1pub mod mshv;
8mod nice;
9mod vp_state;
10
11cfg_if::cfg_if! {
12 if #[cfg(guest_arch = "x86_64")] {
13 mod hardware_cvm;
14 pub mod snp;
15 pub mod tdx;
16
17 use crate::TlbFlushLockAccess;
18 use crate::VtlCrash;
19 use bitvec::prelude::BitArray;
20 use bitvec::prelude::Lsb0;
21 use hv1_emulator::synic::ProcessorSynic;
22 use hvdef::HvRegisterCrInterceptControl;
23 use hvdef::HvX64RegisterName;
24 use virt::vp::MpState;
25 use virt::x86::MsrError;
26 use virt_support_apic::LocalApic;
27 use virt_support_x86emu::translate::TranslationRegisters;
28 use virt::vp::AccessVpState;
29 use zerocopy::IntoBytes;
30 } else if #[cfg(guest_arch = "aarch64")] {
31 use hv1_hypercall::Arm64RegisterState;
32 use hvdef::HvArm64RegisterName;
33 } else {
34 compile_error!("unsupported guest architecture");
35 }
36}
37
38use super::Error;
39use super::UhPartitionInner;
40use super::UhVpInner;
41use crate::ExitActivity;
42use crate::GuestVtl;
43use crate::WakeReason;
44use cvm_tracing::CVM_ALLOWED;
45use cvm_tracing::CVM_CONFIDENTIAL;
46use hcl::ioctl::Hcl;
47use hcl::ioctl::ProcessorRunner;
48use hv1_emulator::message_queues::MessageQueues;
49use hv1_hypercall::HvRepResult;
50use hv1_structs::ProcessorSet;
51use hv1_structs::VtlArray;
52use hvdef::HvError;
53use hvdef::HvMessage;
54use hvdef::HvSynicSint;
55use hvdef::NUM_SINTS;
56use hvdef::Vtl;
57use inspect::Inspect;
58use inspect::InspectMut;
59use pal::unix::affinity;
60use pal::unix::affinity::CpuSet;
61use pal_async::driver::Driver;
62use pal_async::driver::PollImpl;
63use pal_async::timer::PollTimer;
64use pal_uring::IdleControl;
65use private::BackingPrivate;
66use std::convert::Infallible;
67use std::future::poll_fn;
68use std::marker::PhantomData;
69use std::sync::Arc;
70use std::sync::atomic::Ordering;
71use std::task::Poll;
72use virt::EmulatorMonitorSupport;
73use virt::Processor;
74use virt::StopVp;
75use virt::VpHaltReason;
76use virt::VpIndex;
77use virt::io::CpuIo;
78use vm_topology::processor::TargetVpInfo;
79use vmcore::vmtime::VmTimeAccess;
80
81#[derive(InspectMut)]
88#[inspect(extra = "UhProcessor::inspect_extra", bound = "T: Backing")]
89pub struct UhProcessor<'a, T: Backing> {
90 _not_send: PhantomData<*mut ()>,
91
92 #[inspect(flatten)]
93 inner: &'a UhVpInner,
94 #[inspect(skip)]
95 partition: &'a UhPartitionInner,
96 #[inspect(skip)]
97 idle_control: Option<&'a mut IdleControl>,
98 #[inspect(skip)]
99 kernel_returns: u64,
100 #[inspect(hex, iter_by_index)]
101 crash_reg: [u64; hvdef::HV_X64_GUEST_CRASH_PARAMETER_MSRS],
102 vmtime: VmTimeAccess,
103 #[inspect(skip)]
104 timer: PollImpl<dyn PollTimer>,
105 #[inspect(mut)]
106 force_exit_sidecar: bool,
107 signaled_sidecar_exit: bool,
108 vtls_tlb_locked: VtlsTlbLocked,
110 #[inspect(skip)]
111 shared: &'a T::Shared,
112 #[inspect(hex, with = "|x| inspect::iter_by_index(x.iter()).map_value(|a| a.0)")]
113 exit_activities: VtlArray<ExitActivity, 2>,
114
115 #[inspect(skip)]
119 runner: ProcessorRunner<'a, T::HclBacking<'a>>,
120 #[inspect(mut)]
121 backing: T,
122}
123
124#[derive(Inspect)]
125struct VtlsTlbLocked {
126 vtl1: VtlArray<bool, 1>,
128 vtl2: VtlArray<bool, 2>,
129}
130
131impl VtlsTlbLocked {
132 fn get(&self, requesting_vtl: Vtl, target_vtl: GuestVtl) -> bool {
133 match requesting_vtl {
134 Vtl::Vtl0 => unreachable!(),
135 Vtl::Vtl1 => self.vtl1[target_vtl],
136 Vtl::Vtl2 => self.vtl2[target_vtl],
137 }
138 }
139
140 fn set(&mut self, requesting_vtl: Vtl, target_vtl: GuestVtl, value: bool) {
141 match requesting_vtl {
142 Vtl::Vtl0 => unreachable!(),
143 Vtl::Vtl1 => self.vtl1[target_vtl] = value,
144 Vtl::Vtl2 => self.vtl2[target_vtl] = value,
145 }
146 }
147
148 fn fill(&mut self, requesting_vtl: Vtl, value: bool) {
149 match requesting_vtl {
150 Vtl::Vtl0 => unreachable!(),
151 Vtl::Vtl1 => self.vtl1.fill(value),
152 Vtl::Vtl2 => self.vtl2.fill(value),
153 }
154 }
155}
156
157#[cfg(guest_arch = "x86_64")]
158#[derive(Inspect)]
159pub(crate) struct LapicState {
160 lapic: LocalApic,
161 activity: MpState,
162 nmi_pending: bool,
163}
164
165#[cfg(guest_arch = "x86_64")]
166impl LapicState {
167 pub fn new(lapic: LocalApic, activity: MpState) -> Self {
168 Self {
169 lapic,
170 activity,
171 nmi_pending: false,
172 }
173 }
174}
175
176struct BackingParams<'a, 'b, T: Backing> {
