vga/
emu.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

mod bluescreen;

use crate::render::GraphicsRenderState;
use crate::render::RenderControl;
use crate::render::RenderState;
use crate::render::TextRenderState;
use crate::spec;
use crate::spec::CrtControlReg;
use crate::spec::VGA_FUNCTION_SELECT_AND;
use crate::spec::VGA_FUNCTION_SELECT_NORMAL;
use crate::spec::VGA_FUNCTION_SELECT_OR;
use crate::spec::VgaAttribReg;
use crate::spec::VgaGraphicsReg;
use crate::spec::VgaPort;
use crate::spec::VgaSequencerReg;
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use framebuffer::FramebufferLocalControl;
use guestmem::GuestMemory;
use guestmem::MapRom;
use guestmem::UnmapRom;
use inspect::Inspect;
use memory_range::MemoryRange;
use pci_core::spec::cfg_space::HeaderType00;
use std::fmt::Debug;
use std::marker::PhantomData;
use std::ops::Index;
use std::ops::IndexMut;
use vmcore::vmtime::VmTimeAccess;
use vmcore::vmtime::VmTimeSource;
use zerocopy::FromBytes;
use zerocopy::FromZeros;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

#[derive(Inspect)]
pub struct Emulator {
    state: VgaAddressingVars,
    text: TextModeState,
    #[inspect(skip)]
    vmtime: VmTimeAccess,
    #[inspect(skip)]
    control: FramebufferLocalControl,
    #[inspect(skip)]
    rom: Option<Box<dyn MapRom>>,
    #[inspect(skip)]
    mapped_rom: Option<Box<dyn UnmapRom>>,
    #[inspect(skip)]
    vram: GuestMemory,
    vram_size: u32,
    is_mode_change_pending: bool,
    is_full_refresh_pending: bool,
    is_delayed_redraw_timer_set: bool,
    is_legacy_writes_timer_set: bool,
    suppress_initial_activation: bool,
    palette_change_count: u32,
    pixel_values_palette_count: u32,
    #[inspect(skip)]
    mapping_table: [u32; 256],
    #[inspect(skip)]
    render_control: RenderControl,
}

#[derive(Inspect, Clone, PartialEq, Eq)]
pub struct TextModeState {
    // Everything in this structure is derived from registers or is
    // re-set to continue blinking something on restore.  Nothing
    // in this structure should need to be saved and restored on
    // device save/restore.
    pub current_text_columns: u16,

    pub lo_res_text_mode: bool,
    pub mono_text_mode: bool,
    pub character_set_512: bool,
    pub char_set_1: u8,
    pub char_set_2: u8,

    pub text_char_width: u8,
    pub text_char_height: u8,
    pub text_rows: u8,

    // Blinking text variables
    pub blinking_enabled: bool,
    pub blinking_state: bool,

    // Text cursor variables
    pub draw_text_cursor: bool,
    pub cursor_first_scanline: u16,
    pub cursor_last_scanline: u16,
    pub cursor_row: u16,
    pub cursor_col: u16,
    pub cursor_blink_state: bool,
}

impl TextModeState {
    fn new() -> Self {
        Self {
            current_text_columns: spec::TOTAL_VGA_HIRES_TEXT_COLUMNS.into(),
            lo_res_text_mode: false,
            mono_text_mode: false,
            character_set_512: false,
            char_set_1: 0,
            char_set_2: 0,
            text_char_width: spec::VGA_HIRES_CHARACTER_WIDTH,
            text_char_height: spec::DEFAULT_VGA_CHARACTER_HEIGHT,
            text_rows: spec::TOTAL_VGA_NORMAL_TEXT_ROWS,
            blinking_enabled: false,
            blinking_state: false,
            draw_text_cursor: false,
            cursor_first_scanline: 0,
            cursor_last_scanline: 0,
            cursor_row: 0,
            cursor_col: 0,
            cursor_blink_state: true,
        }
    }
}

#[derive(Inspect)]
struct VgaAddressingVars {
    persistent_state: VideoS3DeviceState,

    // Everything from here down in the structure is derived from registers on
    // restore, and nothing from here down should need to be saved or restored
    // on device save/restore.
    video_start_bus_range_offset: u64,
    video_end_bus_range_offset: u64,

    video_window_offset: u32,

    chain_4_mode: bool,
    odd_even_mode: bool,
    dbl_word_mode: bool,

    // Write-related values
    write_mode: u8,
    plane_write_mask: u8,
    data_rotate_value: u8,
    set_reset_value: u8,
    set_reset_mask: u8,
    function_select: u8,

    plane_3_in_use: bool,
    plane_write_mask32: u32, // derived from fPlaneWriteMask
    set_reset_mask32: u32,   // derived from fSetResetMask

    set_reset_value32: u32,      // derived from fSetResetValue
    set_reset_mask_value32: u32, // derived from fSetResetValue32 & fSetResetMask32

    pixel_mask32: u32,

    // Read-related values
    read_mode: u8,
    plane_read_num: u8,
    color_compare_value: u8, // only used to compute fColorCompareMask32  - maybe just use a local variable instead.
    color_dont_care: u8, // only used to compute fColorDontCareMask32 - maybe just use a local variable instead.

    color_compare_mask32: u32,   // derived from fColorCompareValue
    color_dont_care_mask32: u32, // derived from fColorDontCare
}

impl VgaAddressingVars {
    fn new(vram_size: usize) -> Self {
        Self {
            persistent_state: VideoS3DeviceState::new(vram_size),
            video_start_bus_range_offset: 0xa0000,
            video_end_bus_range_offset: 0xc0000,
            video_window_offset: 0,
            chain_4_mode: false,
            odd_even_mode: true,
            dbl_word_mode: false,
            write_mode: 0,
            plane_write_mask: 0xf,
            data_rotate_value: 0,
            set_reset_value: 0,
            set_reset_mask: 0,
            function_select: 0,
            plane_3_in_use: false,
            plane_write_mask32: 0,
            set_reset_mask32: 0,
            set_reset_value32: 0,
            set_reset_mask_value32: 0,
            pixel_mask32: 0,
            read_mode: 0,
            plane_read_num: 0,
            color_compare_value: 0,
            color_dont_care: 0,
            color_compare_mask32: 0,
            color_dont_care_mask32: 0,
        }
    }
}

