vga/emu/
bluescreen.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Code for changing modes to draw a blue screen when Windows crashes.
//!
//! This is a bit weird--instead of directly manipulating the VGA state, this
//! code manipulates the VGA registers in the way the SVGA BIOS would. This is
//! done for historical reasons.

use super::Emulator;
use crate::spec;
use crate::spec::CrtControlReg;

const VGA_CLK_VALUE: u8 = 0; // (CRT index 0x5c) & 0x30
const POST_VFB_BIT: u8 = 0; // (CRT index 0x5c) & 0x40
const POST_CR65_VALUE: u8 = 0; // (CRT index 0x65)

impl Emulator {
    fn emulate_in(&mut self, port: u16) -> u8 {
        self.io_port_read(port, 1) as u8
    }

    fn emulate_out(&mut self, port: u16, value: u8) {
        self.io_port_write(port, 1, value.into());
    }

    fn emulate_double_out(&mut self, port: u16, index: u8, value: u8) {
        self.io_port_write(port, 2, ((value as u32) << 8) | index as u32);
    }

    fn emulate_masked_double_out(&mut self, port: u16, index: u8, value: u8, mask: u8) {
        self.emulate_out(port, index);
        let value = (self.emulate_in(port + 1) & mask) | value;
        self.emulate_out(port + 1, value);
    }

    fn get_crt_port(&mut self) -> u16 {
        let data = self.emulate_in(0x3CC);

        if data & 1 != 0 { 0x3D4 } else { 0x3B4 }
    }

    fn turn_screen_on_off(&mut self, on: bool) {
        self.emulate_out(0x3C4, 1);
        let mut data = self.emulate_in(0x3C5);

        if on {
            data &= !0x20;
        } else {
            data |= 0x20;
        }

        self.emulate_out(0x3C5, data);
    }

    fn access_afc(&mut self, crt_port: u16, value: u8) {
        self.emulate_out(crt_port, 0x40);
        let save = self.emulate_in(crt_port + 1);
        let data = save | 1;
        self.emulate_out(crt_port + 1, data);
        self.emulate_out(0x4AE8, value);
        self.emulate_double_out(crt_port, 0x40, save);
    }

    fn reset_dcc(&mut self, crt_port: u16) {
        const DEFAULT_CRTC: &[u16] = &[
            0x08531, // Index 31h - Memory Control.
            0x00050, // Index 50h - Extended System Cont 1
            0x00051, // Index 51h - Extended System Cont 2
            0x03854, // Index 54h - Extended Memory Cont 2
            0x00055, // Index 55h - Extended DAC Control
            0x0C058, // Index 58h - Linear Address Window Control
            0x0805C, // Index 5Ch - GOP Control
            0x0005D, // Index 5Dh - Extended Horizontal Overflow
            0x0005E, // Index 5Eh - Extended Vertical Overflow
            0x00760, // Index 60h - Extended Memory Cont 3
            0x08061, // Index 61h - Extended Memory Cont 4
            0x0A162, // Index 62h - Extended Memory Cont 5
            0x00063, // Index 63h - Extended Sync 3
            0x00064, // Index 64h - Extended Sync 4
            0x00065, // Index 65h - Extended Miscellaneous
            0x00032, // Index 32h - Backward Compat 1
            0x00033, // Index 33h - Backward Compat 2
            0x00034, // Index 34h - Backward Compat 3
            0x00035, // Index 35h - CRTC Lock
            0x0053A, // Index 3Ah - S3 Misc 1
            0x05A3B, // Index 3Bh - Data Transfer Exec Pos
            0x0103C, // Index 3Ch - Interlace Retrace start
            0x00043, // Index 43h - Extended Mode
            0x05840, // Index 40h - System Configuration
            0x00042, // Index 42h - Mode Control
        ];

        self.access_afc(crt_port, 0x02);

        for &value in DEFAULT_CRTC {
            let register_index = value as u8;

            let mut data = (value >> 8) as u8;

            self.emulate_out(crt_port, register_index);

            match register_index {
                0x31 => {
                    data |= self.emulate_in(crt_port + 1) & 0xb5;
                }

