virt_support_x86emu/
translate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! x86-64 page table walking.

#![warn(missing_docs)]

use guestmem::GuestMemory;
use hvdef::hypercall::TranslateGvaControlFlagsX64;
use hvdef::hypercall::TranslateGvaResultCode;
use thiserror::Error;
use x86defs::LargePde;
use x86defs::Pte;
use x86defs::RFlags;
use x86defs::SegmentRegister;
use x86defs::X64_CR0_PG;
use x86defs::X64_CR4_LA57;
use x86defs::X64_CR4_PAE;
use x86defs::X64_CR4_PSE;
use x86defs::X64_CR4_SMAP;
use x86defs::X64_CR4_SMEP;
use x86defs::X64_EFER_LMA;
use x86defs::X64_EFER_NXE;

/// Registers needed to walk the page table.
#[derive(Debug, Clone)]
pub struct TranslationRegisters {
    /// CR0
    pub cr0: u64,
    /// CR4
    pub cr4: u64,
    /// EFER
    pub efer: u64,
    /// CR3
    pub cr3: u64,
    /// RFLAGS
    pub rflags: u64,
    /// SS
    pub ss: SegmentRegister,
    /// The way the processor uses to determine if an access is to encrypted
    /// memory. This is used to enforce that page tables and executable code are
    /// in encrypted memory.
    pub encryption_mode: EncryptionMode,
}

/// The way the processor uses to determine if an access is to encrypted memory.
#[derive(Debug, Copy, Clone)]
pub enum EncryptionMode {
    /// Memory accesses below the virtual top of memory address are encrypted.
    Vtom(u64),
    /// No memory is encrypted.
    None,
}

/// Flags to control the page table walk.
#[derive(Debug, Clone)]
pub struct TranslateFlags {
    /// Validate a VP in the current state can execute from this GVA.
    pub validate_execute: bool,
    /// Validate a VP in the current state can read from this GVA.
    pub validate_read: bool,
    /// Validate a VP in the current state can write to this GVA.
    pub validate_write: bool,
    /// Allow access even if SMAP would prevent it.
    pub override_smap: bool,
    /// Enforce SMAP even if it is disabled via the AC flag.
    pub enforce_smap: bool,
    /// The type of privilege check to perform.
    pub privilege_check: TranslatePrivilegeCheck,
    /// Update the page table entries' access and dirty bits as appropriate.
    pub set_page_table_bits: bool,
}

/// The type of privilege check to perform.
#[derive(Debug, Copy, Clone)]
pub enum TranslatePrivilegeCheck {
    /// No privilege checks.
    None,
    /// Validate user-mode access.
    User,
    /// Validate supervisor access.
    Supervisor,
    /// Validate both supervisor and user-mode access.
    Both,
    /// Validate according to the current privilege level.
    CurrentPrivilegeLevel,
}

impl TranslateFlags {
    /// Return flags based on the `HvTranslateVirtualAddress` hypercall input
    /// flags.
    ///
    /// Note that not all flags are considered.
    pub fn from_hv_flags(flags: TranslateGvaControlFlagsX64) -> Self {
        Self {
            validate_execute: flags.validate_execute(),
            validate_read: flags.validate_read(),
            validate_write: flags.validate_write(),
            override_smap: flags.override_smap(),
            enforce_smap: flags.enforce_smap(),
            privilege_check: if flags.privilege_exempt() {
                TranslatePrivilegeCheck::None
            } else if flags.user_access() {
                if flags.supervisor_access() {
                    TranslatePrivilegeCheck::Both
                } else {
                    TranslatePrivilegeCheck::User
                }
            } else if flags.supervisor_access() {
                TranslatePrivilegeCheck::Supervisor
            } else {
                TranslatePrivilegeCheck::CurrentPrivilegeLevel
            },
            set_page_table_bits: flags.set_page_table_bits(),
        }
    }
}

/// Result of translation
pub struct TranslateResult {
    /// The translated GPA.
    pub gpa: u64,

    /// Information from the walk that can be used to determine memory type
    pub cache_info: TranslateCachingInfo,
}

/// Information from a translation walk that can be used to determine memory
/// type.
pub enum TranslateCachingInfo {
    /// Paging wasn't enabled for the translation.
    NoPaging,
    /// State from a page table walk
    Paging {
        /// Index that can be used into the pat register to determine cache type
        pat_index: u64,
    },
}