#[derive(Inspect)]
struct VideoS3DeviceState {
    crt_control_regs: RegisterSet<CrtControlReg, 256>,
    crt_control_regs_shadow: RegisterSet<CrtControlReg, 256>,
    vga_sequencer_regs: RegisterSet<VgaSequencerReg, 32>,
    vga_sequencer_regs_shadow: RegisterSet<VgaSequencerReg, 32>,
    pub vga_attrib_regs: RegisterSet<VgaAttribReg, 32>,
    vga_graphics_regs: RegisterSet<VgaGraphicsReg, 16>,
    vga_graphics_regs_shadow: RegisterSet<VgaGraphicsReg, 16>,

    crt_control_index_reg: CrtControlReg,
    vga_seq_index_reg: VgaSequencerReg,
    vga_seq_index_reg_shadow: u8,
    vga_attrib_reg_index: u8,
    vga_attrib_reg_flip_flop: bool,
    vga_graphics_reg_index: VgaGraphicsReg,
    vga_graphics_reg_index_shadow: u8,

    #[inspect(skip)]
    pel_colors: [PelColor; 256],
    pel_reg_write_index: u16,
    pel_reg_read_index: u16,

    pel_mask_register: u8,

    text_mode: bool,
    video_enabled: bool,
    misc_output_reg: u8,

    crt_regs_locked: bool,

    horizontal_retrace: bool,
    horizontal_retrace_count: u8,

    adj_pcvideo_height: u16,
    pcvideo_height: u16,
    pcvideo_width: u16,
    line_offset_pixels: u16,
    line_compare_value: u16,
    cur_page_start_offset: u32,

    video_pci_status: u32,
    interrupt_line_info: u32,

    bits_per_pixel: u8,
    enhanced_dac_mode: bool,

    latched_read_value: u32,

    s3: S3ControllerState,

    #[inspect(hex)]
    expansion_rom_base: u32,
}

impl VideoS3DeviceState {
    fn new(vram_size: usize) -> Self {
        let crt_control_regs = RegisterSet::new([
            (
                CrtControlReg::S3_CHIP_REVISION_NUMBER_REGISTER,
                spec::S3_TRIO_CHIPSET_REV_NUMBER,
            ),
            (
                CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_2_REGISTER,
                0xA,
            ),
            (
                CrtControlReg::S3_DEVICE_ID_HI_REGISTER,
                (spec::PCI_DEVICE_ID >> 8) as u8,
            ),
            (
                CrtControlReg::S3_DEVICE_ID_LO_REGISTER,
                spec::PCI_DEVICE_ID as u8,
            ),
            (
                CrtControlReg::S3_DEVICE_REVISION_REGISTER,
                spec::PCI_REVISION,
            ),
            (
                CrtControlReg::S3_CONFIGURATION_1_REGISTER,
                if vram_size == 0x100000 {
                    0xC2
                } else if vram_size == 0x200000 {
                    0x82
                } else {
                    0x02
                },
            ),
            (CrtControlReg::HORIZONTAL_TOTAL_REGISTER, 0),
            (CrtControlReg::HORIZONTAL_DISPLAY_END_REGISTER, 0),
            (CrtControlReg::START_HORIZONTAL_BLANK_REGISTER, 0),
            (CrtControlReg::END_HORIZONTAL_BLANK_REGISTER, 0),
            (CrtControlReg::START_HORIZONTAL_RETRACE_REGISTER, 0),
            (CrtControlReg::END_HORIZONTAL_RETRACE_REGISTER, 0),
            (CrtControlReg::VERTICAL_TOTAL_REGISTER, 0),
            (CrtControlReg::OVERFLOW_REGISTER, 0),
            (CrtControlReg::PRESET_ROW_SCAN_REGISTER, 0),
            (CrtControlReg::MAX_SCANLINE_REGISTER, 0),
            (CrtControlReg::CURSOR_START_REGISTER, 0),
            (CrtControlReg::CURSOR_END_REGISTER, 0),
            (CrtControlReg::START_ADDRESS_HI_REGISTER, 0),
            (CrtControlReg::START_ADDRESS_LO_REGISTER, 0),
            (CrtControlReg::CURSOR_LOCATION_HI_REGISTER, 0),
            (CrtControlReg::CURSOR_LOCATION_LO_REGISTER, 0),
            (CrtControlReg::VERTICAL_RETRACE_HI_REGISTER, 0),
            (CrtControlReg::VERTICAL_RETRACE_LO_REGISTER, 0),
            (CrtControlReg::VERTICAL_DISPLAY_END_REGISTER, 0),
            (CrtControlReg::OFFSET_REGISTER, 0),
            (CrtControlReg::UNDERLINE_LOCATION_REGISTER, 0),
            (CrtControlReg::START_VERTICAL_BLANK_REGISTER, 0),
            (CrtControlReg::END_VERTICAL_BLANK_REGISTER, 0),
            (CrtControlReg::MODE_CONTROL_REGISTER, 0),
            (CrtControlReg::LINE_COMPARE_REGISTER, 0),
            (CrtControlReg::UNSUPPORTED_22_REGISTER, 0),
            (CrtControlReg::UNSUPPORTED_24_REGISTER, 0),
            (CrtControlReg::S3_MEMORY_CONFIGURATION_REGISTER, 0),
            (CrtControlReg::S3_BACKWARD_COMPATIBILITY_1_REGISTER, 0),
            (CrtControlReg::S3_BACKWARD_COMPATIBILITY_2_REGISTER, 0),
            (CrtControlReg::S3_BACKWARD_COMPATIBILITY_3_REGISTER, 0),
            (CrtControlReg::S3_REGISTER_LOCK_REGISTER, 0),
            (CrtControlReg::S3_CONFIGURATION_2_REGISTER, 0),
            (CrtControlReg::S3_UNLOCK_VGA_REGISTERS_1_REGISTER, 0),
            (CrtControlReg::S3_UNLOCK_VGA_REGISTERS_2_REGISTER, 0),
            (CrtControlReg::S3_MISC_1_REGISTER, 0),
            (CrtControlReg::S3_DATA_TRANSFER_REGISTER, 0),
            (CrtControlReg::S3_INTERLACE_START_REGISTER, 0),
            (CrtControlReg::S3_SYSTEM_CONFIGURATION_REGISTER, 0),
            (CrtControlReg::S3_BIOS_FLAG_REGISTER, 0),
            (CrtControlReg::S3_MODE_CONTROL_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_MODE_REGISTER, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_1, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_2, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_3, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_4, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_5, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_6, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_7, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_8, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_9, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_10, 0),
            (CrtControlReg::S3_HW_CURSOR_DEAD_11, 0),
            (CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_1_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_2_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_BIOS_FLAG_1_REGISTER, 0),
            (CrtControlReg::S3_MMIO_DEAD_1, 0),
            (CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_2_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_DAC_CONTROL_REGISTER, 0),
            (CrtControlReg::S3_EXTERNAL_SYNC_CONTROL_1_REGISTER, 0),
            (CrtControlReg::S3_EXTERNAL_SYNC_CONTROL_2_REGISTER, 0),
            (CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_CONTROL_REGISTER, 0),
            (
                CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_1_REGISTER,
                0,
            ),
            (CrtControlReg::S3_EXTENDED_BIOS_FLAG_2_REGISTER, 0),
            (CrtControlReg::S3_GENERAL_OUTPUT_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_HORIZONTAL_OVERFLOW_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_VERTICAL_OVERFLOW_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_BUS_GRANT_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_3_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_4_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_5_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_MISC_CONTROL_0_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_MISC_CONTROL_1_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_MISC_CONTROL_2_REGISTER, 0),
            (CrtControlReg::S3_CONFIGURATION_3_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_3_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_4_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_BIOS_FLAG_3_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_BIOS_FLAG_4_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_BIOS_FLAG_5_REGISTER, 0),
            (CrtControlReg::S3_EXTENDED_BIOS_FLAG_6_REGISTER, 0),
            (CrtControlReg::CONFIGURATION_4_REGISTER, 0),
            (CrtControlReg::CUSTOM_VS_1_REGISTER, 0),
            (CrtControlReg::CUSTOM_VS_2_REGISTER, 0),
            (CrtControlReg::CUSTOM_VS_BIOS_LOGO_REGISTER, 0),
            (CrtControlReg::CUSTOM_VS_GENERAL_EXTENSION_REGISTER, 0),
        ]);