177 partition: &'a UhPartitionInner,
178 vp_info: &'a TargetVpInfo,
179 runner: &'a mut ProcessorRunner<'b, T::HclBacking<'b>>,
180}
181
182mod private {
183 use super::BackingParams;
184 use super::vp_state;
185 use crate::BackingShared;
186 use crate::Error;
187 use crate::GuestVtl;
188 use crate::processor::UhProcessor;
189 use hv1_emulator::hv::ProcessorVtlHv;
190 use hv1_structs::VtlArray;
191 use inspect::InspectMut;
192 use std::future::Future;
193 use virt::StopVp;
194 use virt::VpHaltReason;
195 use virt::io::CpuIo;
196 use virt::vp::AccessVpState;
197
198 #[expect(private_interfaces)]
199 pub trait BackingPrivate: 'static + Sized + InspectMut + Sized {
200 type HclBacking<'b>: hcl::ioctl::Backing<'b>;
201 type EmulationCache;
202 type Shared;
203
204 fn shared(shared: &BackingShared) -> &Self::Shared;
205
206 fn new(params: BackingParams<'_, '_, Self>, shared: &Self::Shared) -> Result<Self, Error>;
207
208 type StateAccess<'p, 'a>: AccessVpState<Error = vp_state::Error>
209 where
210 Self: 'a + 'p,
211 'p: 'a;
212
213 fn init(this: &mut UhProcessor<'_, Self>);
214
215 fn access_vp_state<'a, 'p>(
216 this: &'a mut UhProcessor<'p, Self>,
217 vtl: GuestVtl,
218 ) -> Self::StateAccess<'p, 'a>;
219
220 fn pre_run_vp(_this: &mut UhProcessor<'_, Self>) {}
224
225 fn run_vp(
226 this: &mut UhProcessor<'_, Self>,
227 dev: &impl CpuIo,
228 stop: &mut StopVp<'_>,
229 ) -> impl Future<Output = Result<(), VpHaltReason>>;
230
231 fn process_interrupts(
233 this: &mut UhProcessor<'_, Self>,
234 scan_irr: VtlArray<bool, 2>,
235 first_scan_irr: &mut bool,
236 dev: &impl CpuIo,
237 ) -> bool;
238
239 fn poll_apic(this: &mut UhProcessor<'_, Self>, vtl: GuestVtl, scan_irr: bool);
241
242 fn request_extint_readiness(this: &mut UhProcessor<'_, Self>);
247
248 fn request_untrusted_sint_readiness(this: &mut UhProcessor<'_, Self>, sints: u16);
253
254 fn handle_vp_start_enable_vtl_wake(_this: &mut UhProcessor<'_, Self>, _vtl: GuestVtl);
255
256 fn inspect_extra(_this: &mut UhProcessor<'_, Self>, _resp: &mut inspect::Response<'_>) {}
257
258 fn hv(&self, vtl: GuestVtl) -> Option<&ProcessorVtlHv>;
259 fn hv_mut(&mut self, vtl: GuestVtl) -> Option<&mut ProcessorVtlHv>;
260
261 fn vtl1_inspectable(this: &UhProcessor<'_, Self>) -> bool;
262 }
263}
264
265pub trait Backing: BackingPrivate {}
267
268impl<T: BackingPrivate> Backing for T {}
269
270#[cfg_attr(not(guest_arch = "x86_64"), expect(dead_code))]
271pub(crate) struct BackingSharedParams<'a> {
272 pub cvm_state: Option<crate::UhCvmPartitionState>,
273 #[cfg(guest_arch = "x86_64")]
274 pub cpuid: &'a virt::CpuidLeafSet,
275 pub hcl: &'a Hcl,
276 pub guest_vsm_available: bool,
277}
278
279#[cfg_attr(guest_arch = "aarch64", expect(dead_code))]
281enum InterceptMessageType {
282 #[cfg(guest_arch = "x86_64")]
283 Register {
284 reg: HvX64RegisterName,
285 value: u64,
286 },
287 Msr {
288 msr: u32,
289 },
290 #[cfg(guest_arch = "x86_64")]
291 IoPort {
292 port_number: u16,
293 access_size: u8,
294 string_access: bool,
295 rep_access: bool,
296 },
297}
298
299#[cfg_attr(guest_arch = "aarch64", expect(dead_code))]
301pub(crate) struct InterceptMessageState {
302 instruction_length_and_cr8: u8,
303 cpl: u8,
304 efer_lma: bool,
305 cs: hvdef::HvX64SegmentRegister,
306 rip: u64,
307 rflags: u64,
308 rax: u64,
309 rdx: u64,
310 rcx: u64,
311 rsi: u64,
312 rdi: u64,
313 optional: Option<InterceptMessageOptionalState>,
314}
315
316#[cfg_attr(guest_arch = "aarch64", expect(dead_code))]
317struct InterceptMessageOptionalState {
321 ds: hvdef::HvX64SegmentRegister,
322 es: hvdef::HvX64SegmentRegister,
323}
324
325impl InterceptMessageType {
326 #[cfg(guest_arch = "x86_64")]
327 fn generate_hv_message(
328 &self,
329 vp_index: VpIndex,
330 vtl: GuestVtl,
331 state: InterceptMessageState,
332 is_read: bool,
333 ) -> HvMessage {
334 let header = hvdef::HvX64InterceptMessageHeader {
335 vp_index: vp_index.index(),
336 instruction_length_and_cr8: state.instruction_length_and_cr8,
337 intercept_access_type: if is_read {
338 hvdef::HvInterceptAccessType::READ
339 } else {
340 hvdef::HvInterceptAccessType::WRITE
341 },
342 execution_state: hvdef::HvX64VpExecutionState::new()
343 .with_cpl(state.cpl)
344 .with_vtl(vtl.into())
345 .with_efer_lma(state.efer_lma),
346 cs_segment: state.cs,
347 rip: state.rip,