                0x32 => {
                    data |= self.emulate_in(crt_port + 1) & 0x40;
                }

                0x3A => {
                    data |= self.emulate_in(crt_port + 1) & 0x88;
                }

                0x40 => {
                    //
                    // The line below removes the high order nibble from the table value at
                    // runtime instead of having the correct value in the table.  It is left
                    // this way to keep the table consistent with the table in the bios.
                    //
                    data = self.emulate_in(crt_port + 1) & 0xfe | (data & 0x0f);
                }

                0x42 => {
                    data |= self.emulate_in(crt_port + 1) & 0xdf;
                }

                0x58 => {
                    data |= self.emulate_in(crt_port + 1) & 0xcc;
                }

                0x5C => {
                    data |= self.emulate_in(crt_port + 1) & 0x0f | VGA_CLK_VALUE | POST_VFB_BIT;
                }

                0x65 => {
                    data = POST_CR65_VALUE;
                }

                _ => {
                    // The index does not need a special mask, just use the table value data.
                }
            }

            self.emulate_out(crt_port + 1, data);
        }
    }

    fn load_regs(
        &mut self,
        port: u16,
        registers: &mut &[u8],
        num_registers: usize,
        initial_index: u8,
    ) {
        for (i, &register) in registers[..num_registers].iter().enumerate() {
            self.emulate_double_out(port, initial_index + i as u8, register);
        }
        *registers = &registers[..num_registers];
    }

    fn program_sequencer(&mut self, crt_port: u16, registers: &mut &[u8]) {
        self.emulate_in(crt_port + 6);
        self.emulate_out(0x3C0, 0);
        self.emulate_double_out(0x3C4, 0x01, 0x20);
        self.emulate_double_out(0x3C4, 0x01, registers[0]);
        *registers = &registers[1..];
        self.load_regs(crt_port, registers, 2, 0x02);
    }

    fn program_misc(&mut self, crt_port: u16, registers: &mut &[u8]) -> u16 {
        self.emulate_masked_double_out(crt_port, 0x5C, 0, 0xCF);

        self.emulate_double_out(crt_port, 0x42, 0);

        self.emulate_double_out(crt_port, 0x11, 0);
        self.emulate_double_out(crt_port, 0x00, 0x5F);

        let data = registers[0];
        *registers = &registers[1..];
        self.emulate_out(0x3C2, data);
        if data & 1 != 0 { 0x3DA } else { 0x3BA }
    }

    fn program_attribute(&mut self, input_status1_port: u16, registers: &mut &[u8]) {
        self.emulate_in(input_status1_port);

        for index in 0..0x14 {
            self.emulate_out(0x3C0, index);
            self.emulate_out(0x3C0, registers[0]);
            *registers = &registers[1..];
        }

        self.emulate_out(0x3C0, 0x20);
    }

    fn program_graphics(&mut self, registers: &mut &[u8]) {
        self.load_regs(0x3CE, registers, 9, 0x00);
    }

    fn program_crtc(&mut self, crt_port: u16, registers: &mut &[u8]) {
        self.emulate_masked_double_out(crt_port, 0x11, 0, 0x7F);

        self.load_regs(crt_port, registers, 0x19, 0);
    }

    fn minimal_set_scanline_length(&mut self, crt_port: u16, mut scanline_length: u16) {
        // This halving is required.  CalculateLineOffsetPixels in turn doubles
        // the value when it gets it.
        scanline_length /= 2;

        let high_bits = ((scanline_length >> 8) & 0xff) << 4;

        self.emulate_double_out(crt_port, 0x13, scanline_length as u8);
        self.emulate_masked_double_out(crt_port, 0x51, high_bits as u8, 0xCF);

