virt_support_x86emu/
emulate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Wrapper around x86emu for emulating single instructions to handle VM exits.

use crate::translate::TranslateFlags;
use crate::translate::TranslatePrivilegeCheck;
use crate::translate::translate_gva_to_gpa;
use guestmem::GuestMemory;
use guestmem::GuestMemoryError;
use hvdef::HV_PAGE_SIZE;
use hvdef::HvInterceptAccessType;
use hvdef::HvMapGpaFlags;
use thiserror::Error;
use virt::VpHaltReason;
use virt::io::CpuIo;
use vm_topology::processor::VpIndex;
use x86defs::Exception;
use x86defs::RFlags;
use x86defs::SegmentRegister;
use x86emu::Gp;
use x86emu::RegisterIndex;
use x86emu::Segment;
use zerocopy::FromBytes;
use zerocopy::IntoBytes;

/// Support routines for the emulator.
pub trait EmulatorSupport {
    /// The hypervisor error type.
    type Error: 'static + std::error::Error + Send + Sync;

    /// The current VP index.
    fn vp_index(&self) -> VpIndex;

    /// The processor vendor.
    fn vendor(&self) -> x86defs::cpuid::Vendor;

    /// Read a GP
    fn gp(&mut self, index: Gp) -> u64;

    /// Set a GP
    fn set_gp(&mut self, reg: Gp, v: u64);

    /// Read the instruction pointer
    fn rip(&mut self) -> u64;

    /// Set the instruction pointer
    fn set_rip(&mut self, v: u64);

    /// Read a segment register
    fn segment(&mut self, index: Segment) -> SegmentRegister;

    /// Read the efer
    fn efer(&mut self) -> u64;

    /// Read cr0
    fn cr0(&mut self) -> u64;

    /// Read rflags
    fn rflags(&mut self) -> RFlags;

    /// Set rflags
    fn set_rflags(&mut self, v: RFlags);

    /// Gets the value of an XMM* register.
    fn xmm(&mut self, reg: usize) -> u128;

    /// Sets the value of an XMM* register.
    fn set_xmm(&mut self, reg: usize, value: u128) -> Result<(), Self::Error>;

    /// Flush registers in the emulation cache to the backing
    fn flush(&mut self) -> Result<(), Self::Error>;

    /// The instruction bytes, if available.
    fn instruction_bytes(&self) -> &[u8];

    /// The physical address that caused the fault.
    fn physical_address(&self) -> Option<u64>;

    /// The gva translation included in the intercept message header, if valid.
    fn initial_gva_translation(&self) -> Option<InitialTranslation>;

    /// If interrupt pending is marked in the intercept message
    fn interruption_pending(&self) -> bool;

    /// Check that the current GPA is valid to access by the current VTL with the following access mode.
    /// Returns true if valid to access.
    fn check_vtl_access(
        &mut self,
        gpa: u64,
        mode: TranslateMode,
    ) -> Result<(), EmuCheckVtlAccessError<Self::Error>>;

    /// Translates a GVA to a GPA.
    fn translate_gva(
        &mut self,
        gva: u64,
        mode: TranslateMode,
    ) -> Result<Result<EmuTranslateResult, EmuTranslateError>, Self::Error>;

    /// Generates an event (exception, guest nested page fault, etc.) in the guest.
    fn inject_pending_event(&mut self, event_info: hvdef::HvX64PendingEvent);

    /// Check if the specified write is wholly inside the monitor page, and signal the associated
    /// connected ID if it is.
    fn check_monitor_write(&self, gpa: u64, bytes: &[u8]) -> bool {
        let _ = (gpa, bytes);
        false
    }

    /// Returns true if `gpa` is mapped for the specified permissions.
    ///
    /// If true, then the emulator will use [`GuestMemory`] to access the GPA,
    /// and any failures will be fatal to the VM.
    ///
    /// If false, then the emulator will use [`CpuIo`] to access the GPA as
    /// MMIO.
    fn is_gpa_mapped(&self, gpa: u64, write: bool) -> bool;

    /// Returns the page-aligned base address of the enabled local APIC in xapic
    /// mode.
    fn lapic_base_address(&self) -> Option<u64>;

    /// Read from the current processor's local APIC memory mapped interface.
    ///
    /// This will only be called on an address in the page returned by
    /// `lapic_base_address`.
    fn lapic_read(&mut self, address: u64, data: &mut [u8]);

    /// Write to the current processor's local APIC memory mapped interface.
    ///
    /// This will only be called on an address in the page returned by
    /// `lapic_base_address`.
    fn lapic_write(&mut self, address: u64, data: &[u8]);
}

pub trait TranslateGvaSupport {
    type Error;