348 rflags: state.rflags,
349 };
350 match self {
351 InterceptMessageType::Register { reg, value } => {
352 let intercept_message = hvdef::HvX64RegisterInterceptMessage {
353 header,
354 flags: hvdef::HvX64RegisterInterceptMessageFlags::new(),
355 rsvd: 0,
356 rsvd2: 0,
357 register_name: *reg,
358 access_info: hvdef::HvX64RegisterAccessInfo::new_source_value(
359 hvdef::HvRegisterValue::from(*value),
360 ),
361 };
362 HvMessage::new(
363 hvdef::HvMessageType::HvMessageTypeRegisterIntercept,
364 0,
365 intercept_message.as_bytes(),
366 )
367 }
368 InterceptMessageType::Msr { msr } => {
369 let intercept_message = hvdef::HvX64MsrInterceptMessage {
370 header,
371 msr_number: *msr,
372 rax: state.rax,
373 rdx: state.rdx,
374 reserved: 0,
375 };
376
377 HvMessage::new(
378 hvdef::HvMessageType::HvMessageTypeMsrIntercept,
379 0,
380 intercept_message.as_bytes(),
381 )
382 }
383 InterceptMessageType::IoPort {
384 port_number,
385 access_size,
386 string_access,
387 rep_access,
388 } => {
389 let access_info =
390 hvdef::HvX64IoPortAccessInfo::new(*access_size, *string_access, *rep_access);
391 let intercept_message = hvdef::HvX64IoPortInterceptMessage {
392 header,
393 port_number: *port_number,
394 access_info,
395 instruction_byte_count: 0,
396 reserved: 0,
397 rax: state.rax,
398 instruction_bytes: [0u8; 16],
399 ds_segment: state.optional.as_ref().unwrap().ds,
400 es_segment: state.optional.as_ref().unwrap().es,
401 rcx: state.rcx,
402 rsi: state.rsi,
403 rdi: state.rdi,
404 };
405
406 HvMessage::new(
407 hvdef::HvMessageType::HvMessageTypeX64IoPortIntercept,
408 0,
409 intercept_message.as_bytes(),
410 )
411 }
412 }
413 }
414}
415
416#[cfg(guest_arch = "x86_64")]
418pub(crate) trait HardwareIsolatedBacking: Backing {
419 fn cvm_state(&self) -> &crate::UhCvmVpState;
421 fn cvm_state_mut(&mut self) -> &mut crate::UhCvmVpState;
423 fn cvm_partition_state(shared: &Self::Shared) -> &crate::UhCvmPartitionState;
425 fn tlb_flush_lock_access<'a>(
434 vp_index: Option<VpIndex>,
435 partition: &'a UhPartitionInner,
436 shared: &'a Self::Shared,
437 ) -> impl TlbFlushLockAccess + 'a;
438 fn switch_vtl(this: &mut UhProcessor<'_, Self>, source_vtl: GuestVtl, target_vtl: GuestVtl);
441 fn translation_registers(
443 &self,
444 this: &UhProcessor<'_, Self>,
445 vtl: GuestVtl,
446 ) -> TranslationRegisters;
447 fn pending_event_vector(this: &UhProcessor<'_, Self>, vtl: GuestVtl) -> Option<u8>;
450 fn is_interrupt_pending(
453 this: &mut UhProcessor<'_, Self>,
454 vtl: GuestVtl,
455 check_rflags: bool,
456 dev: &impl CpuIo,
457 ) -> bool;
458 fn set_pending_exception(
463 this: &mut UhProcessor<'_, Self>,
464 vtl: GuestVtl,
465 event: hvdef::HvX64PendingExceptionEvent,
466 );
467
468 fn intercept_message_state(
469 this: &UhProcessor<'_, Self>,
470 vtl: GuestVtl,
471 include_optional_state: bool,
472 ) -> InterceptMessageState;
473
474 fn cr0(this: &UhProcessor<'_, Self>, vtl: GuestVtl) -> u64;
477 fn cr4(this: &UhProcessor<'_, Self>, vtl: GuestVtl) -> u64;
478
479 fn cr_intercept_registration(
480 this: &mut UhProcessor<'_, Self>,
481 intercept_control: HvRegisterCrInterceptControl,
482 );
483
484 fn untrusted_synic_mut(&mut self) -> Option<&mut ProcessorSynic>;
485}
486
487#[cfg_attr(guest_arch = "aarch64", expect(dead_code))]
488#[derive(Inspect, Debug)]
489#[inspect(tag = "reason")]
490pub(crate) enum SidecarExitReason {
491 #[inspect(transparent)]
492 Exit(SidecarRemoveExit),
493 #[inspect(transparent)]
494 TaskRequest(Arc<str>),
495 ManualRequest,
496}
497
498#[cfg_attr(guest_arch = "aarch64", expect(dead_code))]
499#[derive(Inspect, Debug)]
500#[inspect(tag = "exit")]
501pub(crate) enum SidecarRemoveExit {
502 Msr {
503 #[inspect(hex)]
504 msr: u32,
505 value: Option<u64>,
506 },
507 Io {
508 #[inspect(hex)]
509 port: u16,
510 write: bool,
511 },
512 Mmio {
513 #[inspect(hex)]
514 gpa: u64,
515 write: bool,
516 },
517 Hypercall {
518 #[inspect(debug)]
519 code: hvdef::HypercallCode,
520 },
521 Cpuid {
522 #[inspect(hex)]
523 leaf: u32,
524 #[inspect(hex)]
525 subleaf: u32,
526 },
527 Hypervisor {
528 #[inspect(debug)]
529 message: hvdef::HvMessageType,
530 },
531}
532
533impl UhVpInner {
534 pub fn new(cpu_index: u32, vp_info: TargetVpInfo) -> Self {
536 Self {
537 wake_reasons: Default::default(),