        if (high_bits & 0x30) == 0 {
            self.emulate_masked_double_out(crt_port, 0x43, 0, 0xFB);
        }
    }

    fn program_ecrtc(&mut self, crt_port: u16, registers: &mut &[u8]) {
        const EXT_CRTC_INDEXES: &[u8] = &[
            0x42, // Mode Control
            0x3B, // Data Transfer Execute Position
            0x3C, // Interlace Retrace Start
            0x31, // Memory Configuration
            0x3A, // Miscellaneous 1
            0x40, // System Configuration
            0x50, // Extended System Control 1
            0x54, // Extended Memory Control 2
            0x5D, // Extended Horizontal Overflow
            0x60, // Extended Memory Control 3
            0x61, // Extended Memory Control 4
            0x62, // Extended Memory Control 5
            0x58, // Linear Address Window Control
            0x33, // Backward Compatibility 2
            0x43, // Extended Mode
            0x13, // Offset
            0x5E, // Extended Vertical Overflow
            0x51, // Extended System Control 2
            0x5C, // General Output Port
            0x34, // Backward Compatibility 3
        ];

        let mut is_vga = false;

        for (&register_index, &data) in EXT_CRTC_INDEXES.iter().zip(*registers) {
            self.emulate_out(crt_port, register_index);

            let mut data = data;
            match register_index {
                0x31 => {
                    data |= self.emulate_in(crt_port + 1) & 0xcf;
                    if (data & 0x08) != 0 {
                        is_vga = true;
                    }
                }

                0x3A => {
                    data |= self.emulate_in(crt_port + 1) & 0x80;
                }

                0x40 => {
                    data |= self.emulate_in(crt_port + 1) & 0xfe;
                }

                0x58 => {
                    data |= self.emulate_in(crt_port + 1) & 0xcc;
                }

                0x5C => {
                    // SHORTCUT:  We use a priori knowledge that this is 640x480 to
                    // OR in the POST_VFB_Bit (others sizes don't do that).
                    data &= 0xbf;
                    data |= POST_VFB_BIT;
                }

                _ => {
                    // The index does not need a special mask, just use the table value data.
                }
            }

            self.emulate_out(crt_port + 1, data);
        }

        // Move Registers forward as the calling function expects
        *registers = &registers[EXT_CRTC_INDEXES.len()..];

        if is_vga {
            // SHORTCUT:  Using a prior knowledge that the scanline length should be 640.
            self.minimal_set_scanline_length(crt_port, 640);
        }
    }

    fn setup_dac(&mut self, crt_port: u16) {
        // SHORTCUT:  We use a priori knowledge that the mode is 32bpp to pick the
        // right data value of 0xD0.  The value comes from S3_DAC.S3_32_VALUE.
        self.emulate_masked_double_out(crt_port, 0x67, 0xD0, 0x0f);
    }

    /// Switches mode to a linear one, so that blue screen doesn't have to rely on
    /// unreasonably slow 4-bit planar.  The mode we're going to is actually bios
    /// mode 0x112:  640x480, 32 bit.  Because the synthvid vsc can't invoke the
    /// bios itself, we achieve the mode by duplicating what the bios would have
    /// done.
    ///
    /// The vsc has a priori knowledge about the mode we're going to switch to,
    /// so don't change this here without updating it there.
    pub(super) fn do_blue_screen_mode_change(&mut self) {
        // We are implementing mode 112:  640x480, 32bpp.  For reference,
        // here's what the original VPM looks like for it:
        //
        // Mode_112h       label byte                 ; VESA 112h, 640 x 480 x 32
        //         db      070h                       ; Internal Mode Number
        //         dw      OFFSET Mode_640x480_Table  ; Index to register values
        //         db      00Eh                       ; Memory Mode Control (Seq. 04h)
        //         db      003h                       ; Advanced Function Control (4AE8h)
        //
        //         dw      OFFSET  CRTC_70_10
        //         dw      OFFSET ECRTC_70_10
        //
        // Thus come the next two constants:
        const MEMORY_MODE: u8 = 0x00E;
        const ADVANCED_CONTROL: u8 = 0x003;