        let vga_sequencer_regs = RegisterSet::new([
            (VgaSequencerReg::PLANE_WRITE_MASK_REGISTER, 0xf),
            (VgaSequencerReg::RESET_REGISTER, 0),
            (VgaSequencerReg::CLOCKING_MODE_REGISTER, 0),
            (VgaSequencerReg::CHARACTER_FONT_SELECT_REGISTER, 0),
            (VgaSequencerReg::MEMORY_MODE_CONTROL_REGISTER, 0),
            (
                VgaSequencerReg::UNLOCK_S3_EXTENDED_SEQUENCER_REGISTERS_REGISTER,
                0,
            ),
            (VgaSequencerReg::UNSUPPORTED_09_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_0A_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_0B_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_0D_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_10_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_11_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_12_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_13_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_14_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_15_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_16_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_17_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_18_REGISTER, 0),
            (VgaSequencerReg::UNSUPPORTED_1C_REGISTER, 0),
        ]);

        let vga_attrib_regs = RegisterSet::new((0..=0x14).map(|n| (VgaAttribReg(n), 0)));

        let vga_graphics_regs = RegisterSet::new([
            (VgaGraphicsReg::SET_RESET_DATA_REGISTER, 0),
            (VgaGraphicsReg::ENABLE_SET_RESET_DATA_REGISTER, 0),
            (VgaGraphicsReg::COLOR_COMPARE_REGISTER, 0),
            (VgaGraphicsReg::RASTER_OP_ROTATE_COUNT_REGISTER, 0),
            (VgaGraphicsReg::READ_PLANE_SELECT_REGISTER, 0),
            (VgaGraphicsReg::MODE_REGISTER, 0),
            (VgaGraphicsReg::MEMORY_MAP_MODE_CONTROL_REGISTER, 0),
            (VgaGraphicsReg::COLOR_DONT_CARE_REGISTER, 0),
            (VgaGraphicsReg::BIT_MASK_REGISTER, 0xff),
            (VgaGraphicsReg(9), 9),
            (VgaGraphicsReg(10), 10),
            (VgaGraphicsReg(11), 11),
            (VgaGraphicsReg(12), 12),
            (VgaGraphicsReg(13), 13),
            (VgaGraphicsReg(14), 14),
            (VgaGraphicsReg(15), 15),
        ]);

        Self {
            crt_control_regs_shadow: crt_control_regs.clone(),
            crt_control_regs,
            vga_sequencer_regs_shadow: vga_sequencer_regs.clone(),
            vga_sequencer_regs,
            vga_attrib_regs,
            vga_graphics_regs_shadow: vga_graphics_regs.clone(),
            vga_graphics_regs,
            crt_control_index_reg: CrtControlReg(0),
            vga_seq_index_reg: VgaSequencerReg(0),
            vga_seq_index_reg_shadow: 0,
            vga_attrib_reg_index: 0,
            vga_attrib_reg_flip_flop: true,
            vga_graphics_reg_index: VgaGraphicsReg(0),
            vga_graphics_reg_index_shadow: 0,
            pel_colors: FromZeros::new_zeroed(),
            pel_reg_write_index: 0,
            pel_reg_read_index: 0,
            pel_mask_register: 0xFF,
            text_mode: true,
            video_enabled: true,
            misc_output_reg: spec::DEFAULT_MISC_OUTPUT_REG_VALUE,
            crt_regs_locked: false,
            horizontal_retrace: false,
            horizontal_retrace_count: 0,
            adj_pcvideo_height: 400,
            pcvideo_height: 400,
            pcvideo_width: spec::MAX_VGA_PIXELS_PER_ROW,
            line_offset_pixels: 0,
            line_compare_value: 0,
            cur_page_start_offset: 0,
            video_pci_status: 0,
            interrupt_line_info: 0xFF,
            bits_per_pixel: 4,
            enhanced_dac_mode: false,
            latched_read_value: 0,
            s3: S3ControllerState::new(),
            expansion_rom_base: 0,
        }
    }
}

#[repr(C)]
#[derive(Copy, Clone, IntoBytes, Immutable, KnownLayout, FromBytes)]
struct PelColor {
    red: u8,
    green: u8,
    blue: u8,
}

#[derive(Inspect)]
struct S3ControllerState {
    enhanced_mode: bool,
    linear_mapping: bool,
    #[inspect(hex)]
    addr_window_size: u32,
    #[inspect(hex)]
    addr_window_base: u32,
    addr_window_offset: u32,
    #[inspect(hex)]
    linear_addr_window: u32,
    bits_per_pixel: u16,
    adv_function_control_reg: u16,
    screen_pixel_width: u16,
}

impl S3ControllerState {
    fn new() -> Self {
        Self {
            enhanced_mode: false,
            linear_mapping: false,
            addr_window_size: 0,
            addr_window_base: 0,
            addr_window_offset: 0,
            linear_addr_window: 0xa0000,
            bits_per_pixel: 0,
            adv_function_control_reg: 0,
            screen_pixel_width: 1024,
        }
    }
}