538 message_queues: VtlArray::from_fn(|_| MessageQueues::new()),
539 waker: Default::default(),
540 cpu_index,
541 vp_info,
542 sidecar_exit_reason: Default::default(),
543 }
544 }
545
546 pub fn post_message(&self, vtl: GuestVtl, sint: u8, message: &HvMessage) {
548 if self.message_queues[vtl].enqueue_message(sint, message) {
549 self.wake(vtl, WakeReason::MESSAGE_QUEUES);
550 }
551 }
552
553 pub fn wake(&self, vtl: GuestVtl, reason: WakeReason) {
554 let reason = u64::from(reason.0) << (vtl as u8 * 32);
555 if self.wake_reasons.fetch_or(reason, Ordering::Release) & reason == 0 {
556 if let Some(waker) = &*self.waker.read() {
557 waker.wake_by_ref();
558 }
559 }
560 }
561
562 pub fn wake_vtl2(&self) {
563 if let Some(waker) = &*self.waker.read() {
564 waker.wake_by_ref();
565 }
566 }
567
568 pub fn set_sidecar_exit_reason(&self, reason: SidecarExitReason) {
569 self.sidecar_exit_reason.lock().get_or_insert_with(|| {
570 tracing::info!(CVM_ALLOWED, "sidecar exit");
571 tracing::info!(CVM_CONFIDENTIAL, ?reason, "sidecar exit");
572 reason
573 });
574 }
575}
576
577impl<T: Backing> UhProcessor<'_, T> {
578 fn inspect_extra(&mut self, resp: &mut inspect::Response<'_>) {
579 resp.child("stats", |req| {
580 if let Ok(stats) = hcl::stats::vp_stats() {
582 let stats = &stats[self.vp_index().index() as usize];
583 req.respond()
584 .counter("vtl_transitions", stats.vtl_transitions)
585 .counter(
586 "spurious_exits",
587 stats.vtl_transitions.saturating_sub(self.kernel_returns),
588 );
589 }
590 })
591 .field(
592 "last_enter_modes",
593 self.runner
594 .enter_mode()
595 .map(|&mut v| inspect::AsHex(u8::from(v))),
596 )
597 .field("sidecar", self.runner.is_sidecar())
598 .field(
599 "sidecar_base_cpu",
600 self.partition.hcl.sidecar_base_cpu(self.vp_index().index()),
601 );
602
603 T::inspect_extra(self, resp);
604 }
605
606 #[cfg(guest_arch = "x86_64")]
607 fn handle_debug_exception(
608 &mut self,
609 dev: &impl CpuIo,
610 vtl: GuestVtl,
611 ) -> Result<(), VpHaltReason> {
612 if vtl == GuestVtl::Vtl0 {
614 let debug_regs: virt::x86::vp::DebugRegisters = self
615 .access_state(Vtl::Vtl0)
616 .debug_regs()
617 .expect("register query should not fail");
618
619 let dr = [
620 debug_regs.dr0,
621 debug_regs.dr1,
622 debug_regs.dr2,
623 debug_regs.dr3,
624 ];
625
626 if debug_regs.dr6 & x86defs::DR6_SINGLE_STEP != 0 {
627 return Err(VpHaltReason::SingleStep);
628 }
629
630 const BREAKPOINT_INDEX_OFFSET: usize = 4;
632 let i = debug_regs.dr6.trailing_zeros() as usize;
633 if i >= BREAKPOINT_INDEX_OFFSET {
634 return Err(dev.fatal_error(
636 UnexpectedDebugException {
637 dr6: debug_regs.dr6,
638 }
639 .into(),
640 ));
641 }
642 let bp = virt::x86::HardwareBreakpoint::from_dr7(debug_regs.dr7, dr[i], i);
643
644 return Err(VpHaltReason::HwBreak(bp));
645 }
646
647 panic!("unexpected debug exception in VTL {:?}", vtl);
648 }
649}
650
651#[cfg(guest_arch = "x86_64")]
652#[derive(Debug, Error)]
653#[error("unexpected debug exception with dr6 value {dr6:#x}")]
654struct UnexpectedDebugException {
655 dr6: u64,
656}
657
658impl<'p, T: Backing> Processor for UhProcessor<'p, T> {
659 type StateAccess<'a>
660 = T::StateAccess<'p, 'a>
661 where
662 Self: 'a;
663
664 #[cfg(guest_arch = "aarch64")]
665 fn set_debug_state(
666 &mut self,
667 _vtl: Vtl,
668 _state: Option<&virt::x86::DebugState>,
669 ) -> Result<(), <T::StateAccess<'p, '_> as virt::vp::AccessVpState>::Error> {
670 unimplemented!()
671 }
672
673 #[cfg(guest_arch = "x86_64")]
674 fn set_debug_state(
675 &mut self,
676 vtl: Vtl,
677 state: Option<&virt::x86::DebugState>,
678 ) -> Result<(), <T::StateAccess<'p, '_> as AccessVpState>::Error> {
679 if vtl == Vtl::Vtl0 {
681 let mut db: [u64; 4] = [0; 4];
682 let mut access_state = self.access_state(vtl);
683 let mut registers = access_state.registers()?;
684 let mut rflags = x86defs::RFlags::from(registers.rflags);
685 let mut dr7: u64 = 0;
686
687 if let Some(state) = state {
688 rflags.set_trap(state.single_step);
689 for (i, bp) in state.breakpoints.iter().enumerate() {
690 if let Some(bp) = bp {
691 db[i] = bp.address;
692 dr7 |= bp.dr7_bits(i);
693 }
694 }
695 }
696
697 let debug_registers = virt::x86::vp::DebugRegisters {
698 dr0: db[0],
699 dr1: db[1],
700 dr2: db[2],
701 dr3: db[3],
702 dr6: 0,
703 dr7,
704 };