    /// Gets the object used to access the guest memory.
    fn guest_memory(&self) -> &GuestMemory;

    /// Acquires the TLB lock for this processor.
    fn acquire_tlb_lock(&mut self);

    /// Returns the registers used to walk the page table.
    fn registers(&mut self) -> Result<crate::translate::TranslationRegisters, Self::Error>;
}

/// Emulates a page table walk.
///
/// This is suitable for implementing [`EmulatorSupport::translate_gva`].
pub fn emulate_translate_gva<T: TranslateGvaSupport>(
    support: &mut T,
    gva: u64,
    mode: TranslateMode,
) -> Result<Result<EmuTranslateResult, EmuTranslateError>, T::Error> {
    // Always acquire the TLB lock for this path.
    support.acquire_tlb_lock();

    let flags = TranslateFlags {
        validate_execute: matches!(mode, TranslateMode::Execute),
        validate_read: matches!(mode, TranslateMode::Read | TranslateMode::Write),
        validate_write: matches!(mode, TranslateMode::Write),
        override_smap: false,
        enforce_smap: false,
        privilege_check: TranslatePrivilegeCheck::CurrentPrivilegeLevel,
        set_page_table_bits: true,
    };

    let registers = support.registers()?;

    let r = match translate_gva_to_gpa(support.guest_memory(), gva, &registers, flags) {
        Ok(crate::translate::TranslateResult { gpa, cache_info: _ }) => Ok(EmuTranslateResult {
            gpa,
            overlay_page: None,
        }),
        Err(err) => Err(EmuTranslateError {
            code: err.into(),
            event_info: None,
        }),
    };
    Ok(r)
}

/// The result of translate_gva on [`EmulatorSupport`].
pub struct EmuTranslateResult {
    /// The GPA result of the translation.
    pub gpa: u64,
    /// Whether the page is an overlay page.
    /// Not all implementations return overlay page or event_info yet, so these values are optional
    pub overlay_page: Option<bool>,
}

/// The translation, if any, provided in the intercept message and provided by [`EmulatorSupport`].
pub struct InitialTranslation {
    /// GVA for the translation
    pub gva: u64,
    /// Translated gpa for the gva
    pub gpa: u64,
    // Whether the translation has read, write, or execute permissions.
    pub translate_mode: TranslateMode,
}

#[derive(Error, Debug)]
pub enum EmuCheckVtlAccessError<E> {
    #[error(transparent)]
    Hypervisor(#[from] E),
    #[error("failed vtl permissions access for vtl {vtl:?} and access flags {denied_flags:?}")]
    AccessDenied {
        vtl: hvdef::Vtl,
        denied_flags: HvMapGpaFlags,
    },
}

#[derive(Error, Debug)]
#[error("translate gva to gpa returned non-successful code {code:?}")]
/// Error for a failed gva translation from [`EmulatorSupport`].
pub struct EmuTranslateError {
    /// Translate code of type hvdef::hypercall::TranslateGvaResultCode
    /// Should != Success
    pub code: hvdef::hypercall::TranslateGvaResultCode,
    /// Pending event, if any, returned by hypervisor to go with the translate code.
    pub event_info: Option<hvdef::HvX64PendingEvent>,
}

/// The access type for a gva translation for [`EmulatorSupport`].
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum TranslateMode {
    /// A read operation.
    Read,
    /// A write operation.
    Write,
    /// An execute operation.
    Execute,
}

/// The requested intercept access type isn't supported
#[derive(Debug)]
pub struct UnsupportedInterceptAccessType;

impl TryFrom<HvInterceptAccessType> for TranslateMode {
    type Error = UnsupportedInterceptAccessType;

    fn try_from(access_type: HvInterceptAccessType) -> Result<Self, Self::Error> {
        match access_type {
            HvInterceptAccessType::READ => Ok(TranslateMode::Read),
            HvInterceptAccessType::WRITE => Ok(TranslateMode::Write),
            HvInterceptAccessType::EXECUTE => Ok(TranslateMode::Execute),
            _ => Err(UnsupportedInterceptAccessType),
        }
    }
}

#[derive(Debug, Error)]
enum EmulationError<E> {
    #[error("an interrupt caused the memory access exit")]
    InterruptionPending,
    #[error("linear IP was not within CS segment limit")]
    LinearIpPastCsLimit,
    #[error("failed to flush the emulator cache")]
    CacheFlushFailed(#[source] E),
    #[error("failed to read instruction stream")]
    InstructionRead(#[source] E),
    #[error("emulator error (instruction {bytes:02x?})")]
    Emulator {
        bytes: Vec<u8>,
        #[source]
        error: x86emu::Error<E>,
    },
}