#[derive(Clone)]
pub struct RegisterSet<T, const N: usize>([u8; N], PhantomData<fn(T)>);

impl<T: From<u8> + Debug, const N: usize> Inspect for RegisterSet<T, N> {
    fn inspect(&self, req: inspect::Request<'_>) {
        let mut resp = req.respond();
        for (i, v) in self.0.iter().enumerate() {
            resp.hex(&format!("{:#x?}", T::from(i as u8)), v);
        }
    }
}

impl<T: Into<u8>, const N: usize> RegisterSet<T, N> {
    fn new(values: impl IntoIterator<Item = (T, u8)>) -> Self {
        // Default unknown registers to 0x80.
        let mut this = Self([0x80; N], PhantomData);
        for (x, y) in values {
            this[x] = y;
        }
        this
    }
}

impl<T: Into<u8>, const N: usize> Index<T> for RegisterSet<T, N> {
    type Output = u8;

    fn index(&self, index: T) -> &Self::Output {
        &self.0[index.into() as usize]
    }
}

impl<T: Into<u8>, const N: usize> IndexMut<T> for RegisterSet<T, N> {
    fn index_mut(&mut self, index: T) -> &mut Self::Output {
        &mut self.0[index.into() as usize]
    }
}

const SPLASH_SCREEN_BYTES_PER_PIXEL: u8 = 2;
const _SPLASH_SCREEN_WIDTH: u16 = 640;
const _SPLASH_SCREEN_HEIGHT: u16 = 400;

/// This routine expands a four-bit mask into a 32-bit reversed
/// mask. Each bit in the original value represents a byte in the
/// final mask. The original bits are in reverse order (i.e.
/// the lsb of the original represents the most-significant byte
/// of the final mask.
fn expand_mask(template: u8) -> u32 {
    let mut mask = 0;
    if template & 0x1 != 0 {
        mask |= make_mask_for_byte(0);
    }
    if template & 0x2 != 0 {
        mask |= make_mask_for_byte(1);
    }
    if template & 0x4 != 0 {
        mask |= make_mask_for_byte(2);
    }
    if template & 0x8 != 0 {
        mask |= make_mask_for_byte(3);
    }

    mask
}

/// Make 1 Byte mask at ByteNumber position in a 32 bit number.
fn make_mask_for_byte(byte_number: u32) -> u32 {
    0xFF << (byte_number * 8)
}

impl Emulator {
    pub fn reset(&mut self) {
        self.state = VgaAddressingVars::new(self.vram_size as usize);
        self.control.unmap();
        self.mapped_rom = None;
        self.update_render_state();
    }

    pub fn new(
        control: FramebufferLocalControl,
        vram: GuestMemory,
        vmtime: &VmTimeSource,
        rom: Option<Box<dyn MapRom>>,
        render_control: RenderControl,
    ) -> Self {
        let vram_size = control.len();
        Self {
            state: VgaAddressingVars::new(vram_size),
            text: TextModeState::new(),
            vmtime: vmtime.access("vga"),
            control,
            vram,
            rom,
            mapped_rom: None,
            vram_size: vram_size as u32,
            is_mode_change_pending: false,
            is_full_refresh_pending: false,
            is_delayed_redraw_timer_set: false,
            is_legacy_writes_timer_set: false,
            suppress_initial_activation: false,
            palette_change_count: 1,
            pixel_values_palette_count: 0,
            mapping_table: [0; 256],
            render_control,
        }
    }

    pub fn notify_pci_config_access_write(
        &mut self,
        in_reg_address: u16,
        io_data: u32,
    ) -> IoResult {
        tracing::trace!(
            reg = ?HeaderType00(in_reg_address),
            io_data,
            "pci config write"
        );

        match HeaderType00(in_reg_address) {
            HeaderType00::STATUS_COMMAND => {
                // Write the command register portion of the status/command register
                // The WHQL video tests require that these bits be read-only: 0x06FFF800
                self.state.persistent_state.video_pci_status = io_data & 0x07FF;
            }

            HeaderType00::BIST_HEADER => return IoResult::Err(IoError::InvalidRegister),

            HeaderType00::BAR0 => {
                // Clear low-order four bits to indicate the base
                // register is for memory that can be anywhere in
                // the 32-bit address space. The other bits are zeroed
                // to guarantee that the plug-n-play software
                // allocates an address range that is correctly sized and
                // aligned.
                self.s3_set_linear_address_base(io_data as u64 & 0xFC000000); // S3 device
            }

            HeaderType00::BAR1
            | HeaderType00::BAR2
            | HeaderType00::BAR3
            | HeaderType00::BAR4
            | HeaderType00::BAR5 => return IoResult::Err(IoError::InvalidRegister),

            HeaderType00::LATENCY_INTERRUPT => {
                self.state.persistent_state.interrupt_line_info = io_data;
            }

            HeaderType00::EXPANSION_ROM_BASE => {
                if let Some(rom) = &self.rom {
                    let reg = io_data & 0xFFFF0001;
                    if reg != self.state.persistent_state.expansion_rom_base {
                        self.state.persistent_state.expansion_rom_base = reg;
                        self.mapped_rom = None;
                        if reg & 1 != 0 {
                            match rom.map_rom((reg & !1).into(), 0, rom.len()) {
                                Ok(mapping) => self.mapped_rom = Some(mapping),
                                Err(err) => {
                                    tracing::error!(
                                        error = &err as &dyn std::error::Error,
                                        "failed to map expansion ROM"
                                    );
                                }
                            }
                        }
                    }
                }
            }

            reg => {
                tracing::warn!(?reg, data = io_data, "unhandled vga config space write");
                return IoResult::Err(IoError::InvalidRegister);
            }
        }

        IoResult::Ok
    }

    pub fn notify_pci_config_access_read(
        &self,
        in_reg_address: u16,
        io_data: &mut u32,
    ) -> IoResult {
        tracing::trace!(
            reg = ?HeaderType00(in_reg_address),
            "pci config read"
        );
        *io_data = match HeaderType00(in_reg_address) {
            HeaderType00::DEVICE_VENDOR => {
                // Use constant Vendor ID and configured Device ID
                spec::PCI_VENDOR_ID as u32 | ((spec::PCI_DEVICE_ID as u32) << 16)
            }