705 access_state.set_debug_regs(&debug_registers)?;
706
707 registers.rflags = rflags.into();
708 access_state.set_registers(®isters)?;
709 return Ok(());
710 }
711
712 panic!("unexpected set debug state in VTL {:?}", vtl);
713 }
714
715 async fn run_vp(
716 &mut self,
717 mut stop: StopVp<'_>,
718 dev: &impl CpuIo,
719 ) -> Result<Infallible, VpHaltReason> {
720 T::pre_run_vp(self);
721
722 if self.runner.is_sidecar() {
723 if self.force_exit_sidecar && !self.signaled_sidecar_exit {
724 self.inner
725 .set_sidecar_exit_reason(SidecarExitReason::ManualRequest);
726 self.signaled_sidecar_exit = true;
727 return Err(VpHaltReason::Cancel);
728 }
729 } else {
730 let mut current = Default::default();
731 affinity::get_current_thread_affinity(&mut current).unwrap();
732 assert_eq!(¤t, CpuSet::new().set(self.inner.cpu_index));
733
734 nice::nice(1);
737 }
738
739 let mut last_waker = None;
740
741 let vtl0_wakes = WakeReason::new()
743 .with_message_queues(true)
744 .with_intcon(true);
745 let vtl1_wakes = WakeReason::new().with_message_queues(true);
746 self.inner.wake_reasons.fetch_or(
747 ((vtl1_wakes.0 as u64) << 32) | (vtl0_wakes.0 as u64),
748 Ordering::Relaxed,
749 );
750
751 let mut first_scan_irr = true;
752
753 loop {
754 poll_fn(|cx| {
756 loop {
757 stop.check()?;
758
759 self.runner.clear_cancel();
761
762 self.vmtime.cancel_timeout();
764
765 if !last_waker
767 .as_ref()
768 .is_some_and(|waker| cx.waker().will_wake(waker))
769 {
770 last_waker = Some(cx.waker().clone());
771 self.inner.waker.write().clone_from(&last_waker);
772 }
773
774 let scan_irr = if self.inner.wake_reasons.load(Ordering::Relaxed) != 0 {
776 self.handle_wake()
777 } else {
778 [false, false].into()
779 };
780
781 if T::process_interrupts(self, scan_irr, &mut first_scan_irr, dev) {
782 continue;
783 }
784
785 if let Some(timeout) = self.vmtime.get_timeout() {
787 let deadline = self.vmtime.host_time(timeout);
788 if self.timer.poll_timer(cx, deadline).is_ready() {
789 continue;
790 }
791 }
792
793 return <Result<_, VpHaltReason>>::Ok(()).into();
794 }
795 })
796 .await?;
797
798 if let Some(idle_control) = &mut self.idle_control {
800 if !idle_control.pre_block() {
801 yield_now().await;
802 continue;
803 }
804 }
805
806 if let Some(mode) = self.runner.enter_mode() {
807 *mode = self
808 .partition
809 .enter_modes_atomic
810 .load(Ordering::Relaxed)
811 .into();
812 }
813
814 minircu::global().quiesce();
817
818 T::run_vp(self, dev, &mut stop).await?;
819 self.kernel_returns += 1;
820 }
821 }
822
823 fn flush_async_requests(&mut self) {
824 if self.inner.wake_reasons.load(Ordering::Relaxed) != 0 {
825 let scan_irr = self.handle_wake();
826 for vtl in [GuestVtl::Vtl1, GuestVtl::Vtl0] {
827 if scan_irr[vtl] {
828 T::poll_apic(self, vtl, true);
829 }
830 }
831 }
832 self.runner.flush_deferred_state();
833 }
834
835 fn access_state(&mut self, vtl: Vtl) -> Self::StateAccess<'_> {
836 T::access_vp_state(self, vtl.try_into().unwrap())
837 }
838
839 fn vtl_inspectable(&self, vtl: Vtl) -> bool {
840 match vtl {
841 Vtl::Vtl0 => true,
842 Vtl::Vtl1 => T::vtl1_inspectable(self),
843 Vtl::Vtl2 => false,
844 }
845 }
846}
847
848impl<'a, T: Backing> UhProcessor<'a, T> {
849 pub(super) fn new(
850 driver: &impl Driver,
851 partition: &'a UhPartitionInner,
852 vp_info: TargetVpInfo,
853 idle_control: Option<&'a mut IdleControl>,
854 ) -> Result<Self, Error> {
855 let inner = partition.vp(vp_info.base.vp_index).unwrap();
856 let mut runner = partition
857 .hcl
858 .runner(inner.vp_index().index(), idle_control.is_none())
859 .unwrap();
860
861 let backing_shared = T::shared(&partition.backing_shared);
862
863 let backing = T::new(
864 BackingParams {
865 partition,
866 vp_info: &vp_info,
867 runner: &mut runner,
868 },
869 backing_shared,
870 )?;
871
872 let mut vp = Self {
873 partition,
874 inner,
875 runner,
876 idle_control,
877 kernel_returns: 0,
878 crash_reg: [0; hvdef::HV_X64_GUEST_CRASH_PARAMETER_MSRS],
879 _not_send: PhantomData,
880 backing,
881 shared: backing_shared,
882 vmtime: partition
883 .vmtime
884 .access(format!("vp-{}", vp_info.base.vp_index.index())),
885 timer: driver.new_dyn_timer(),
886 force_exit_sidecar: false,
887 signaled_sidecar_exit: false,
888 vtls_tlb_locked: VtlsTlbLocked {
889 vtl1: VtlArray::new(false),
890 vtl2: VtlArray::new(false),