/// Translation error.
#[derive(Debug, Error)]
pub enum Error {
    /// The page table flags were invalid.
    #[error("invalid page table flags")]
    InvalidPageTableFlags,
    /// The requested GVA is a non-canonical address.
    #[error("non-canonical address")]
    NonCanonicalAddress,
    /// A page table GPA was not mapped.
    #[error("gpa unmapped")]
    GpaUnmapped,
    /// The page was not present in the page table.
    #[error("page not present")]
    PageNotPresent,
    /// Accessing the GVA would create a privilege violation.
    #[error("privilege violation")]
    PrivilegeViolation,
}

impl From<Error> for TranslateGvaResultCode {
    fn from(err: Error) -> TranslateGvaResultCode {
        match err {
            Error::InvalidPageTableFlags | Error::NonCanonicalAddress => {
                TranslateGvaResultCode::INVALID_PAGE_TABLE_FLAGS
            }
            Error::GpaUnmapped => TranslateGvaResultCode::GPA_UNMAPPED,
            Error::PageNotPresent => TranslateGvaResultCode::PAGE_NOT_PRESENT,
            Error::PrivilegeViolation => TranslateGvaResultCode::PRIVILEGE_VIOLATION,
        }
    }
}

/// Translate a GVA by walking the processor's page tables.
pub fn translate_gva_to_gpa(
    guest_memory: &GuestMemory,
    gva: u64,
    registers: &TranslationRegisters,
    mut flags: TranslateFlags,
) -> Result<TranslateResult, Error> {
    tracing::trace!(gva, ?registers, ?flags, "translating gva");

    let long_mode = registers.efer & X64_EFER_LMA != 0;
    // Truncate the address if operating in 32-bit mode.
    let gva = if long_mode { gva } else { gva as u32 as u64 };

    // If paging is disabled, just return the GVA as the GPA.
    if registers.cr0 & X64_CR0_PG == 0 {
        return Ok(TranslateResult {
            gpa: gva,
            cache_info: TranslateCachingInfo::NoPaging,
        });
    }

    let address_bits;
    let large_pte;
    if long_mode {
        large_pte = true;
        address_bits = if registers.cr4 & X64_CR4_LA57 != 0 {
            57
        } else {
            48
        };

        if !is_canonical_address(gva, address_bits) {
            return Err(Error::NonCanonicalAddress);
        }
    } else if registers.cr4 & X64_CR4_PAE != 0 {
        large_pte = true;
        // Only 32 bits are used from the input address; higher bits are zeroed
        // above. Bits 30..32 are used on x86 to index into the PDP table, but
        // for simplicity the code below uses the full 9-bit range 30..39.
        address_bits = 39;
    } else {
        large_pte = false;
        address_bits = 32;
    }

    // Determine the permission requirements of the walk according to the
    // current mode.
    if registers.efer & X64_EFER_NXE == 0 {
        flags.validate_execute = false;
    }

    let (user_access, supervisor_access) = match flags.privilege_check {
        TranslatePrivilegeCheck::None => (false, false),
        TranslatePrivilegeCheck::User => (true, false),
        TranslatePrivilegeCheck::Both => (true, true),
        TranslatePrivilegeCheck::CurrentPrivilegeLevel
            if registers.ss.attributes.descriptor_privilege_level() == 3 =>
        {
            (true, false)
        }
        TranslatePrivilegeCheck::Supervisor | TranslatePrivilegeCheck::CurrentPrivilegeLevel => {
            (false, true)
        }
    };

    let mut no_user_access = supervisor_access
        && ((flags.validate_execute && registers.cr4 & X64_CR4_SMEP != 0)
            || ((flags.validate_read || flags.validate_write)
                && !flags.override_smap
                && registers.cr4 & X64_CR4_SMAP != 0
                && (flags.enforce_smap || !RFlags::from(registers.rflags).alignment_check())));

    let mut gpa_base = registers.cr3 & !0xfff;
    let mut remaining_bits: u32 = address_bits;
    let cache_disable: bool;
    let write_through: bool;
    let pat_supported: bool;
    loop {
        // Compute the PTE address.
        let pte_address = if large_pte {
            // Consume the next 9 bits as an index into the table.
            //
            // Note that for 32-bit with PAE, the PDP table is only 4 entries,
            // but the high 7 bits of the index (bits 32..39 of the address)
            // were zeroed above.
            remaining_bits -= 9;
            gpa_base + (((gva >> remaining_bits) & 0x1ff) * 8)
        } else {
            // Consume the next 10 bits as an index into the table.
            remaining_bits -= 10;
            gpa_base + (((gva >> remaining_bits) & 0x3ff) * 4)
        };

        // All PTE accesses occur to encrypted memory. If VTOM is enabled, then
        // just fail the translation in shared memory since there is no way to
        // set the c bit. In theory we could just mask off the VTOM bit to get
        // to an encrypted address, but that depends on the hypervisor aliasing
        // the memory identically across VTOM, which is not guaranteed at this
        // layer in the stack.
        let pte_address = match registers.encryption_mode {
            EncryptionMode::Vtom(vtom) => {
                if pte_address >= vtom {
                    return Err(Error::InvalidPageTableFlags);
                }
                pte_address
            }
            EncryptionMode::None => pte_address,
        };

        let mut pte_access = if large_pte {
            guest_memory.read_plain::<u64>(pte_address).map(Pte::from)
        } else {
            guest_memory
                .read_plain::<u32>(pte_address)
                .map(|n| Pte::from(n as u64))
        };