/// Emulates an instruction.
pub async fn emulate<T: EmulatorSupport>(
    support: &mut T,
    gm: &GuestMemory,
    dev: &impl CpuIo,
) -> Result<(), VpHaltReason<T::Error>> {
    let vendor = support.vendor();

    let mut bytes = [0; 16];
    let mut valid_bytes;
    {
        let instruction_bytes = support.instruction_bytes();
        valid_bytes = instruction_bytes.len();
        bytes[..valid_bytes].copy_from_slice(instruction_bytes);
    }
    let instruction_bytes = &bytes[..valid_bytes];

    tracing::trace!(
        ?instruction_bytes,
        physical_address = support.physical_address(),
        "emulating"
    );

    if support.interruption_pending() {
        // This means a fault or interruption *caused* the intercept
        // (and only really applies to memory intercept handling).
        // An example of how this could happen is if the
        // interrupt vector table itself is in mmio space; taking an
        // interrupt at that point requires that the processor reads the
        // vector out of the table, which generates an mmio intercept,
        // but not one associated with any particular instruction.
        // Therefore, there is nothing to emulate.
        //
        // A fault can't be injected into the guest because that could
        // cause an infinite loop (as the processor tries to get the trap
        // vector out of the mmio-ed vector table).  Just give up.

        return Err(VpHaltReason::EmulationFailure(
            EmulationError::<T::Error>::InterruptionPending.into(),
        ));
    }

    let initial_alignment_check = support.rflags().alignment_check();

    let mut cpu = EmulatorCpu::new(gm, dev, support);
    let result = loop {
        let instruction_bytes = &bytes[..valid_bytes];
        let mut emu = x86emu::Emulator::new(&mut cpu, vendor, instruction_bytes);
        let res = emu.run().await;

        if let Err(e) = &res {
            if let x86emu::Error::NotEnoughBytes = **e {
                assert!(valid_bytes < bytes.len());

                // TODO: inject #GP due to segmentation fault.
                let linear_ip =
                    emu.linear_ip(valid_bytes as u64)
                        .ok_or(VpHaltReason::EmulationFailure(
                            EmulationError::<T::Error>::LinearIpPastCsLimit.into(),
                        ))?;

                let is_user_mode = emu.is_user_mode();

                let translate_result =
                    cpu.translate_gva(linear_ip, TranslateMode::Execute, is_user_mode);

                let phys_ip = match translate_result {
                    Ok(ip) => ip,
                    Err(translate_error) => {
                        if inject_memory_access_fault(linear_ip, &translate_error, support) {
                            return Ok(());
                        } else {
                            return Err(VpHaltReason::EmulationFailure(
                                EmulationError::InstructionRead(translate_error).into(),
                            ));
                        }
                    }
                };

                if let Err(err) = cpu.check_vtl_access(phys_ip, TranslateMode::Execute) {
                    if inject_memory_access_fault(linear_ip, &err, support) {
                        return Ok(());
                    } else {
                        return Err(VpHaltReason::EmulationFailure(
                            EmulationError::InstructionRead(err).into(),
                        ));
                    };
                }

                tracing::trace!(linear_ip, phys_ip, "fetching instruction bytes");

                let len = (bytes.len() - valid_bytes)
                    .min((HV_PAGE_SIZE - (phys_ip & (HV_PAGE_SIZE - 1))) as usize);

                if let Err(err) = cpu
                    .gm
                    .read_at(phys_ip, &mut bytes[valid_bytes..valid_bytes + len])
                {
                    tracing::error!(error = &err as &dyn std::error::Error, "read failed");
                    support.inject_pending_event(gpf_event());
                    return Ok(());
                }

                valid_bytes += len;
                continue;
            }
        }

        break res;
    };

    cpu.support.flush().map_err(|err| {
        VpHaltReason::EmulationFailure(EmulationError::<T::Error>::CacheFlushFailed(err).into())
    })?;

