vga/emu/bluescreen.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Code for changing modes to draw a blue screen when Windows crashes.
//!
//! This is a bit weird--instead of directly manipulating the VGA state, this
//! code manipulates the VGA registers in the way the SVGA BIOS would. This is
//! done for historical reasons.
use super::Emulator;
use crate::spec;
use crate::spec::CrtControlReg;
const VGA_CLK_VALUE: u8 = 0; // (CRT index 0x5c) & 0x30
const POST_VFB_BIT: u8 = 0; // (CRT index 0x5c) & 0x40
const POST_CR65_VALUE: u8 = 0; // (CRT index 0x65)
impl Emulator {
fn emulate_in(&mut self, port: u16) -> u8 {
self.io_port_read(port, 1) as u8
}
fn emulate_out(&mut self, port: u16, value: u8) {
self.io_port_write(port, 1, value.into());
}
fn emulate_double_out(&mut self, port: u16, index: u8, value: u8) {
self.io_port_write(port, 2, ((value as u32) << 8) | index as u32);
}
fn emulate_masked_double_out(&mut self, port: u16, index: u8, value: u8, mask: u8) {
self.emulate_out(port, index);
let value = (self.emulate_in(port + 1) & mask) | value;
self.emulate_out(port + 1, value);
}
fn get_crt_port(&mut self) -> u16 {
let data = self.emulate_in(0x3CC);
if data & 1 != 0 { 0x3D4 } else { 0x3B4 }
}
fn turn_screen_on_off(&mut self, on: bool) {
self.emulate_out(0x3C4, 1);
let mut data = self.emulate_in(0x3C5);
if on {
data &= !0x20;
} else {
data |= 0x20;
}
self.emulate_out(0x3C5, data);
}
fn access_afc(&mut self, crt_port: u16, value: u8) {
self.emulate_out(crt_port, 0x40);
let save = self.emulate_in(crt_port + 1);
let data = save | 1;
self.emulate_out(crt_port + 1, data);
self.emulate_out(0x4AE8, value);
self.emulate_double_out(crt_port, 0x40, save);
}
fn reset_dcc(&mut self, crt_port: u16) {
const DEFAULT_CRTC: &[u16] = &[
0x08531, // Index 31h - Memory Control.
0x00050, // Index 50h - Extended System Cont 1
0x00051, // Index 51h - Extended System Cont 2
0x03854, // Index 54h - Extended Memory Cont 2
0x00055, // Index 55h - Extended DAC Control
0x0C058, // Index 58h - Linear Address Window Control
0x0805C, // Index 5Ch - GOP Control
0x0005D, // Index 5Dh - Extended Horizontal Overflow
0x0005E, // Index 5Eh - Extended Vertical Overflow
0x00760, // Index 60h - Extended Memory Cont 3
0x08061, // Index 61h - Extended Memory Cont 4
0x0A162, // Index 62h - Extended Memory Cont 5
0x00063, // Index 63h - Extended Sync 3
0x00064, // Index 64h - Extended Sync 4
0x00065, // Index 65h - Extended Miscellaneous
0x00032, // Index 32h - Backward Compat 1
0x00033, // Index 33h - Backward Compat 2
0x00034, // Index 34h - Backward Compat 3
0x00035, // Index 35h - CRTC Lock
0x0053A, // Index 3Ah - S3 Misc 1
0x05A3B, // Index 3Bh - Data Transfer Exec Pos
0x0103C, // Index 3Ch - Interlace Retrace start
0x00043, // Index 43h - Extended Mode
0x05840, // Index 40h - System Configuration
0x00042, // Index 42h - Mode Control
];
self.access_afc(crt_port, 0x02);
for &value in DEFAULT_CRTC {
let register_index = value as u8;
let mut data = (value >> 8) as u8;
self.emulate_out(crt_port, register_index);
match register_index {
0x31 => {
data |= self.emulate_in(crt_port + 1) & 0xb5;
}
0x32 => {
data |= self.emulate_in(crt_port + 1) & 0x40;
}
0x3A => {
data |= self.emulate_in(crt_port + 1) & 0x88;
}
0x40 => {
//
// The line below removes the high order nibble from the table value at
// runtime instead of having the correct value in the table. It is left
// this way to keep the table consistent with the table in the bios.
//
data = self.emulate_in(crt_port + 1) & 0xfe | (data & 0x0f);
}
0x42 => {
data |= self.emulate_in(crt_port + 1) & 0xdf;
}
0x58 => {
data |= self.emulate_in(crt_port + 1) & 0xcc;
}
0x5C => {
data |= self.emulate_in(crt_port + 1) & 0x0f | VGA_CLK_VALUE | POST_VFB_BIT;
}
0x65 => {
data = POST_CR65_VALUE;
}
_ => {
// The index does not need a special mask, just use the table value data.
