, "page not present");
return Err(Error::PageNotPresent);
}
if (flags.validate_write && !pte.read_write())
|| (flags.validate_execute && pte.no_execute())
|| (user_access && !pte.user())
{
return Err(Error::PrivilegeViolation);
}
// Determine whether this is the terminal PTE.
let done = remaining_bits == 12
|| (registers.cr4 & (X64_CR4_PAE | X64_CR4_PSE) != 0 && pte.pat());
if done {
if no_user_access && pte.user() {
return Err(Error::PrivilegeViolation);
}
// Only allow execute from encrypted memory.
if flags.validate_execute {
let encrypted = match registers.encryption_mode {
EncryptionMode::Vtom(vtom) => gpa_base < vtom,
EncryptionMode::None => true,
};
if !encrypted {
return Err(Error::InvalidPageTableFlags);
}
}
}
// Update access and dirty bits.
let mut new_pte = pte;
if flags.set_page_table_bits {
new_pte.set_accessed(true);
if flags.validate_write && done {
new_pte.set_dirty(true);
}
}
if new_pte != pte {
let r = if large_pte {
guest_memory.compare_exchange(pte_address, pte, new_pte)
} else {
guest_memory
.compare_exchange(
pte_address,
u64::from(pte) as u32,
u64::from(new_pte) as u32,
)
.map(|r| {
r.map(|n| Pte::from(n as u64))
.map_err(|n| Pte::from(n as u64))
})
};
match r {
Ok(Ok(_)) => {
// Compare exchange succeeded, so continue.
}
Ok(Err(pte)) => {
// Compare exchange failed. Loop around again.
pte_access = Ok(pte);
continue;
}
Err(err) => {
// Memory access failed. Loop around again to handle the
// failure consistently.
pte_access = Err(err);
continue;
}
}
}
break (pte, done);
};
// When user permission is revoked at any level of the hierarchy,
// supervisor access will always be permitted regardless of the user bit
// in the terminal PTE.
if !pte.user() {
no_user_access = false;
}
if done {
cache_disable = pte.cache_disable();
write_through = pte.write_through();
pat_supported = if remaining_bits == 12 {
pte.pat()
} else {
let large_pde = LargePde::from(u64::from(pte));
large_pde.pat()
};
break;
}
}
// The bits that didn't get used for page table indexes form the offset into
// the page (of whatever size).
let address_mask = !0 << remaining_bits;
let pat_index =
((cache_disable as u64) << 1) | (write_through as u64) | ((pat_supported as u64) << 2);
Ok(TranslateResult {
gpa: (gpa_base & address_mask) | (gva & !address_mask),
cache_info: TranslateCachingInfo::Paging { pat_index },
})
}
/// Returns whether a virtual address is canonical. On x86-64, this means that
/// the N top unused bits are equal to the top used bit, where N is 64 minus the
/// number of effective address bits (48 or 57).
fn is_canonical_address(gva: u64, address_bits: u32) -> bool {
// Shift out the address bits that aren't part of the check, sign extending.
// This makes the subsequent check an easy comparison.
let high_bits = (gva as i64) >> (address_bits - 1);
high_bits == 0 || high_bits == -1
}
#[cfg(test)]
mod tests {
#[test]
fn test_canonical() {
let cases = &[
(0, 48, true),
(0x0000_4000_0000_0000, 48, true),
(0x0000_8000_0000_0000, 48, false),
(0x0000_8000_0000_0000, 57, true),
(0x0100_0000_0000_0000, 57, false),
(0xffff_ffff_0000_0000, 48, true),
(0xffff_8000_0000_0000, 48, true),
(0xffff_0000_0000_0000, 48, false),
(0xffff_0000_0000_0000, 57, true),
(0xff00_0000_0000_0000, 57, true),
(0xfc00_0000_0000_0000, 57, false),
];
for &(addr, bits, is_canonical) in cases {
assert_eq!(
super::is_canonical_address(addr, bits),
is_canonical,
"{addr:#x} {bits}"
);
}
}
}