891 },
892 exit_activities: Default::default(),
893 };
894
895 T::init(&mut vp);
896
897 Ok(vp)
898 }
899
900 fn handle_wake(&mut self) -> VtlArray<bool, 2> {
902 let wake_reasons_raw = self.inner.wake_reasons.swap(0, Ordering::SeqCst);
903 let wake_reasons_vtl: [WakeReason; 2] = zerocopy::transmute!(wake_reasons_raw);
904 for (vtl, wake_reasons) in [
905 (GuestVtl::Vtl1, wake_reasons_vtl[1]),
906 (GuestVtl::Vtl0, wake_reasons_vtl[0]),
907 ] {
908 if wake_reasons.message_queues() {
909 let pending_sints = self.inner.message_queues[vtl].pending_sints();
910 if pending_sints != 0 {
911 let pending_sints = self.inner.message_queues[vtl].pending_sints();
913 let mut masked_sints = 0;
914
915 for sint in 0..NUM_SINTS as u8 {
917 if pending_sints & (1 << sint) == 0 {
918 continue;
919 }
920 let sint_msr = if let Some(hv) = self.backing.hv(vtl).as_ref() {
921 hv.synic.sint(sint)
922 } else {
923 #[cfg(guest_arch = "x86_64")]
924 let sint_reg =
925 HvX64RegisterName(HvX64RegisterName::Sint0.0 + sint as u32);
926 #[cfg(guest_arch = "aarch64")]
927 let sint_reg =
928 HvArm64RegisterName(HvArm64RegisterName::Sint0.0 + sint as u32);
929 self.runner.get_vp_register(vtl, sint_reg).unwrap().as_u64()
930 };
931 masked_sints |= (HvSynicSint::from(sint_msr).masked() as u16) << sint;
932 }
933
934 self.inner.message_queues[vtl].post_pending_messages(masked_sints, |_, _| {
936 Err(HvError::InvalidSynicState)
937 });
938
939 self.request_sint_notifications(vtl, pending_sints & !masked_sints);
940 }
941 }
942
943 if wake_reasons.extint() {
944 T::request_extint_readiness(self);
945 }
946
947 #[cfg(guest_arch = "x86_64")]
948 if wake_reasons.hv_start_enable_vtl_vp() {
949 T::handle_vp_start_enable_vtl_wake(self, vtl);
950 }
951
952 #[cfg(guest_arch = "x86_64")]
953 if wake_reasons.update_proxy_irr_filter() {
954 debug_assert!(self.partition.isolation.is_hardware_isolated());
956 self.update_proxy_irr_filter(vtl);
957 }
958 }
959
960 wake_reasons_vtl.map(|w| w.intcon()).into()
961 }
962
963 fn request_sint_notifications(&mut self, vtl: GuestVtl, sints: u16) {
964 if sints == 0 {
965 return;
966 }
967
968 let untrusted_sints = if let Some(hv) = self.backing.hv_mut(vtl).as_mut() {
970 let proxied_sints = hv.synic.proxied_sints();
971 hv.synic.request_sint_readiness(sints & !proxied_sints);
972 proxied_sints
973 } else {
974 !0
975 };
976
977 if sints & untrusted_sints != 0 {
978 assert_eq!(vtl, GuestVtl::Vtl0);
979 T::request_untrusted_sint_readiness(self, sints & untrusted_sints);
980 }
981 }
982
983 fn vp_index(&self) -> VpIndex {
984 self.inner.vp_index()
985 }
986
987 #[cfg(guest_arch = "x86_64")]
988 fn write_crash_msr(&mut self, msr: u32, value: u64, vtl: GuestVtl) -> Result<(), MsrError> {
989 match msr {
990 hvdef::HV_X64_MSR_GUEST_CRASH_CTL => {
991 let crash = VtlCrash {
992 vp_index: self.vp_index(),
993 last_vtl: vtl,
994 control: hvdef::GuestCrashCtl::from(value),
995 parameters: self.crash_reg,
996 };
997 tracelimit::warn_ratelimited!(
998 CVM_ALLOWED,
999 ?crash,
1000 "Guest has reported system crash"
1001 );
1002
1003 if crash.control.crash_message() {
1004 let message_gpa = crash.parameters[3];
1005 let message_size = std::cmp::min(crash.parameters[4], hvdef::HV_PAGE_SIZE);
1006 let mut message = vec![0; message_size as usize];
1007 match self.partition.gm[vtl].read_at(message_gpa, &mut message) {
1008 Ok(()) => {
1009 let message = String::from_utf8_lossy(&message).into_owned();
1010 tracelimit::warn_ratelimited!(
1011 CVM_CONFIDENTIAL,
1012 message,
1013 "Guest has reported a system crash message"
1014 );
1015 }
1016 Err(e) => {
1017 tracelimit::warn_ratelimited!(
1018 CVM_ALLOWED,
1019 ?e,
1020 "Failed to read crash message"
1021 );
1022 }
1023 }
1024 }
1025
1026 self.partition.crash_notification_send.send(crash);
1027 }
1028 hvdef::HV_X64_MSR_GUEST_CRASH_P0
1029 | hvdef::HV_X64_MSR_GUEST_CRASH_P1
1030 | hvdef::HV_X64_MSR_GUEST_CRASH_P2
1031 | hvdef::HV_X64_MSR_GUEST_CRASH_P3
1032 | hvdef::HV_X64_MSR_GUEST_CRASH_P4 => {
1033 self.crash_reg[(msr - hvdef::HV_X64_MSR_GUEST_CRASH_P0) as usize] = value;
1034 }
1035 _ => return Err(MsrError::Unknown),
1036 }
1037 Ok(())
1038 }
1039
1040 #[cfg(guest_arch = "x86_64")]
1041 fn read_crash_msr(&self, msr: u32, _vtl: GuestVtl) -> Result<u64, MsrError> {