    // If the alignment check flag is not in sync with the hypervisor because the instruction emulator
    // modifies internally, then the appropriate SMAP enforcement flags need to be passed to the hypervisor
    // during the translation of gvas to gpa.
    //
    // Note: also applies if the instruction emulator emulates instructions resulting in implicit
    // memory accesses, which is currently not done. See Intel Spec 4.6 Access Rights:
    // "Some operations implicitly access system data structures with linear addresses;
    // the resulting accesses to those data structures are supervisor-mode accesses regardless of CPL.
    // Examples of such accesses include the following: accesses to the global descriptor table (GDT)
    // or local descriptor table (LDT) to load a segment descriptor; accesses to the interrupt
    // descriptor table (IDT) when delivering an interrupt or exception; and accesses to the task-state
    // segment (TSS) as part of a task switch or change of CPL."
    assert_eq!(
        initial_alignment_check,
        cpu.support.rflags().alignment_check()
    );

    let instruction_bytes = &bytes[..valid_bytes];
    if let Err(e) = result {
        match *e {
            err @ (x86emu::Error::DecodeFailure | x86emu::Error::UnsupportedInstruction { .. }) => {
                tracelimit::error_ratelimited!(
                    error = &err as &dyn std::error::Error,
                    ?instruction_bytes,
                    physical_address = cpu.support.physical_address(),
                    "unsupported instruction"
                );

                cpu.support.inject_pending_event(make_exception_event(
                    Exception::INVALID_OPCODE,
                    None,
                    None,
                ));
            }
            err @ x86emu::Error::NonMemoryOrPortInstruction { .. } => {
                tracelimit::error_ratelimited!(
                    error = &err as &dyn std::error::Error,
                    ?instruction_bytes,
                    physical_address = cpu.support.physical_address(),
                    "given an instruction that we shouldn't have been asked to emulate - likely a bug in the caller"
                );

                return Err(VpHaltReason::EmulationFailure(
                    EmulationError::Emulator {
                        bytes: instruction_bytes.to_vec(),
                        error: err,
                    }
                    .into(),
                ));
            }
            x86emu::Error::InstructionException(exception, error_code, cause) => {
                tracing::trace!(
                    ?exception,
                    ?error_code,
                    ?cause,
                    "emulated instruction caused exception"
                );
                cpu.support
                    .inject_pending_event(make_exception_event(exception, error_code, None));
            }
            x86emu::Error::MemoryAccess(addr, kind, err) => {
                if !inject_memory_access_fault(addr, &err, support) {
                    return Err(VpHaltReason::EmulationFailure(
                        EmulationError::Emulator {
                            bytes: instruction_bytes.to_vec(),
                            error: x86emu::Error::MemoryAccess(addr, kind, err),
                        }
                        .into(),
                    ));
                }
            }
            err @ (x86emu::Error::IoPort { .. } | x86emu::Error::XmmRegister { .. }) => {
                return Err(VpHaltReason::EmulationFailure(
                    EmulationError::Emulator {
                        bytes: instruction_bytes.to_vec(),
                        error: err,
                    }
                    .into(),
                ));
            }
            x86emu::Error::NotEnoughBytes => unreachable!(),
        }
    }

    Ok(())
}

/// For storing gva to gpa translations in a cache in [`EmulatorCpu`]
struct GvaGpaCacheEntry {
    gva_page: u64,
    gpa_page: u64,
    translate_mode: TranslateMode,
}

impl GvaGpaCacheEntry {
    pub fn new(gva: u64, gpa: u64, translate_mode: TranslateMode) -> Self {
        GvaGpaCacheEntry {
            gva_page: gva >> hvdef::HV_PAGE_SHIFT,
            gpa_page: gpa >> hvdef::HV_PAGE_SHIFT,
            translate_mode,
        }
    }
}

struct EmulatorCpu<'a, T, U> {
    gm: &'a GuestMemory,
    support: &'a mut T,
    dev: &'a U,
    // TODO: this should be able to hold at least two entries for effective use for
    // rep move instructions.
    cached_translation: Option<GvaGpaCacheEntry>,
}

#[derive(Debug, Error)]
enum Error<E> {
    #[error(transparent)]
    Hypervisor(#[from] E),
    #[error("translation error")]
    Translate(
        #[source] TranslateGvaError,
        Option<hvdef::HvX64PendingEvent>,
    ),
    #[error("vtl permissions denied access for gpa {gpa}")]
    NoVtlAccess {
        gpa: u64,
        intercepting_vtl: hvdef::Vtl,
        denied_flags: HvMapGpaFlags,
    },
    #[error("failed to access mapped memory")]
    Memory(#[source] GuestMemoryError),
}