            HeaderType00::STATUS_COMMAND => self.state.persistent_state.video_pci_status,

            HeaderType00::CLASS_REVISION => {
                // Use constant class code and configured revision

                ((spec::PCI_VIDEO_CLASS_CODE as u32) << 24) | (spec::PCI_REVISION as u32)
            }

            HeaderType00::BIST_HEADER => {
                // Specify default value (header type zero, single-function card)
                0
            }

            HeaderType00::SUBSYSTEM_ID => spec::PCI_SUBSYSTEM.into(),

            HeaderType00::BAR0 => self.state.persistent_state.s3.linear_addr_window & 0xFC000000,

            HeaderType00::BAR1
            | HeaderType00::BAR2
            | HeaderType00::BAR3
            | HeaderType00::BAR4
            | HeaderType00::BAR5 => {
                // These registers are not implemented
                return IoResult::Err(IoError::InvalidRegister);
            }

            HeaderType00::LATENCY_INTERRUPT => {
                // The device is hard-wired to PCI interrupt lane A.
                let pci_irq_lane_a = 1;
                (pci_irq_lane_a << 8) | (self.state.persistent_state.interrupt_line_info & 0xFF)
            }

            HeaderType00::EXPANSION_ROM_BASE => {
                // 64KB ROM
                self.state.persistent_state.expansion_rom_base & 0xFFFF0001
            }

            reg => {
                tracing::warn!(?reg, "unhandled vga config space read");
                return IoResult::Err(IoError::InvalidRegister);
            }
        };

        tracing::trace!(
            reg = ?HeaderType00(in_reg_address),
            io_data,
            "pci config read finished"
        );
        IoResult::Ok
    }

    pub fn notify_mmio_read(&mut self, address: u64, data: &mut [u8]) {
        if (address >= self.state.video_start_bus_range_offset)
            && (address < self.state.video_end_bus_range_offset)
        {
            let start = (address - self.state.video_start_bus_range_offset) as u32;
            // It's important to read from the MSB to the LSB. If we
            // do it in the other order, we don't get the correct
            // latching behavior in the VGA controller.
            match self.state.read_mode {
                spec::VGA_READ_MODE_0 => {
                    for (offset, byte) in data.iter_mut().enumerate().rev() {
                        *byte = self.handle_vgaread0(start + offset as u32);
                    }
                }
                spec::VGA_READ_MODE_1 => {
                    for (offset, byte) in data.iter_mut().enumerate().rev() {
                        *byte = self.handle_vgaread1(start + offset as u32);
                    }
                }
                _ => unreachable!(),
            }
        } else {
            data.fill(!0);
        }
    }

    pub fn notify_mmio_write(&mut self, address: u64, data: &[u8]) {
        if (address >= self.state.video_start_bus_range_offset)
            && (address < self.state.video_end_bus_range_offset)
        {
            let start = (address - self.state.video_start_bus_range_offset) as u32;
            // It's important to write from the MSB to the LSB. If we
            // do it in the other order, we don't get the correct
            // latching behavior in the VGA controller.
            match self.state.write_mode {
                spec::VGA_WRITE_MODE_0 => {
                    for (offset, &byte) in data.iter().enumerate().rev() {
                        self.handle_vgawrite0(start + offset as u32, byte);
                    }
                }

                spec::VGA_WRITE_MODE_1 => {
                    for (offset, _) in data.iter().enumerate().rev() {
                        self.handle_vgawrite1(start + offset as u32);
                    }
                }

                spec::VGA_WRITE_MODE_2 => {
                    for (offset, &byte) in data.iter().enumerate().rev() {
                        self.handle_vgawrite2(start + offset as u32, byte);
                    }
                }

                spec::VGA_WRITE_MODE_3 => {
                    for (offset, &byte) in data.iter().enumerate().rev() {
                        self.handle_vgawrite3(start + offset as u32, byte);
                    }
                }

                _ => {}
            }
        }
        self.update_render_state();
    }

    /// This routine adjusts the address for odd/even or chain4 modes.
    /// It also adjusts the plane mask in the process.  This routine makes
    /// the assumption that the caller intends to access 4-bytes worth of
    /// vram using the returned address, and range-checks accordingly.
    fn adjust_vga_address(
        &self,
        io_vga_addr: &mut u32,
        io_plane_mask: &mut u32,
        io_plane_to_read: &mut u32,
    ) -> bool {
        let mut vga_addr = *io_vga_addr;
        let mut plane_mask = *io_plane_mask;
        let mut read_plane = *io_plane_to_read;
        let mut within_vram = true;

        vga_addr += self.state.video_window_offset;

        if !self.state.persistent_state.s3.enhanced_mode {
            // Are we in word mode (for CGA/MDA compatibility)?
            if self.state.chain_4_mode {
                // The two lsb's of the address determine the plane to be accessed.
                read_plane = vga_addr & 0x3;
                plane_mask = make_mask_for_byte(read_plane);

                // Now clear the two lsb's of the address
                vga_addr &= !0x3;
            } else if self.state.odd_even_mode {
                // The lsb of the address determines whether odd
                // or even planes are accessible.
                if (vga_addr & 1) == 0 {
                    plane_mask &= make_mask_for_byte(0) | make_mask_for_byte(2);
                } else {
                    plane_mask &= make_mask_for_byte(1) | make_mask_for_byte(3);
                }

                read_plane = vga_addr & 1;

                // Now clear the lsb of the address
                vga_addr &= !0x1;
            }

            vga_addr <<= 2;
        }

        // Are we accessing memory outside of VRAM?
        // Again, assume caller will access 4-bytes worth.
        let vram_size = self.vram_size;

        if vga_addr > (vram_size - 4) {
            within_vram = false;
        }

        *io_vga_addr = vga_addr;
        *io_plane_mask = plane_mask;
        *io_plane_to_read = read_plane;

        within_vram
    }

    fn read_vram<T: IntoBytes + FromBytes + Immutable + KnownLayout>(&self, address: u32) -> T {
        self.vram
            .read_plain(address.into())
            .expect("framebuffer is mapped")
    }

    fn write_vram<T: IntoBytes + Immutable + KnownLayout>(&self, address: u32, value: T) {
        self.vram
            .write_plain(address.into(), &value)
            .expect("framebuffer is mapped")
    }

    fn handle_vgawrite0(&mut self, vga_addr: u32, write_data: u8) {
        let mut plane_to_read = 0;

        let mut vga_addr = vga_addr;
        let mut plane_mask = self.state.plane_write_mask32;
        let latched_value = self.state.persistent_state.latched_read_value;
        let pixel_mask = self.state.pixel_mask32;
        let function = self.state.function_select;

        if self.adjust_vga_address(&mut vga_addr, &mut plane_mask, &mut plane_to_read) {
            // OK, now we have the address and the plane mask computed,
            // we can go ahead and do the actual store.