        // Loop on updating PTE a/d flags.
        let (pte, done) = loop {
            // TODO: different fault for VTL violation
            let pte = pte_access.map_err(|_| Error::GpaUnmapped)?;
            gpa_base = pte.pfn() << 12;

            if registers.efer & X64_EFER_LMA == 0 {
                if pte.available1() != 0 || (registers.efer & X64_EFER_NXE != 0 && pte.no_execute())
                {
                    return Err(Error::InvalidPageTableFlags);
                }
            }

            if !pte.present() {
                tracing::trace!(pte_address, ?pte, "page not present");
                return Err(Error::PageNotPresent);
            }

            if (flags.validate_write && !pte.read_write())
                || (flags.validate_execute && pte.no_execute())
                || (user_access && !pte.user())
            {
                return Err(Error::PrivilegeViolation);
            }

            // Determine whether this is the terminal PTE.
            let done = remaining_bits == 12
                || (registers.cr4 & (X64_CR4_PAE | X64_CR4_PSE) != 0 && pte.pat());

            if done {
                if no_user_access && pte.user() {
                    return Err(Error::PrivilegeViolation);
                }

                // Only allow execute from encrypted memory.
                if flags.validate_execute {
                    let encrypted = match registers.encryption_mode {
                        EncryptionMode::Vtom(vtom) => gpa_base < vtom,
                        EncryptionMode::None => true,
                    };
                    if !encrypted {
                        return Err(Error::InvalidPageTableFlags);
                    }
                }
            }

            // Update access and dirty bits.
            let mut new_pte = pte;
            if flags.set_page_table_bits {
                new_pte.set_accessed(true);
                if flags.validate_write && done {
                    new_pte.set_dirty(true);
                }
            }

            if new_pte != pte {
                let r = if large_pte {
                    guest_memory.compare_exchange(pte_address, pte, new_pte)
                } else {
                    guest_memory
                        .compare_exchange(
                            pte_address,
                            u64::from(pte) as u32,
                            u64::from(new_pte) as u32,
                        )
                        .map(|r| {
                            r.map(|n| Pte::from(n as u64))
                                .map_err(|n| Pte::from(n as u64))
                        })
                };

                match r {
                    Ok(Ok(_)) => {
                        // Compare exchange succeeded, so continue.
                    }
                    Ok(Err(pte)) => {
                        // Compare exchange failed. Loop around again.
                        pte_access = Ok(pte);
                        continue;
                    }
                    Err(err) => {
                        // Memory access failed. Loop around again to handle the
                        // failure consistently.
                        pte_access = Err(err);
                        continue;
                    }
                }
            }

            break (pte, done);
        };

        // When user permission is revoked at any level of the hierarchy,
        // supervisor access will always be permitted regardless of the user bit
        // in the terminal PTE.
        if !pte.user() {
            no_user_access = false;
        }

        if done {
            cache_disable = pte.cache_disable();
            write_through = pte.write_through();
            pat_supported = if remaining_bits == 12 {
                pte.pat()
            } else {
                let large_pde = LargePde::from(u64::from(pte));
                large_pde.pat()
            };

            break;
        }
    }

    // The bits that didn't get used for page table indexes form the offset into
    // the page (of whatever size).
    let address_mask = !0 << remaining_bits;
    let pat_index =
        ((cache_disable as u64) << 1) | (write_through as u64) | ((pat_supported as u64) << 2);
    Ok(TranslateResult {
        gpa: (gpa_base & address_mask) | (gva & !address_mask),
        cache_info: TranslateCachingInfo::Paging { pat_index },
    })
}

/// Returns whether a virtual address is canonical. On x86-64, this means that
/// the N top unused bits are equal to the top used bit, where N is 64 minus the
/// number of effective address bits (48 or 57).
fn is_canonical_address(gva: u64, address_bits: u32) -> bool {
    // Shift out the address bits that aren't part of the check, sign extending.
    // This makes the subsequent check an easy comparison.
    let high_bits = (gva as i64) >> (address_bits - 1);
    high_bits == 0 || high_bits == -1
}

#[cfg(test)]
mod tests {
    #[test]
    fn test_canonical() {
        let cases = &[
            (0, 48, true),
            (0x0000_4000_0000_0000, 48, true),
            (0x0000_8000_0000_0000, 48, false),
            (0x0000_8000_0000_0000, 57, true),
            (0x0100_0000_0000_0000, 57, false),
            (0xffff_ffff_0000_0000, 48, true),
            (0xffff_8000_0000_0000, 48, true),
            (0xffff_0000_0000_0000, 48, false),
            (0xffff_0000_0000_0000, 57, true),
            (0xff00_0000_0000_0000, 57, true),
            (0xfc00_0000_0000_0000, 57, false),
        ];

        for &(addr, bits, is_canonical) in cases {
            assert_eq!(
                super::is_canonical_address(addr, bits),
                is_canonical,
                "{addr:#x} {bits}"
            );
        }
    }
}