virt/x86/
apic_software_device.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Software implementation of a VPCI-compatible device. Avoids using the
//! hypervisor device interface.

use hvdef::HvError;
use hvdef::HvResult;
use inspect::Inspect;
use parking_lot::Mutex;
use pci_core::msi::MsiControl;
use pci_core::msi::MsiInterruptTarget;
use slab::Slab;
use std::collections::hash_map;
use std::collections::HashMap;
use std::sync::Arc;
use thiserror::Error;
use vmcore::vpci_msi::MsiAddressData;
use vmcore::vpci_msi::RegisterInterruptError;
use vmcore::vpci_msi::VpciInterruptMapper;
use vmcore::vpci_msi::VpciInterruptParameters;
use x86defs::msi::MsiAddress;
use x86defs::msi::MsiData;
use x86defs::msi::MSI_ADDRESS;

/// A set of software devices that can be used to implement VPCI devices on an
/// APIC (x86) platform.
///
/// This is used to provide an indirection between the guest-specified device
/// interrupt map and the actual MSIs that should be injected into the guest's
/// APICs.
#[derive(Inspect)]
pub struct ApicSoftwareDevices {
    #[inspect(flatten)]
    inner: Arc<DevicesInner>,
}

#[derive(Inspect)]
struct DevicesInner {
    #[inspect(flatten, with = "inspect_tables")]
    tables: Mutex<HashMap<u64, Arc<Mutex<InterruptTable>>>>,
    #[inspect(skip)]
    apic_id_map: Vec<u32>,
}

fn inspect_tables(tables: &Mutex<HashMap<u64, Arc<Mutex<InterruptTable>>>>) -> impl '_ + Inspect {
    inspect::adhoc(|req| {
        let mut resp = req.respond();
        for (device_id, table) in &*tables.lock() {
            resp.field(&device_id.to_string(), &*table.lock());
        }
    })
}

#[derive(Debug, Error)]
#[error("device id {0} is already in use")]
pub struct DeviceIdInUse(u64);

impl ApicSoftwareDevices {
    pub fn new(apic_id_map: Vec<u32>) -> Self {
        Self {
            inner: Arc::new(DevicesInner {
                tables: Default::default(),
                apic_id_map,
            }),
        }
    }

    /// Creates a new device with the given ID.
    pub fn new_device(
        &self,
        target: Arc<dyn MsiInterruptTarget>,
        device_id: u64,
    ) -> Result<ApicSoftwareDevice, DeviceIdInUse> {
        let table = Arc::new(Mutex::new(InterruptTable::new()));
        {
            let mut tables = self.inner.tables.lock();
            let entry = match tables.entry(device_id) {
                hash_map::Entry::Occupied(_) => return Err(DeviceIdInUse(device_id)),
                hash_map::Entry::Vacant(e) => e,
            };
            entry.insert(table.clone());
        }
        Ok(ApicSoftwareDevice {
            devices: self.inner.clone(),
            target,
            table,
            id: device_id,
        })
    }

    /// Retargets the interrupt for the given device.
    pub fn retarget_interrupt(
        &self,
        device_id: u64,
        address: u64,
        data: u32,
        params: &VpciInterruptParameters<'_>,
    ) -> HvResult<()> {
        let table = self
            .inner
            .tables
            .lock()
            .get(&device_id)
            .cloned()
            .ok_or(HvError::InvalidDeviceId)?;

        if let Err(err) =
            table
                .lock()
                .retarget_interrupt(&self.inner.apic_id_map, address, data, params)
        {
            tracing::warn!(
                error = &err as &dyn std::error::Error,
                "retarget interrupt failure"
            );
            return Err(HvError::InvalidParameter);
        }

        Ok(())
    }
}

/// The software implementation of a VPCI-compatible device.
pub struct ApicSoftwareDevice {
    devices: Arc<DevicesInner>,
    table: Arc<Mutex<InterruptTable>>,
    target: Arc<dyn MsiInterruptTarget>,
    id: u64,
}

impl Drop for ApicSoftwareDevice {
    fn drop(&mut self) {
        let _table = self.devices.tables.lock().remove(&self.id);
    }
}

/// The table of interrupts for a device.
#[derive(Inspect)]
struct InterruptTable {
    #[inspect(iter_by_key)]
    entries: Slab<InterruptEntry>,
    #[inspect(iter_by_key)]
    msis: Slab<Msi>,
}

/// State for an individual VPCI interrupt for a device.
#[derive(Debug, Inspect)]
struct InterruptEntry {
    base_vector: u32,
    vector_count: u32,
    multicast: bool,
    target_apic_id: u32,
}

impl InterruptEntry {
    fn msi_params(&self) -> MsiAddressData {
        let address = MsiAddress::new()
            .with_address(MSI_ADDRESS)
            .with_virt_destination(self.target_apic_id as u16);
        let data = MsiData::new().with_vector(self.base_vector as u8);
        MsiAddressData {
            address: u32::from(address).into(),
            data: data.into(),
        }
    }
}

#[derive(Inspect)]
struct Msi {
    address: u64,
    data: u32,
    #[inspect(skip)]
    control: Box<dyn MsiControl>,
}

#[derive(Debug, Error)]
enum InvalidInterruptParams {
    #[error("invalid interrupt parameters")]
    InvalidHypercallInput,
    #[error("invalid virtual processor index {0}")]
    InvalidVirtualProcessor(u32),
}