/// Result of a gva translation in [`EmulatorCpu`]
#[derive(Error, Debug)]
enum TranslateGvaError {
    #[error("gpa access denied code {0:?}")]
    AccessDenied(hvdef::hypercall::TranslateGvaResultCode),
    #[error("write on overlay page")]
    OverlayPageWrite,
    #[error("translation failed with unknown code {0:?}")]
    UnknownCode(hvdef::hypercall::TranslateGvaResultCode),
    #[error("translation failed with an intercept code")]
    Intercept,
    #[error("translation failed with a page fault-related code {0:?}")]
    PageFault(hvdef::hypercall::TranslateGvaResultCode),
}

impl<T: EmulatorSupport, U> EmulatorCpu<'_, T, U> {
    pub fn new<'a>(gm: &'a GuestMemory, dev: &'a U, support: &'a mut T) -> EmulatorCpu<'a, T, U> {
        let init_cache = {
            if let Some(InitialTranslation {
                gva,
                gpa,
                translate_mode,
            }) = support.initial_gva_translation()
            {
                tracing::trace!(
                    ?gva,
                    ?gpa,
                    ?translate_mode,
                    "adding initial translation to cache"
                );
                Some(GvaGpaCacheEntry::new(gva, gpa, translate_mode))
            } else {
                None
            }
        };

        EmulatorCpu {
            gm,
            dev,
            support,
            cached_translation: init_cache,
        }
    }

    pub fn translate_gva(
        &mut self,
        gva: u64,
        mode: TranslateMode,
        is_user_mode: bool,
    ) -> Result<u64, Error<T::Error>> {
        type TranslateCode = hvdef::hypercall::TranslateGvaResultCode;

        if let Some(GvaGpaCacheEntry {
            gva_page: cached_gva_page,
            gpa_page: cached_gpa_page,
            translate_mode: cached_mode,
        }) = self.cached_translation
        {
            if ((gva >> hvdef::HV_PAGE_SHIFT) == cached_gva_page) && (cached_mode == mode) {
                tracing::trace!(
                    ?gva,
                    ?cached_gva_page,
                    cached_gpa_page,
                    ?cached_mode,
                    "using cached entry"
                );
                return Ok((cached_gpa_page << hvdef::HV_PAGE_SHIFT) + (gva & (HV_PAGE_SIZE - 1)));
            }
        };

        match self.support.translate_gva(gva, mode) {
            Ok(Ok(EmuTranslateResult { gpa, overlay_page })) => {
                if overlay_page.is_some()
                    && overlay_page
                        .expect("should've already checked that the overlay page has value")
                    && (mode == TranslateMode::Write)
                {
                    // We will support reads to overlay pages in order to support Win2k3
                    // crash dumps (which do direct port io to the ide for all of memory,
                    // including overlay pages).  Writes, though, are right out.  There is
                    // no known scenario where guests should be writing to overlay pages,
                    // and doing so would be difficult and expensive.  Overlay pages are
                    // special purpose pages set up by the hypervisor (to implement hypercalls,
                    // for instance), and there should be no reason that guests should be doing
                    // io to them.
                    //
                    // At this time, there is no infrastructure to allow us to actually
                    // read the overlay page.  We will instead return 0xff's for such reads.
                    // This is an emulation hole.  It is felt to be acceptable at this time.
                    // But for this reason, we give up if this wasn't the intercepting instruction
                    // and let the processor run the instruction directly.
                    return Err(Error::Translate(
                        TranslateGvaError::OverlayPageWrite,
                        Some(gpf_event()),
                    ));
                }

                let new_cache_entry = GvaGpaCacheEntry::new(gva, gpa, mode);

                self.cached_translation = Some(new_cache_entry);
                Ok(gpa)
            }
            Ok(Err(EmuTranslateError { code, event_info })) => {
                match code {
                    TranslateCode::INTERCEPT => {
                        tracing::trace!("translate gva to gpa returned an intercept event");
                        Err(Error::Translate(TranslateGvaError::Intercept, event_info))
                    }
                    TranslateCode::GPA_NO_READ_ACCESS
                    | TranslateCode::GPA_NO_WRITE_ACCESS
                    | TranslateCode::GPA_UNMAPPED
                    | TranslateCode::GPA_ILLEGAL_OVERLAY_ACCESS
                    | TranslateCode::GPA_UNACCEPTED => {
                        // The page table walk failed because one of the page
                        // table entries was inaccessible in the second-level
                        // page tables.
                        //
                        // Inject a #GP.
                        tracing::trace!(
                            "translate gva to gpa returned no access to page {:?}",
                            code
                        );
                        Err(Error::Translate(
                            TranslateGvaError::AccessDenied(code),
                            Some(gpf_event()),
                        ))
                    }
                    TranslateCode::PAGE_NOT_PRESENT
                    | TranslateCode::PRIVILEGE_VIOLATION
                    | TranslateCode::INVALID_PAGE_TABLE_FLAGS => {
                        // The page table walk failed for ordinary reasons not
                        // having to do with second-level address translation.
                        // We need to inject a page fault.
                        //
                        // It should be rare to get to this point even for a
                        // misbehaving guest, since the processor usually should
                        // have detected and injected this fault without
                        // requiring an exit.
                        //
                        // Trace since this is more likely to indicate a bug in
                        // our page table walking code, but rate limit the trace
                        // since there are still cases where this could be
                        // triggered by guest behavior.
                        tracelimit::warn_ratelimited!(gva, ?code, "page table walk failed");