        //
        // The following table is just the registers section of the bios Mode_640x480_Table.
        //
        const MODE_640_480_TABLE_REGISTERS: &[u8] = &[
            0x021, 0x00F, 0x000, // Sequencer (Index 01h-03h)
            0x0EF, // Misc. output
            // Attribute Controller                          Index
            0x000, 0x001, 0x002, 0x003, 0x004, 0x005, // 00h-05h
            0x006, 0x007, 0x010, 0x011, 0x012, 0x013, // 06h-0Bh
            0x014, 0x015, 0x016, 0x017, 0x041, 0x000, // 0Ch-11h
            0x00F, 0x000, // 12h-13h
            // Graphics Controller                           Index
            0x000, 0x000, 0x000, 0x000, 0x000, 0x040, // 00h-05h
            0x005, 0x00F, 0x0FF, // 06h-08h
        ];

        const CRTC_70_10: &[u8] = &[
            0x090, 0x04F, 0x078, 0x091, 0x07B, 0x00E, // 00h-05h
            0x00A, 0x01A, 0x000, 0x040, 0x000, 0x000, // 06h-0Bh
            0x000, 0x000, 0x0FF, 0x000, 0x0EA, 0x00C, // 0Ch-11h
            0x0DF, 0x000, 0x060, 0x0DF, 0x003, 0x0AB, // 12h-17h
            0x0FF, // 18h
        ];

        const ECRTC_70_10: &[u8] = &[
            0x004, 0x092, 0x040, 0x08B, 0x015, // Index: 42h, 3Bh, 3Ch, 31h, 3Ah
            0x000, 0x070, 0x018, 0x000, 0x02F, // Index: 40h, 50h, 54h, 5Dh, 60h
            0x081, 0x0E0, 0x000, 0x000, 0x000, // Index: 61h, 62h, 58h, 33h, 43h
            0x040, 0x040, 0x010, 0x0A0, 0x000, // Index: 13h, 5Eh, 51h, 5Ch, 34h
        ];

        let crt_port = self.get_crt_port();

        self.turn_screen_on_off(false);

        // S3_unlock
        self.emulate_double_out(crt_port, 0x38, 0x84);
        self.emulate_double_out(crt_port, 0x39, 0x40);

        self.reset_dcc(crt_port);

        //
        // Clear the screen.
        //
        self.emulate_double_out(
            crt_port,
            CrtControlReg::CUSTOM_VS_GENERAL_EXTENSION_REGISTER.0,
            spec::BIOS_CLEAR_SCREEN_CODE,
        );

        self.emulate_double_out(0x3C4, 0x04, MEMORY_MODE);

        self.access_afc(crt_port, ADVANCED_CONTROL);

        let mut registers = MODE_640_480_TABLE_REGISTERS;

        self.program_sequencer(crt_port, &mut registers);
        let input_status_register1 = self.program_misc(crt_port, &mut registers);
        self.program_attribute(input_status_register1, &mut registers);
        self.program_graphics(&mut registers);

        self.program_crtc(crt_port, &mut &CRTC_70_10[..]);
        self.program_ecrtc(crt_port, &mut &ECRTC_70_10[..]);
        self.setup_dac(crt_port);

        // SHORTCUT:  With a priori knowledge that the MemoryModel is DirectColor, we can skip
        // Load_Dac_palette entirely, since it's a no-op for DirectColor.

        self.turn_screen_on_off(true);

        //
        // Turn linear mode on (a prior we know we want on, not off)
        //
        self.emulate_masked_double_out(0x3D4, 0x58, 0x13, 0xEC);
    }
}