virt_kvm/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! KVM implementation of the virt::generic interfaces.

#![cfg(all(target_os = "linux", guest_is_native))]
#![expect(missing_docs)]
// UNSAFETY: Calling KVM APIs and manually managing memory.
#![expect(unsafe_code)]
#![expect(clippy::undocumented_unsafe_blocks)]

use guestmem::GuestMemory;
use inspect::Inspect;
use memory_range::MemoryRange;
use parking_lot::Mutex;
use std::sync::Arc;

mod arch;
#[cfg(guest_arch = "x86_64")]
mod gsi;

use thiserror::Error;
use virt::state::StateError;

pub use arch::Kvm;
use arch::KvmVpInner;
use hvdef::Vtl;
use std::sync::atomic::Ordering;
use virt::VpIndex;
use vmcore::vmtime::VmTimeAccess;

#[derive(Error, Debug)]
pub enum KvmError {
    #[error("operation not supported")]
    NotSupported,
    #[error("vtl2 is not supported on this hypervisor")]
    Vtl2NotSupported,
    #[error("isolation is not supported on this hypervisor")]
    IsolationNotSupported,
    #[error("kvm error")]
    Kvm(#[from] kvm::Error),
    #[error("failed to stat /dev/kvm")]
    AvailableCheck(#[source] std::io::Error),
    #[error(transparent)]
    State(#[from] Box<StateError<KvmError>>),
    #[error("invalid state while restoring: {0}")]
    InvalidState(&'static str),
    #[error("misaligned gic base address")]
    Misaligned,
}

#[derive(Debug, Inspect)]
struct KvmMemoryRange {
    host_addr: *mut u8,
    range: MemoryRange,
}

unsafe impl Sync for KvmMemoryRange {}
unsafe impl Send for KvmMemoryRange {}

#[derive(Debug, Default, Inspect)]
struct KvmMemoryRangeState {
    #[inspect(flatten, iter_by_index)]
    ranges: Vec<Option<KvmMemoryRange>>,
}

#[derive(Inspect)]
pub struct KvmPartition {
    #[inspect(flatten)]
    inner: Arc<KvmPartitionInner>,
}

#[derive(Inspect)]
struct KvmPartitionInner {
    #[inspect(skip)]
    kvm: kvm::Partition,
    memory: Mutex<KvmMemoryRangeState>,
    hv1_enabled: bool,
    gm: GuestMemory,
    #[inspect(skip)]
    vps: Vec<KvmVpInner>,
    #[cfg(guest_arch = "x86_64")]
    #[inspect(skip)]
    gsi_routing: Mutex<gsi::GsiRouting>,
    caps: virt::PartitionCapabilities,

    // This is used for debugging via Inspect
    #[cfg(guest_arch = "x86_64")]
    cpuid: virt::CpuidLeafSet,
}

#[derive(Debug, Error)]
pub enum KvmRunVpError {
    #[error("KVM internal error: {0:#x}")]
    InternalError(u32),
    #[error("invalid vp state")]
    InvalidVpState,
    #[error("failed to run VP")]
    Run(#[source] kvm::Error),
    #[error("failed to inject an extint interrupt")]
    ExtintInterrupt(#[source] kvm::Error),
}

#[cfg_attr(guest_arch = "aarch64", expect(dead_code))]
pub struct KvmProcessorBinder {
    partition: Arc<KvmPartitionInner>,
    vpindex: VpIndex,
    vmtime: VmTimeAccess,
}

impl KvmPartitionInner {
    fn vp(&self, vp_index: VpIndex) -> &KvmVpInner {
        &self.vps[vp_index.index() as usize]
    }

    #[cfg(guest_arch = "x86_64")]
    fn vps(&self) -> impl Iterator<Item = &'_ KvmVpInner> {
        (0..self.vps.len() as u32).map(|index| self.vp(VpIndex::new(index)))
    }

    fn evaluate_vp(&self, vp_index: VpIndex) {
        let vp = self.vp(vp_index);
        vp.set_eval(true, Ordering::Relaxed);

        #[cfg(guest_arch = "x86_64")]
        self.kvm.vp(vp.vp_info().apic_id).force_exit();

        #[cfg(guest_arch = "aarch64")]
        self.kvm.vp(vp.vp_info().base.vp_index.index()).force_exit();
    }

    /// # Safety
    ///
    /// `data..data+size` must be and remain an allocated VA range until the
    /// partition is destroyed or the region is unmapped.
    unsafe fn map_region(
        &self,
        data: *mut u8,
        size: usize,
        addr: u64,
        readonly: bool,
    ) -> Result<(), virt::Error> {
        let mut state = self.memory.lock();

        // Memory slots cannot be resized but can be moved within the guest
        // address space. Find the existing slot if there is one.
        let mut slot_to_use = None;
        for (slot, range) in state.ranges.iter_mut().enumerate() {
            match range {
                Some(range) if range.host_addr == data => {
                    slot_to_use = Some(slot);
                    break;
                }
                Some(_) => (),
                None => slot_to_use = Some(slot),
            }
        }
        if slot_to_use.is_none() {
            slot_to_use = Some(state.ranges.len());
            state.ranges.push(None);
        }
        let slot_to_use = slot_to_use.unwrap();
        unsafe {
            self.kvm
                .set_user_memory_region(slot_to_use as u32, data, size, addr, readonly)?
        };
        state.ranges[slot_to_use] = Some(KvmMemoryRange {
            host_addr: data,
            range: MemoryRange::new(addr..addr + size as u64),
        });
        Ok(())
    }
}

impl virt::PartitionMemoryMapper for KvmPartition {
    fn memory_mapper(&self, vtl: Vtl) -> Arc<dyn virt::PartitionMemoryMap> {
        assert_eq!(vtl, Vtl::Vtl0);
        self.inner.clone()
    }
}

// TODO: figure out a better abstraction that works for both KVM and WHP.
impl virt::PartitionMemoryMap for KvmPartitionInner {
    unsafe fn map_range(
        &self,
        data: *mut u8,
        size: usize,
        addr: u64,
        writable: bool,
        _exec: bool,
    ) -> Result<(), virt::Error> {
        // SAFETY: guaranteed by caller.
        unsafe { self.map_region(data, size, addr, !writable) }
    }

    fn unmap_range(&self, addr: u64, size: u64) -> Result<(), virt::Error> {
        let range = MemoryRange::new(addr..addr + size);
        let mut state = self.memory.lock();
        for (slot, entry) in state.ranges.iter_mut().enumerate() {
            let Some(kvm_range) = entry else { continue };
            if range.contains(&kvm_range.range) {
                // SAFETY: clearing a slot should always be safe since it removes
                // and does not add memory references.
                unsafe {
                    self.kvm.set_user_memory_region(
                        slot as u32,
                        std::ptr::null_mut(),
                        0,
                        0,
                        false,
                    )?;
                }
                *entry = None;
            } else {
                assert!(
                    !range.overlaps(&kvm_range.range),
                    "can only unmap existing ranges of exact size"
                );
            }
        }
        Ok(())
    }
}