            let mut new_value = (write_data as u32)
                | ((write_data as u32) << 8)
                | ((write_data as u32) << 16)
                | ((write_data as u32) << 24);

            // Perform data rotate if necessary
            if self.state.data_rotate_value != 0 {
                new_value = (new_value << self.state.data_rotate_value)
                    | (new_value >> (32 - self.state.data_rotate_value));
            }

            // Adjust the input data using the set/reset registers
            new_value &= !self.state.set_reset_mask32;
            new_value |= self.state.set_reset_mask_value32;

            // Now perform the necessary ALU function
            if function != VGA_FUNCTION_SELECT_NORMAL {
                if function == VGA_FUNCTION_SELECT_AND {
                    new_value &= latched_value;
                } else if function == VGA_FUNCTION_SELECT_OR {
                    new_value |= latched_value;
                } else {
                    //  VGA_FUNCTION_SELECT_XOR
                    new_value ^= latched_value;
                }
            }

            let old_value: u32 = self.read_vram(vga_addr);
            new_value = (new_value & pixel_mask) | (latched_value & !pixel_mask);
            new_value = (new_value & plane_mask) | (old_value & !plane_mask);
            self.write_vram(vga_addr, new_value);
        }
    }

    fn handle_vgawrite1(&mut self, vga_addr: u32) {
        let mut vga_addr = vga_addr;
        let mut plane_to_read = 0;
        let mut plane_mask = self.state.plane_write_mask32;

        if self.adjust_vga_address(&mut vga_addr, &mut plane_mask, &mut plane_to_read) {
            let old_value: u32 = self.read_vram(vga_addr);
            let mut new_value = self.state.persistent_state.latched_read_value & plane_mask;
            new_value |= old_value & !plane_mask;
            self.write_vram(vga_addr, new_value);
        }
    }

    fn handle_vgawrite2(&mut self, vga_addr: u32, write_data: u8) {
        let mut vga_addr = vga_addr;
        let mut plane_mask = self.state.plane_write_mask32;
        let latched_value = self.state.persistent_state.latched_read_value;
        let pixel_mask = self.state.pixel_mask32;
        let mut plane_to_read = 0;

        if self.adjust_vga_address(&mut vga_addr, &mut plane_mask, &mut plane_to_read) {
            // OK, now we have the address and the plane mask computed,
            // we can go ahead and do the actual store.

            let mut new_value = expand_mask(write_data);

            // Now perform the necessary ALU function
            if self.state.function_select != VGA_FUNCTION_SELECT_NORMAL {
                if self.state.function_select == VGA_FUNCTION_SELECT_AND {
                    new_value &= latched_value;
                } else if self.state.function_select == VGA_FUNCTION_SELECT_OR {
                    new_value |= latched_value;
                } else {
                    // VGA_FUNCTION_SELECT_XOR
                    new_value ^= latched_value;
                }
            }

            let old_value: u32 = self.read_vram(vga_addr);

            new_value = (new_value & pixel_mask) | (latched_value & !pixel_mask);
            new_value = (new_value & plane_mask) | (old_value & !plane_mask);
            self.write_vram(vga_addr, new_value);
        }
    }

    fn handle_vgawrite3(&mut self, vga_addr: u32, write_data: u8) {
        let mut vga_addr = vga_addr;
        let mut plane_mask = self.state.plane_write_mask32;
        let latched_value = self.state.persistent_state.latched_read_value;
        let mut pixel_mask = self.state.pixel_mask32;
        let function = self.state.function_select;
        let mut plane_to_read = 0;

        if self.adjust_vga_address(&mut vga_addr, &mut plane_mask, &mut plane_to_read) {
            // OK, now we have the address and the plane mask computed,
            // we can go ahead and do the actual store.

            let v = write_data as u32;
            let mut new_value = v | (v << 8) | (v << 16) | (v << 24);

            // Perform data rotate if necessary
            if self.state.data_rotate_value != 0 {
                new_value = (new_value << self.state.data_rotate_value)
                    | (new_value >> (32 - self.state.data_rotate_value));
            }

            pixel_mask &= new_value;
            new_value = self.state.set_reset_value32;

            // Now perform the necessary ALU function
            if function != VGA_FUNCTION_SELECT_NORMAL {
                if function == VGA_FUNCTION_SELECT_AND {
                    new_value &= latched_value;
                } else if function == VGA_FUNCTION_SELECT_OR {
                    new_value |= latched_value;
                } else {
                    // VGA_FUNCTION_SELECT_XOR
                    new_value ^= latched_value;
                }
            }

            let old_value: u32 = self.read_vram(vga_addr);

            new_value = (new_value & pixel_mask) | (latched_value & !pixel_mask);
            new_value = (new_value & plane_mask) | (old_value & !plane_mask);
            self.write_vram(vga_addr, new_value);
        }
    }

    fn handle_vgaread0(&mut self, vga_addr: u32) -> u8 {
        let mut plane_to_access = self.state.plane_read_num as u32;
        let mut vga_addr = vga_addr;
        let mut plane_mask = 0;

        if self.adjust_vga_address(&mut vga_addr, &mut plane_mask, &mut plane_to_access) {
            self.state.persistent_state.latched_read_value = self.read_vram(vga_addr);
            self.read_vram(vga_addr + plane_to_access)
        } else {
            0xFF
        }
    }

    fn handle_vgaread1(&mut self, vga_addr: u32) -> u8 {
        let mut vga_addr = vga_addr;
        let mut plane_mask = 0;
        let mut plane_to_access = 0;
        if self.adjust_vga_address(&mut vga_addr, &mut plane_mask, &mut plane_to_access) {
            let color_compare_mask = self.state.color_compare_mask32;
            let color_dont_care_mask = self.state.color_dont_care_mask32;

            let cur_value = self.read_vram(vga_addr);
            self.state.persistent_state.latched_read_value = cur_value;

            // Use XNOR function to determine which bits are the same
            let mut compare_value = !(color_compare_mask ^ cur_value);

            // OR in the color-don't-care mask for the specified planes
            compare_value |= color_dont_care_mask;