1042 let v = match msr {
1043 hvdef::HV_X64_MSR_GUEST_CRASH_CTL => hvdef::GuestCrashCtl::new()
1046 .with_crash_notify(true)
1047 .with_crash_message(true)
1048 .into(),
1049 hvdef::HV_X64_MSR_GUEST_CRASH_P0 => self.crash_reg[0],
1050 hvdef::HV_X64_MSR_GUEST_CRASH_P1 => self.crash_reg[1],
1051 hvdef::HV_X64_MSR_GUEST_CRASH_P2 => self.crash_reg[2],
1052 hvdef::HV_X64_MSR_GUEST_CRASH_P3 => self.crash_reg[3],
1053 hvdef::HV_X64_MSR_GUEST_CRASH_P4 => self.crash_reg[4],
1054 _ => return Err(MsrError::Unknown),
1055 };
1056 Ok(v)
1057 }
1058
1059 #[cfg(guest_arch = "x86_64")]
1061 async fn emulate<D: CpuIo>(
1062 &mut self,
1063 devices: &D,
1064 interruption_pending: bool,
1065 vtl: GuestVtl,
1066 cache: T::EmulationCache,
1067 ) -> Result<(), VpHaltReason>
1068 where
1069 for<'b> UhEmulationState<'b, 'a, D, T>: virt_support_x86emu::emulate::EmulatorSupport,
1070 {
1071 let guest_memory = &self.partition.gm[vtl];
1072 let (kx_guest_memory, ux_guest_memory) = match vtl {
1073 GuestVtl::Vtl0 => (
1074 &self.partition.vtl0_kernel_exec_gm,
1075 &self.partition.vtl0_user_exec_gm,
1076 ),
1077 GuestVtl::Vtl1 => (guest_memory, guest_memory),
1078 };
1079 let emu_mem = virt_support_x86emu::emulate::EmulatorMemoryAccess {
1080 gm: guest_memory,
1081 kx_gm: kx_guest_memory,
1082 ux_gm: ux_guest_memory,
1083 };
1084 let mut emulation_state = UhEmulationState {
1085 vp: &mut *self,
1086 interruption_pending,
1087 devices,
1088 vtl,
1089 cache,
1090 };
1091
1092 virt_support_x86emu::emulate::emulate(&mut emulation_state, &emu_mem, devices).await
1093 }
1094
1095 #[cfg(guest_arch = "aarch64")]
1097 async fn emulate<D: CpuIo>(
1098 &mut self,
1099 devices: &D,
1100 intercept_state: &aarch64emu::InterceptState,
1101 vtl: GuestVtl,
1102 cache: T::EmulationCache,
1103 ) -> Result<(), VpHaltReason>
1104 where
1105 for<'b> UhEmulationState<'b, 'a, D, T>: virt_support_aarch64emu::emulate::EmulatorSupport,
1106 {
1107 let guest_memory = &self.partition.gm[vtl];
1108 virt_support_aarch64emu::emulate::emulate(
1109 &mut UhEmulationState {
1110 vp: &mut *self,
1111 interruption_pending: intercept_state.interruption_pending,
1112 devices,
1113 vtl,
1114 cache,
1115 },
1116 intercept_state,
1117 guest_memory,
1118 devices,
1119 )
1120 .await
1121 }
1122
1123 #[cfg(guest_arch = "x86_64")]
1124 fn update_proxy_irr_filter(&mut self, vtl: GuestVtl) {
1125 assert_eq!(vtl, GuestVtl::Vtl0);
1126 let mut irr_bits: BitArray<[u32; 8], Lsb0> = BitArray::new(Default::default());
1127
1128 if let Some(hv) = self.backing.hv(vtl).as_ref() {
1130 for sint in 0..NUM_SINTS as u8 {
1131 let sint_msr = hv.synic.sint(sint);
1132 let hv_sint = HvSynicSint::from(sint_msr);
1133 if (hv_sint.proxy() || self.partition.vmbus_relay) && !hv_sint.masked() {
1136 irr_bits.set(hv_sint.vector() as usize, true);
1137 }
1138 }
1139 }
1140
1141 self.partition.fill_device_vectors(vtl, &mut irr_bits);
1143
1144 self.runner
1146 .update_proxy_irr_filter_vtl0(&irr_bits.into_inner());
1147 }
1148}
1149
1150fn signal_mnf(dev: &impl CpuIo, connection_id: u32) {
1151 if let Err(err) = dev.signal_synic_event(Vtl::Vtl0, connection_id, 0) {
1152 tracelimit::warn_ratelimited!(
1153 CVM_ALLOWED,
1154 error = &err as &dyn std::error::Error,
1155 connection_id,
1156 "failed to signal mnf"
1157 );
1158 }
1159}
1160
1161async fn yield_now() {
1163 let mut yielded = false;
1164 poll_fn(|cx| {
1165 if !yielded {
1166 cx.waker().wake_by_ref();
1168 yielded = true;
1169 Poll::Pending
1170 } else {
1171 Poll::Ready(())
1172 }
1173 })
1174 .await;
1175}
1176
1177struct UhEmulationState<'a, 'b, T: CpuIo, U: Backing> {
1178 vp: &'a mut UhProcessor<'b, U>,
1179 interruption_pending: bool,
1180 devices: &'a T,
1181 vtl: GuestVtl,
1182 cache: U::EmulationCache,
1183}
1184
1185impl<T: CpuIo, U: Backing> EmulatorMonitorSupport for UhEmulationState<'_, '_, T, U> {
1186 fn check_write(&self, gpa: u64, bytes: &[u8]) -> bool {
1187 self.vp
1188 .partition
1189 .monitor_page
1190 .check_write(gpa, bytes, |connection_id| {
1191 signal_mnf(self.devices, connection_id);
1192 })
1193 }
1194
1195 fn check_read(&self, gpa: u64, bytes: &mut [u8]) -> bool {
1196 self.vp.partition.monitor_page.check_read(gpa, bytes)
1197 }
1198}
1199
1200struct UhHypercallHandler<'a, 'b, T, B: Backing> {
1201 vp: &'a mut UhProcessor<'b, B>,