}
}
self.emulate_out(crt_port + 1, data);
}
}
fn load_regs(
&mut self,
port: u16,
registers: &mut &[u8],
num_registers: usize,
initial_index: u8,
) {
for (i, ®ister) in registers[..num_registers].iter().enumerate() {
self.emulate_double_out(port, initial_index + i as u8, register);
}
*registers = ®isters[..num_registers];
}
fn program_sequencer(&mut self, crt_port: u16, registers: &mut &[u8]) {
self.emulate_in(crt_port + 6);
self.emulate_out(0x3C0, 0);
self.emulate_double_out(0x3C4, 0x01, 0x20);
self.emulate_double_out(0x3C4, 0x01, registers[0]);
*registers = ®isters[1..];
self.load_regs(crt_port, registers, 2, 0x02);
}
fn program_misc(&mut self, crt_port: u16, registers: &mut &[u8]) -> u16 {
self.emulate_masked_double_out(crt_port, 0x5C, 0, 0xCF);
self.emulate_double_out(crt_port, 0x42, 0);
self.emulate_double_out(crt_port, 0x11, 0);
self.emulate_double_out(crt_port, 0x00, 0x5F);
let data = registers[0];
*registers = ®isters[1..];
self.emulate_out(0x3C2, data);
if data & 1 != 0 { 0x3DA } else { 0x3BA }
}
fn program_attribute(&mut self, input_status1_port: u16, registers: &mut &[u8]) {
self.emulate_in(input_status1_port);
for index in 0..0x14 {
self.emulate_out(0x3C0, index);
self.emulate_out(0x3C0, registers[0]);
*registers = ®isters[1..];
}
self.emulate_out(0x3C0, 0x20);
}
fn program_graphics(&mut self, registers: &mut &[u8]) {
self.load_regs(0x3CE, registers, 9, 0x00);
}
fn program_crtc(&mut self, crt_port: u16, registers: &mut &[u8]) {
self.emulate_masked_double_out(crt_port, 0x11, 0, 0x7F);
self.load_regs(crt_port, registers, 0x19, 0);
}
fn minimal_set_scanline_length(&mut self, crt_port: u16, mut scanline_length: u16) {
// This halving is required. CalculateLineOffsetPixels in turn doubles
// the value when it gets it.
scanline_length /= 2;
let high_bits = ((scanline_length >> 8) & 0xff) << 4;
self.emulate_double_out(crt_port, 0x13, scanline_length as u8);
self.emulate_masked_double_out(crt_port, 0x51, high_bits as u8, 0xCF);
if (high_bits & 0x30) == 0 {
self.emulate_masked_double_out(crt_port, 0x43, 0, 0xFB);
}
}
fn program_ecrtc(&mut self, crt_port: u16, registers: &mut &[u8]) {
const EXT_CRTC_INDEXES: &[u8] = &[
0x42, // Mode Control
0x3B, // Data Transfer Execute Position
0x3C, // Interlace Retrace Start
0x31, // Memory Configuration
0x3A, // Miscellaneous 1
0x40, // System Configuration
0x50, // Extended System Control 1
0x54, // Extended Memory Control 2
0x5D, // Extended Horizontal Overflow
0x60, // Extended Memory Control 3
0x61, // Extended Memory Control 4
0x62, // Extended Memory Control 5
0x58, // Linear Address Window Control
0x33, // Backward Compatibility 2
0x43, // Extended Mode
0x13, // Offset
0x5E, // Extended Vertical Overflow
0x51, // Extended System Control 2
0x5C, // General Output Port
0x34, // Backward Compatibility 3
];
let mut is_vga = false;
for (®ister_index, &data) in EXT_CRTC_INDEXES.iter().zip(*registers) {
self.emulate_out(crt_port, register_index);
let mut data = data;
match register_index {
0x31 => {
data |= self.emulate_in(crt_port + 1) & 0xcf;
if (data & 0x08) != 0 {
is_vga = true;
}
}
0x3A => {
data |= self.emulate_in(crt_port + 1) & 0x80;
}
0x40 => {
data |= self.emulate_in(crt_port + 1) & 0xfe;
}
0x58 => {
data |= self.emulate_in(crt_port + 1) & 0xcc;
}
0x5C => {
// SHORTCUT: We use a priori knowledge that this is 640x480 to
// OR in the POST_VFB_Bit (others sizes don't do that).
data &= 0xbf;
data |= POST_VFB_BIT;
}
_ => {
// The index does not need a special mask, just use the table value data.