#[derive(Debug, Error)]
enum InvalidRetargetParams {
    #[error("invalid interrupt address {0:#x}")]
    InvalidAddress(u64),
    #[error("invalid virtual processor index {0}")]
    InvalidVirtualProcessor(u32),
}

impl InterruptTable {
    fn new() -> Self {
        Self {
            entries: Slab::new(),
            msis: Slab::new(),
        }
    }

    fn interrupt_address_from_index(index: usize) -> u64 {
        // Per Intel spec, set the upper bits to FEE.
        // Set lower bits to the specified index, shifted to avoid the bits
        // that actually mean something (redirection hint / destination mode).
        0xFEE00000 | ((index as u64) << 2)
    }

    fn interrupt_index_from_address(address: u64) -> usize {
        ((address >> 2) & 0xffff) as usize
    }

    fn retarget_interrupt(
        &mut self,
        apic_id_map: &[u32],
        address: u64,
        _data: u32,
        params: &VpciInterruptParameters<'_>,
    ) -> Result<(), InvalidRetargetParams> {
        let index = Self::interrupt_index_from_address(address);

        let interrupt = self
            .entries
            .get_mut(index)
            .ok_or(InvalidRetargetParams::InvalidAddress(address))?;

        interrupt.base_vector = params.vector;
        interrupt.multicast = params.multicast;
        let mut iter = params.target_processors.iter().map(|&vp_index| {
            apic_id_map
                .get(vp_index as usize)
                .copied()
                .ok_or(InvalidRetargetParams::InvalidVirtualProcessor(vp_index))
        });
        if let Some(target_apic_id) = iter.next() {
            interrupt.target_apic_id = target_apic_id?;
        }

        // Check the rest of the VPs.
        iter.map(|x| x.map(drop)).collect::<Result<Vec<()>, _>>()?;

        let target = interrupt.msi_params();
        for (_, msi) in &mut self.msis {
            if msi.address == address {
                msi.control.enable(target.address, target.data);
            }
        }
        Ok(())
    }

    fn register_interrupt(
        &mut self,
        apic_id_map: &[u32],
        vector_count: u32,
        params: &VpciInterruptParameters<'_>,
    ) -> Result<MsiAddressData, InvalidInterruptParams> {
        if vector_count == 0 || params.target_processors.is_empty() {
            return Err(InvalidInterruptParams::InvalidHypercallInput);
        }

        // TODO: the caller should specify the interrupt ID (needed for save/restore)
        let vp = params.target_processors[0];
        let i = self.entries.insert(InterruptEntry {
            base_vector: params.vector,
            vector_count,
            multicast: params.multicast,
            target_apic_id: *apic_id_map
                .get(vp as usize)
                .ok_or(InvalidInterruptParams::InvalidVirtualProcessor(vp))?,
        });
        let address = Self::interrupt_address_from_index(i);
        Ok(MsiAddressData { address, data: 0 })
    }

    fn unregister_interrupt(&mut self, address: u64, _data: u32) {
        let index = Self::interrupt_index_from_address(address);
        self.entries.remove(index);
        for (_, msi) in &mut self.msis {
            if msi.address == address {
                msi.control.disable();
            }
        }
    }
}

struct DeviceInterrupt {
    table: Arc<Mutex<InterruptTable>>,
    idx: usize,
}

impl DeviceInterrupt {
    fn new(table: Arc<Mutex<InterruptTable>>, control: Box<dyn MsiControl>) -> Self {
        let idx = table.lock().msis.insert(Msi {
            address: !0,
            data: 0,
            control,
        });
        Self { table, idx }
    }
}

impl MsiControl for DeviceInterrupt {
    fn enable(&mut self, address: u64, data: u32) {
        let mut table = self.table.lock();
        let table = &mut *table;
        let msi = &mut table.msis[self.idx];
        msi.address = address;
        msi.data = data;
        let index = InterruptTable::interrupt_index_from_address(address);
        if let Some(interrupt) = table.entries.get(index) {
            let target = interrupt.msi_params();
            msi.control.enable(target.address, target.data);
        } else {
            msi.control.disable();
        }
    }

    fn disable(&mut self) {
        let mut table = self.table.lock();
        table.msis[self.idx].control.disable();
    }

    fn signal(&mut self, address: u64, _data: u32) {
        // TODO: don't lock the whole table
        let mut table = self.table.lock();
        let table = &mut *table;
        let index = InterruptTable::interrupt_index_from_address(address);
        let msi = &mut table.msis[self.idx];
        if let Some(interrupt) = table.entries.get(index) {
            let target = interrupt.msi_params();
            msi.control.signal(target.address, target.data)
        }
    }
}

impl Drop for DeviceInterrupt {
    fn drop(&mut self) {
        self.table.lock().msis.remove(self.idx);
    }
}

impl MsiInterruptTarget for ApicSoftwareDevice {
    fn new_interrupt(&self) -> Box<dyn MsiControl> {
        Box::new(DeviceInterrupt::new(
            self.table.clone(),
            self.target.new_interrupt(),
        ))
    }
}

impl VpciInterruptMapper for ApicSoftwareDevice {
    fn register_interrupt(
        &self,
        vector_count: u32,
        params: &VpciInterruptParameters<'_>,
    ) -> Result<MsiAddressData, RegisterInterruptError> {
        self.table
            .lock()
            .register_interrupt(&self.devices.apic_id_map, vector_count, params)
            .map_err(RegisterInterruptError::new)
    }

    fn unregister_interrupt(&self, address: u64, data: u32) {
        self.table.lock().unregister_interrupt(address, data)
    }
}