            // Finally, AND the four plane compare values together
            // to get a resulting 8-bit value.
            (compare_value & (compare_value >> 8) & (compare_value >> 16) & (compare_value >> 24))
                as u8
        } else {
            0xFF
        }
    }

    pub fn io_port_read(&mut self, address: u16, _access_size: u16) -> u32 {
        match address & 0xFFF0 {
            _ if address == spec::S3_ADV_FUNCTION_CONTROL_PORT => self
                .state
                .persistent_state
                .s3
                .adv_function_control_reg
                .into(),
            spec::VGA_HARDWARE_PORT_RANGE => match VgaPort(address) {
                VgaPort::INDEX_DATA_REG_ATTR_PORT | VgaPort::ATTRIBUTE_READ_PORT => {
                    self.attribute_io_read(VgaPort(address)).into()
                }
                VgaPort::SEQ_INDEX_REGISTER_PORT | VgaPort::SEQ_DATA_REGISTER_PORT => {
                    self.sequencer_io_read(VgaPort(address)).into()
                }
                VgaPort::GRAPHICS_INDEX_REG_PORT | VgaPort::GRAPHICS_DATA_REG_PORT => {
                    self.graphic_controller_io_read(VgaPort(address)).into()
                }
                address => self.read_vga_port(address).into(),
            },
            spec::MDA_HARDWARE_PORT_RANGE => self
                .read_cga(spec::CGA_HARDWARE_PORT_RANGE | (address & 0xF))
                .into(),
            spec::CGA_HARDWARE_PORT_RANGE => self.read_cga(address).into(),
            _ => !0,
        }
    }

    pub fn io_port_write(&mut self, address: u16, access_size: u16, data: u32) {
        match address & 0xFFF0 {
            _ if address == spec::S3_ADV_FUNCTION_CONTROL_PORT => {
                self.state.persistent_state.s3.adv_function_control_reg = data as u16;
                self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_MISC_CONTROL_1_REGISTER] &= !0x01;
                self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_MISC_CONTROL_1_REGISTER] |= data as u8 & 0x01;
                self.calculate_graphics_mode_variables();
            }
            spec::VGA_HARDWARE_PORT_RANGE => match VgaPort(address) {
                VgaPort::INDEX_DATA_REG_ATTR_PORT | VgaPort::ATTRIBUTE_READ_PORT => {
                    self.attribute_io_write(VgaPort(address), data)
                }
                VgaPort::SEQ_INDEX_REGISTER_PORT | VgaPort::SEQ_DATA_REGISTER_PORT => {
                    self.sequencer_io_write(VgaPort(address), access_size, data)
                }
                VgaPort::GRAPHICS_INDEX_REG_PORT | VgaPort::GRAPHICS_DATA_REG_PORT => {
                    self.graphic_controller_io_write(VgaPort(address), access_size, data)
                }
                address => self.write_vga_port(address, data as u8),
            },
            spec::MDA_HARDWARE_PORT_RANGE => self.write_cga(
                spec::CGA_HARDWARE_PORT_RANGE | (address & 0xF),
                &data.to_ne_bytes()[..access_size as usize],
            ),
            spec::CGA_HARDWARE_PORT_RANGE => {
                self.write_cga(address, &data.to_ne_bytes()[..access_size as usize])
            }
            _ => {}
        }
        self.update_render_state();
    }

    fn read_cga(&mut self, port: u16) -> u8 {
        match port {
            spec::CGA_INDEX_REGISTER_PORT => self.state.persistent_state.crt_control_index_reg.0,
            spec::CGA_DATA_REGISTER_PORT => match self.state.persistent_state.crt_control_index_reg
            {
                CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_3_REGISTER
                | CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_4_REGISTER => {
                    self.state.persistent_state.crt_control_regs_shadow
                        [self.state.persistent_state.crt_control_index_reg]
                }
                reg => self.state.persistent_state.crt_control_regs[reg],
            },
            spec::CGA_INPUT_STATUS_REG1_PORT => {
                self.state.persistent_state.vga_attrib_reg_flip_flop = true;
                // The following bits are always set in this register
                let mut val = 0xF4;

                if self.is_vertical_retrace_active() {
                    val |= 0x9;
                }

                // The horizontal retrace is similar. We will just toggle back
                // and forth here.
                if self.state.persistent_state.horizontal_retrace {
                    val |= 0x1;
                }

                self.state.persistent_state.horizontal_retrace_count += 1;
                if self.state.persistent_state.horizontal_retrace_count > 10 {
                    self.state.persistent_state.horizontal_retrace_count = 0;
                    self.state.persistent_state.horizontal_retrace =
                        !self.state.persistent_state.horizontal_retrace;
                }

                val
            }
            spec::CGA_MODE_CONTROL_REGISTER_PORT => 0x50,
            spec::CGA_UNKNOWN_PORT_3D3 => 0x80,
            spec::CGA_UNKNOWN_PORT_3D6 => 0x80,
            spec::CGA_UNKNOWN_PORT_3D7 => 0x80,
            spec::CGA_UNKNOWN_PORT_3DB => 0x80,
            spec::CGA_UNKNOWN_PORT_3DC => 0x80,
            spec::CGA_UNKNOWN_PORT_3DD => 0x80,
            spec::CGA_UNKNOWN_PORT_3DE => 0x80,
            spec::CGA_UNKNOWN_PORT_3DF => 0x80,
            _ => 0xff,
        }
    }

    fn write_cga(&mut self, port: u16, data: &[u8]) {
        for (&value, port) in data.iter().zip(port..) {
            match port {
                spec::CGA_INDEX_REGISTER_PORT => {
                    self.state.persistent_state.crt_control_index_reg = CrtControlReg(value)
                }
                spec::CGA_DATA_REGISTER_PORT => self.write_crt_control_register(
                    self.state.persistent_state.crt_control_index_reg,
                    value,
                ),
                _ => {}
            }
        }
    }

    fn attribute_io_read(&mut self, io_address: VgaPort) -> u8 {
        if io_address == VgaPort::INDEX_DATA_REG_ATTR_PORT {
            // This is technically documented as a write-only register, but
            // some software attempts to read it. We will let them so they are happy.
            self.state.persistent_state.vga_attrib_reg_index
        } else {
            let reg_address = self.state.persistent_state.vga_attrib_reg_index & 0x1F;
            self.state.persistent_state.vga_attrib_regs[VgaAttribReg(reg_address)]
        }
    }

    fn attribute_io_write(&mut self, io_address: VgaPort, write_data: u32) {
        if io_address == VgaPort::INDEX_DATA_REG_ATTR_PORT {
            if self.state.persistent_state.vga_attrib_reg_flip_flop {
                // Set the new attribute register address
                self.state.persistent_state.vga_attrib_reg_index = write_data as u8;
            } else {
                // Write the new attribute register value
                self.write_vga_attribute_reg(
                    VgaAttribReg(self.state.persistent_state.vga_attrib_reg_index & 0x1F),
                    write_data as u8,
                );
            }