}
}
self.emulate_out(crt_port + 1, data);
}
// Move Registers forward as the calling function expects
*registers = ®isters[EXT_CRTC_INDEXES.len()..];
if is_vga {
// SHORTCUT: Using a prior knowledge that the scanline length should be 640.
self.minimal_set_scanline_length(crt_port, 640);
}
}
fn setup_dac(&mut self, crt_port: u16) {
// SHORTCUT: We use a priori knowledge that the mode is 32bpp to pick the
// right data value of 0xD0. The value comes from S3_DAC.S3_32_VALUE.
self.emulate_masked_double_out(crt_port, 0x67, 0xD0, 0x0f);
}
/// Switches mode to a linear one, so that blue screen doesn't have to rely on
/// unreasonably slow 4-bit planar. The mode we're going to is actually bios
/// mode 0x112: 640x480, 32 bit. Because the synthvid vsc can't invoke the
/// bios itself, we achieve the mode by duplicating what the bios would have
/// done.
///
/// The vsc has a priori knowledge about the mode we're going to switch to,
/// so don't change this here without updating it there.
pub(super) fn do_blue_screen_mode_change(&mut self) {
// We are implementing mode 112: 640x480, 32bpp. For reference,
// here's what the original VPM looks like for it:
//
// Mode_112h label byte ; VESA 112h, 640 x 480 x 32
// db 070h ; Internal Mode Number
// dw OFFSET Mode_640x480_Table ; Index to register values
// db 00Eh ; Memory Mode Control (Seq. 04h)
// db 003h ; Advanced Function Control (4AE8h)
//
// dw OFFSET CRTC_70_10
// dw OFFSET ECRTC_70_10
//
// Thus come the next two constants:
const MEMORY_MODE: u8 = 0x00E;
const ADVANCED_CONTROL: u8 = 0x003;
//
// The following table is just the registers section of the bios Mode_640x480_Table.
//
const MODE_640_480_TABLE_REGISTERS: &[u8] = &[
0x021, 0x00F, 0x000, // Sequencer (Index 01h-03h)
0x0EF, // Misc. output
// Attribute Controller Index
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, // 00h-05h
0x006, 0x007, 0x010, 0x011, 0x012, 0x013, // 06h-0Bh
0x014, 0x015, 0x016, 0x017, 0x041, 0x000, // 0Ch-11h
0x00F, 0x000, // 12h-13h
// Graphics Controller Index
0x000, 0x000, 0x000, 0x000, 0x000, 0x040, // 00h-05h
0x005, 0x00F, 0x0FF, // 06h-08h
];
const CRTC_70_10: &[u8] = &[
0x090, 0x04F, 0x078, 0x091, 0x07B, 0x00E, // 00h-05h
0x00A, 0x01A, 0x000, 0x040, 0x000, 0x000, // 06h-0Bh
0x000, 0x000, 0x0FF, 0x000, 0x0EA, 0x00C, // 0Ch-11h
0x0DF, 0x000, 0x060, 0x0DF, 0x003, 0x0AB, // 12h-17h
0x0FF, // 18h
];
const ECRTC_70_10: &[u8] = &[
0x004, 0x092, 0x040, 0x08B, 0x015, // Index: 42h, 3Bh, 3Ch, 31h, 3Ah
0x000, 0x070, 0x018, 0x000, 0x02F, // Index: 40h, 50h, 54h, 5Dh, 60h
0x081, 0x0E0, 0x000, 0x000, 0x000, // Index: 61h, 62h, 58h, 33h, 43h
0x040, 0x040, 0x010, 0x0A0, 0x000, // Index: 13h, 5Eh, 51h, 5Ch, 34h
];
let crt_port = self.get_crt_port();
self.turn_screen_on_off(false);
// S3_unlock
self.emulate_double_out(crt_port, 0x38, 0x84);
self.emulate_double_out(crt_port, 0x39, 0x40);
self.reset_dcc(crt_port);
//
// Clear the screen.
//
self.emulate_double_out(
crt_port,
CrtControlReg::CUSTOM_VS_GENERAL_EXTENSION_REGISTER.0,
spec::BIOS_CLEAR_SCREEN_CODE,
);
self.emulate_double_out(0x3C4, 0x04, MEMORY_MODE);
self.access_afc(crt_port, ADVANCED_CONTROL);
let mut registers = MODE_640_480_TABLE_REGISTERS;
self.program_sequencer(crt_port, &mut registers);
let input_status_register1 = self.program_misc(crt_port, &mut registers);
self.program_attribute(input_status_register1, &mut registers);
self.program_graphics(&mut registers);
self.program_crtc(crt_port, &mut &CRTC_70_10[..]);
self.program_ecrtc(crt_port, &mut &ECRTC_70_10[..]);
self.setup_dac(crt_port);
// SHORTCUT: With a priori knowledge that the MemoryModel is DirectColor, we can skip
// Load_Dac_palette entirely, since it's a no-op for DirectColor.
self.turn_screen_on_off(true);
//
// Turn linear mode on (a prior we know we want on, not off)
//
self.emulate_masked_double_out(0x3D4, 0x58, 0x13, 0xEC);
}
}