                        let mut error = x86defs::PageFaultErrorCode::new();
                        match code {
                            TranslateCode::PAGE_NOT_PRESENT => (),
                            TranslateCode::PRIVILEGE_VIOLATION => error.set_present(true),
                            TranslateCode::INVALID_PAGE_TABLE_FLAGS => {
                                error.set_present(true);
                                error.set_reserved(true);
                            }
                            _ => unreachable!(),
                        };

                        match mode {
                            TranslateMode::Execute => error.set_fetch(true),
                            TranslateMode::Write => error.set_write(true),
                            _ => (),
                        };

                        if is_user_mode {
                            error.set_user(true);
                        }

                        // Page fault
                        let event = make_exception_event(
                            Exception::PAGE_FAULT,
                            Some(error.into()),
                            Some(gva),
                        );

                        Err(Error::Translate(
                            TranslateGvaError::PageFault(code),
                            Some(event),
                        ))
                    }
                    TranslateCode::SUCCESS => unreachable!(),
                    _ => {
                        tracing::trace!(
                            "translate error: unknown translation result code {:?}",
                            code
                        );

                        Err(Error::Translate(TranslateGvaError::UnknownCode(code), None))
                    }
                }
            }
            Err(e) => {
                tracing::trace!("translate error {:?}", e);
                Err(Error::Hypervisor(e))
            }
        }
    }

    pub fn check_vtl_access(
        &mut self,
        gpa: u64,
        mode: TranslateMode,
    ) -> Result<(), Error<T::Error>> {
        self.support
            .check_vtl_access(gpa, mode)
            .map_err(|e| match e {
                EmuCheckVtlAccessError::Hypervisor(hv_err) => Error::Hypervisor(hv_err),
                EmuCheckVtlAccessError::AccessDenied { vtl, denied_flags } => Error::NoVtlAccess {
                    gpa,
                    intercepting_vtl: vtl,
                    denied_flags,
                },
            })
    }
}

impl<T: EmulatorSupport, U: CpuIo> x86emu::Cpu for EmulatorCpu<'_, T, U> {
    type Error = Error<T::Error>;

    async fn read_memory(
        &mut self,
        gva: u64,
        bytes: &mut [u8],
        is_user_mode: bool,
    ) -> Result<(), Self::Error> {
        let gpa = self.translate_gva(gva, TranslateMode::Read, is_user_mode)?;

        if Some(gpa & !0xfff) == self.support.lapic_base_address() {
            self.support.lapic_read(gpa, bytes);
            return Ok(());
        }

        self.check_vtl_access(gpa, TranslateMode::Read)?;

        if self.support.is_gpa_mapped(gpa, false) {
            self.gm.read_at(gpa, bytes).map_err(Error::Memory)?;
        } else {
            self.dev
                .read_mmio(self.support.vp_index(), gpa, bytes)
                .await;
        }
        Ok(())
    }

    async fn write_memory(
        &mut self,
        gva: u64,
        bytes: &[u8],
        is_user_mode: bool,
    ) -> Result<(), Self::Error> {
        let gpa = self.translate_gva(gva, TranslateMode::Write, is_user_mode)?;

        if Some(gpa & !0xfff) == self.support.lapic_base_address() {
            self.support.lapic_write(gpa, bytes);
            return Ok(());
        }

        self.check_vtl_access(gpa, TranslateMode::Write)?;

        if self.support.is_gpa_mapped(gpa, true) {
            self.gm.write_at(gpa, bytes).map_err(Error::Memory)?;
        } else {
            self.dev
                .write_mmio(self.support.vp_index(), gpa, bytes)
                .await;
        }
        Ok(())
    }