1202 bus: &'a T,
1203 trusted: bool,
1212 intercepted_vtl: GuestVtl,
1213}
1214
1215impl<T, B: Backing> UhHypercallHandler<'_, '_, T, B> {
1216 fn target_vtl_no_higher(&self, target_vtl: Vtl) -> Result<GuestVtl, HvError> {
1217 if Vtl::from(self.intercepted_vtl) < target_vtl {
1218 return Err(HvError::AccessDenied);
1219 }
1220 Ok(target_vtl.try_into().unwrap())
1221 }
1222}
1223
1224impl<T, B: Backing> hv1_hypercall::GetVpIndexFromApicId for UhHypercallHandler<'_, '_, T, B> {
1225 fn get_vp_index_from_apic_id(
1226 &mut self,
1227 partition_id: u64,
1228 target_vtl: Vtl,
1229 apic_ids: &[u32],
1230 vp_indices: &mut [u32],
1231 ) -> HvRepResult {
1232 tracing::debug!(partition_id, ?target_vtl, "HvGetVpIndexFromApicId");
1233
1234 if partition_id != hvdef::HV_PARTITION_ID_SELF {
1235 return Err((HvError::InvalidPartitionId, 0));
1236 }
1237
1238 let _target_vtl = self.target_vtl_no_higher(target_vtl).map_err(|e| (e, 0))?;
1239
1240 #[cfg(guest_arch = "aarch64")]
1241 if true {
1242 let _ = apic_ids;
1243 let _ = vp_indices;
1244 todo!("AARCH64_TODO");
1245 }
1246
1247 #[cfg(guest_arch = "x86_64")]
1248 for (i, (&apic_id, vp_index)) in apic_ids.iter().zip(vp_indices).enumerate() {
1249 *vp_index = self
1250 .vp
1251 .partition
1252 .vps
1253 .iter()
1254 .find(|vp| vp.vp_info.apic_id == apic_id)
1255 .ok_or((HvError::InvalidParameter, i))?
1256 .vp_info
1257 .base
1258 .vp_index
1259 .index()
1260 }
1261
1262 Ok(())
1263 }
1264}
1265
1266#[cfg(guest_arch = "aarch64")]
1267impl<T: CpuIo, B: Backing> Arm64RegisterState for UhHypercallHandler<'_, '_, T, B> {
1268 fn pc(&mut self) -> u64 {
1269 self.vp
1270 .runner
1271 .get_vp_register(self.intercepted_vtl, HvArm64RegisterName::XPc)
1272 .expect("get vp register cannot fail")
1273 .as_u64()
1274 }
1275
1276 fn set_pc(&mut self, pc: u64) {
1277 self.vp
1278 .runner
1279 .set_vp_register(self.intercepted_vtl, HvArm64RegisterName::XPc, pc.into())
1280 .expect("set vp register cannot fail");
1281 }
1282
1283 fn x(&mut self, n: u8) -> u64 {
1284 self.vp
1285 .runner
1286 .get_vp_register(
1287 self.intercepted_vtl,
1288 HvArm64RegisterName(HvArm64RegisterName::X0.0 + n as u32),
1289 )
1290 .expect("get vp register cannot fail")
1291 .as_u64()
1292 }
1293
1294 fn set_x(&mut self, n: u8, v: u64) {
1295 self.vp
1296 .runner
1297 .set_vp_register(
1298 self.intercepted_vtl,
1299 HvArm64RegisterName(HvArm64RegisterName::X0.0 + n as u32),
1300 v.into(),
1301 )
1302 .expect("set vp register cannot fail")
1303 }
1304}
1305
1306impl<T: CpuIo, B: Backing> hv1_hypercall::PostMessage for UhHypercallHandler<'_, '_, T, B> {
1307 fn post_message(&mut self, connection_id: u32, message: &[u8]) -> hvdef::HvResult<()> {
1308 tracing::trace!(
1309 connection_id,
1310 self.trusted,
1311 "handling post message intercept"
1312 );
1313
1314 self.bus.post_synic_message(
1315 self.intercepted_vtl.into(),
1316 connection_id,
1317 self.trusted,
1318 message,
1319 )
1320 }
1321}
1322
1323impl<T: CpuIo, B: Backing> hv1_hypercall::SignalEvent for UhHypercallHandler<'_, '_, T, B> {
1324 fn signal_event(&mut self, connection_id: u32, flag: u16) -> hvdef::HvResult<()> {
1325 tracing::trace!(connection_id, "handling signal event intercept");
1326
1327 self.bus
1328 .signal_synic_event(self.intercepted_vtl.into(), connection_id, flag)
1329 }
1330}
1331
1332impl<T: CpuIo, B: Backing> UhHypercallHandler<'_, '_, T, B> {
1333 fn retarget_virtual_interrupt(
1334 &mut self,
1335 device_id: u64,
1336 address: u64,
1337 data: u32,
1338 vector: u32,
1339 multicast: bool,
1340 target_processors: ProcessorSet<'_>,
1341 ) -> hvdef::HvResult<()> {
1342 let target_processors = Vec::from_iter(target_processors);
1343 let vpci_params = vmcore::vpci_msi::VpciInterruptParameters {
1344 vector,
1345 multicast,
1346 target_processors: &target_processors,
1347 };
1348
1349 self.vp
1350 .partition
1351 .software_devices
1352 .as_ref()
1353 .expect("should exist if this intercept is registered or this is a CVM")
1354 .retarget_interrupt(device_id, address, data, &vpci_params)
1355 }
1356}
1357
1358impl<T, B: Backing> hv1_hypercall::ExtendedQueryCapabilities for UhHypercallHandler<'_, '_, T, B> {
1359 fn query_extended_capabilities(&mut self) -> hvdef::HvResult<u64> {
1360 Err(HvError::InvalidHypercallCode)
1364 }
1365}