    async fn compare_and_write_memory(
        &mut self,
        gva: u64,
        current: &[u8],
        new: &[u8],
        is_user_mode: bool,
    ) -> Result<bool, Self::Error> {
        let gpa = self.translate_gva(gva, TranslateMode::Write, is_user_mode)?;
        self.check_vtl_access(gpa, TranslateMode::Write)?;

        let success = if self.support.check_monitor_write(gpa, new) {
            true
        } else if self.support.is_gpa_mapped(gpa, true) {
            let buf = &mut [0; 16][..current.len()];
            buf.copy_from_slice(current);
            self.gm
                .compare_exchange_bytes(gpa, buf, new)
                .map_err(Error::Memory)?
        } else {
            // Ignore the comparison aspect for device MMIO.
            self.dev.write_mmio(self.support.vp_index(), gpa, new).await;
            true
        };
        Ok(success)
    }

    async fn read_io(&mut self, io_port: u16, bytes: &mut [u8]) -> Result<(), Self::Error> {
        self.dev
            .read_io(self.support.vp_index(), io_port, bytes)
            .await;
        Ok(())
    }

    async fn write_io(&mut self, io_port: u16, bytes: &[u8]) -> Result<(), Self::Error> {
        self.dev
            .write_io(self.support.vp_index(), io_port, bytes)
            .await;
        Ok(())
    }

    fn gp(&mut self, reg: RegisterIndex) -> u64 {
        let extended_register = self.support.gp(reg.extended_index);
        reg.apply_sizing(extended_register)
    }

    fn gp_sign_extend(&mut self, reg: RegisterIndex) -> i64 {
        let extended_register = self.support.gp(reg.extended_index);
        reg.apply_sizing_signed(extended_register)
    }

    fn set_gp(&mut self, reg: RegisterIndex, v: u64) {
        let register_value = self.gp(reg);
        let updated_register_value = reg.apply_update(register_value, v);
        self.support
            .set_gp(reg.extended_index, updated_register_value);
    }

    fn rip(&mut self) -> u64 {
        self.support.rip()
    }

    fn set_rip(&mut self, v: u64) {
        self.support.set_rip(v);
    }

    fn segment(&mut self, index: Segment) -> SegmentRegister {
        self.support.segment(index)
    }

    fn efer(&mut self) -> u64 {
        self.support.efer()
    }

    fn cr0(&mut self) -> u64 {
        self.support.cr0()
    }

    fn rflags(&mut self) -> RFlags {
        self.support.rflags()
    }

    fn set_rflags(&mut self, v: RFlags) {
        self.support.set_rflags(v);
    }

    /// Gets the value of an XMM* register.
    fn xmm(&mut self, reg: usize) -> u128 {
        self.support.xmm(reg)
    }

    /// Sets the value of an XMM* register.
    fn set_xmm(&mut self, reg: usize, value: u128) -> Result<(), Self::Error> {
        self.support.set_xmm(reg, value).map_err(Error::Hypervisor)
    }
}

/// Emulates an IO port instruction.
///
/// Just handles calling into the IO bus and updating `rax`. The caller must
/// update RIP, and it must update the VP's `rax` register (when `!is_write`).
///
/// The caller is also responsible for performing any security checks to ensure
/// the guest is allowed to execute I/O instructions. However, typically this is handled
/// by the hardware and hypervisor automatically.
pub async fn emulate_io(
    vp_index: VpIndex,
    is_write: bool,
    port: u16,
    rax: &mut u64,
    len: u8,
    dev: &impl CpuIo,
) {
    let len = len as usize;
    if is_write {
        dev.write_io(vp_index, port, &rax.to_ne_bytes()[..len])
            .await;
    } else {
        // Preserve the high bits of eax but not of rax.
        let mut value = (*rax as u32).to_ne_bytes();
        dev.read_io(vp_index, port, &mut value[..len]).await;
        *rax = u32::from_ne_bytes(value) as u64;
    }
}

/// Injects an event into the guest if appropriate.
///
/// Returns true if an event was injected into the guest.
/// In the case of false being returned, the caller can
/// return the appropriate error code.
#[must_use]
fn inject_memory_access_fault<T: EmulatorSupport>(
    gva: u64,
    result: &Error<T::Error>,
    support: &mut T,
) -> bool {
    match result {
        Error::Translate(e, event) => {
            tracing::trace!(
                error = e as &dyn std::error::Error,
                "translation failed, injecting event"
            );

            if let Some(event_info) = event {
                support.inject_pending_event(*event_info);

                // The emulation did what it was supposed to do, which is throw a fault, so the emulation is done.
                return true;
            }
            false
        }
        Error::NoVtlAccess {
            gpa,
            intercepting_vtl,
            denied_flags,
        } => {
            tracing::trace!(
                error = result as &dyn std::error::Error,
                ?gva,
                ?gpa,
                "Vtl permissions checking failed"
            );

            let event = vtl_access_event(gva, *gpa, *intercepting_vtl, *denied_flags);
            support.inject_pending_event(event);
            true
        }
        Error::Hypervisor(_) | Error::Memory(_) => false,
    }
}

/// Creates a pending event for the exception type
fn make_exception_event(
    exception: Exception,
    error_code: Option<u32>,
    exception_parameter: Option<u64>,
) -> hvdef::HvX64PendingEvent {
    let exception_event = hvdef::HvX64PendingExceptionEvent::new()
        .with_event_pending(true)
        .with_event_type(hvdef::HV_X64_PENDING_EVENT_EXCEPTION)
        .with_deliver_error_code(error_code.is_some())
        .with_error_code(error_code.unwrap_or(0))
        .with_vector(exception.0.into())
        .with_exception_parameter(exception_parameter.unwrap_or(0));

    hvdef::HvX64PendingEvent::from(exception_event)
}

/// Generates a general protection fault pending event
fn gpf_event() -> hvdef::HvX64PendingEvent {
    make_exception_event(Exception::GENERAL_PROTECTION_FAULT, Some(0), None)
}

/// Generates the appropriate event for a VTL access error based
/// on the intercepting VTL
fn vtl_access_event(
    gva: u64,
    gpa: u64,
    intercepting_vtl: hvdef::Vtl,
    denied_access: HvMapGpaFlags,
) -> hvdef::HvX64PendingEvent {
    if intercepting_vtl != hvdef::Vtl::Vtl2 {
        let event_header = hvdef::HvX64PendingEventMemoryInterceptPendingEventHeader::new()
            .with_event_pending(true)
            .with_event_type(hvdef::HV_X64_PENDING_EVENT_MEMORY_INTERCEPT);
        let access_flags = hvdef::HvX64PendingEventMemoryInterceptAccessFlags::new()
            .with_guest_linear_address_valid(true)
            .with_caused_by_gpa_access(true);

        let access_type = if denied_access.kernel_executable() || denied_access.user_executable() {
            HvInterceptAccessType::EXECUTE
        } else if denied_access.writable() {
            HvInterceptAccessType::WRITE
        } else {
            HvInterceptAccessType::READ
        };

        let memory_event = hvdef::HvX64PendingEventMemoryIntercept {
            event_header,
            target_vtl: intercepting_vtl.into(),
            access_type,
            access_flags,
            _reserved2: 0,
            guest_linear_address: (gva >> hvdef::HV_PAGE_SHIFT) << hvdef::HV_PAGE_SHIFT,
            guest_physical_address: (gpa >> hvdef::HV_PAGE_SHIFT) << hvdef::HV_PAGE_SHIFT,
            _reserved3: 0,
        };

        hvdef::HvX64PendingEvent::read_from_bytes(memory_event.as_bytes())
            .expect("memory event and pending event should be the same size")
    } else {
        gpf_event()
    }
}

/// Tries to emulate monitor page writes without taking the slower, full
/// emulation path.
///
/// The caller must have already validated that the fault was due to a write to
/// a monitor page GPA.
///
/// Returns the bit number being set within the monitor page.
pub fn emulate_mnf_write_fast_path<T: EmulatorSupport>(
    support: &mut T,
    gm: &GuestMemory,
    dev: &impl CpuIo,
    interruption_pending: bool,
    tlb_lock_held: bool,
) -> Result<Option<u32>, VpHaltReason<T::Error>> {
    let mut cpu = EmulatorCpu::new(gm, dev, support);
    let instruction_bytes = cpu.support.instruction_bytes();
    if interruption_pending || !tlb_lock_held || instruction_bytes.is_empty() {
        return Ok(None);
    }
    let mut bytes = [0; 16];
    let valid_bytes;
    {
        let instruction_bytes = cpu.support.instruction_bytes();
        valid_bytes = instruction_bytes.len();
        bytes[..valid_bytes].copy_from_slice(instruction_bytes);
    }
    let instruction_bytes = &bytes[..valid_bytes];
    let bit = x86emu::fast_path::emulate_fast_path_set_bit(instruction_bytes, &mut cpu);
    support.flush().map_err(|err| {
        VpHaltReason::EmulationFailure(EmulationError::<T::Error>::CacheFlushFailed(err).into())
    })?;
    Ok(bit)
}