            // The flip-flop changes state whenever this is written
            self.state.persistent_state.vga_attrib_reg_flip_flop =
                !self.state.persistent_state.vga_attrib_reg_flip_flop;
        }
    }

    fn sequencer_io_read(&mut self, io_address: VgaPort) -> u8 {
        if io_address == VgaPort::SEQ_INDEX_REGISTER_PORT {
            self.state.persistent_state.vga_seq_index_reg_shadow
        } else {
            let reg_address = self.state.persistent_state.vga_seq_index_reg;
            if reg_address == VgaSequencerReg::PLANE_WRITE_MASK_REGISTER {
                self.state.persistent_state.vga_sequencer_regs_shadow[reg_address]
            } else {
                self.state.persistent_state.vga_sequencer_regs[reg_address]
            }
        }
    }

    fn sequencer_io_write(&mut self, io_address: VgaPort, access_size: u16, write_data: u32) {
        if io_address == VgaPort::SEQ_INDEX_REGISTER_PORT {
            // top three bits reserved
            self.state.persistent_state.vga_seq_index_reg =
                VgaSequencerReg(write_data as u8 & 0x1F);
            self.state.persistent_state.vga_seq_index_reg_shadow = write_data as u8;

            if access_size > 1 {
                self.write_vga_sequence_reg(
                    self.state.persistent_state.vga_seq_index_reg,
                    (write_data >> 8) as u8,
                );
            }
        } else {
            self.write_vga_sequence_reg(
                self.state.persistent_state.vga_seq_index_reg,
                write_data as u8,
            );
        }
    }

    fn graphic_controller_io_read(&mut self, io_address: VgaPort) -> u8 {
        if io_address == VgaPort::GRAPHICS_INDEX_REG_PORT {
            self.state.persistent_state.vga_graphics_reg_index_shadow
        } else {
            let reg_address = self.state.persistent_state.vga_graphics_reg_index;

            match reg_address {
                VgaGraphicsReg::SET_RESET_DATA_REGISTER
                | VgaGraphicsReg::ENABLE_SET_RESET_DATA_REGISTER
                | VgaGraphicsReg::COLOR_COMPARE_REGISTER
                | VgaGraphicsReg::READ_PLANE_SELECT_REGISTER
                | VgaGraphicsReg::COLOR_DONT_CARE_REGISTER => {
                    self.state.persistent_state.vga_graphics_regs_shadow[reg_address]
                }
                _ => self.state.persistent_state.vga_graphics_regs[reg_address],
            }
        }
    }

    fn graphic_controller_io_write(
        &mut self,
        io_address: VgaPort,
        access_size: u16,
        write_data: u32,
    ) {
        if io_address == VgaPort::GRAPHICS_INDEX_REG_PORT {
            self.state.persistent_state.vga_graphics_reg_index =
                VgaGraphicsReg(write_data as u8 & 0xF);
            self.state.persistent_state.vga_graphics_reg_index_shadow = write_data as u8;
            if access_size > 1 {
                self.write_vga_graphics_control_reg(
                    self.state.persistent_state.vga_graphics_reg_index,
                    (write_data >> 8) as u8,
                );
            }
        } else {
            self.write_vga_graphics_control_reg(
                self.state.persistent_state.vga_graphics_reg_index,
                (write_data) as u8,
            );
        }
    }

    fn read_vga_port(&mut self, port_num: VgaPort) -> u8 {
        let data_read;
        match port_num {
            VgaPort::INDEX_DATA_REG_ATTR_PORT
            | VgaPort::ATTRIBUTE_READ_PORT
            | VgaPort::SEQ_INDEX_REGISTER_PORT
            | VgaPort::SEQ_DATA_REGISTER_PORT
            | VgaPort::GRAPHICS_INDEX_REG_PORT
            | VgaPort::GRAPHICS_DATA_REG_PORT => {
                // These should be handled by the specialized attribute,
                // sequencer, and GC I/O routine.
                tracing::warn!("unexpected");
                data_read = 0xFF;
            }

            VgaPort::MISC_OUTPUT_READ_PORT => {
                data_read = self.state.persistent_state.misc_output_reg;
            }

            VgaPort::INPUT_STATUS_REG0_PORT => {
                data_read = if self.is_vertical_retrace_active() {
                    0x80
                } else {
                    0
                };
            }

            VgaPort::FEATURE_CONTROL_REG_PORT => {
                // Just fudge this value. It doesn't appear to be important.
                data_read = 0x00;
            }

            VgaPort::PEL_MASK_REGISTER_PORT => {
                //
                // If this register is read more than three times,
                // we return the mode register instead of the mask
                // register
                //
                data_read = self.state.persistent_state.pel_mask_register;
            }

            VgaPort::PEL_ADDRESS_WRITE_REGISTER_PORT => {
                // Make sure we aren't supposed to read external input buffer
                if (self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_DAC_CONTROL_REGISTER]
                    & 0x4)
                    != 0
                {
                    tracing::warn!("unexpected dac state");
                }

                data_read = (self.state.persistent_state.pel_reg_write_index / 3) as u8;
            }

            VgaPort::DAC_STATUS_REGISTER_PORT => {
                // The bottom two bits are hardware-related, the upper six are always zero
                data_read = 0;
            }

            VgaPort::PEL_DATA_REGISTER_PORT => {
                let reg_address = (self.state.persistent_state.pel_reg_read_index / 3) as usize;

                // Calculate the address of the color entry we are accessing
                let pel_entry = self.state.persistent_state.pel_colors[reg_address];

                // Calculate which entry within the color we are reading
                let reg_address =
                    self.state.persistent_state.pel_reg_read_index - reg_address as u16 * 3;

                if reg_address == 0 {
                    data_read = pel_entry.red;
                } else if reg_address == 1 {
                    data_read = pel_entry.green;
                } else {
                    data_read = pel_entry.blue;
                }

                self.state.persistent_state.pel_reg_read_index += 1;
                if self.state.persistent_state.pel_reg_read_index as usize
                    >= 3 * self.state.persistent_state.pel_colors.len()
                {
                    self.state.persistent_state.pel_reg_read_index = 0;
                }
            }

            VgaPort::SUBSYSTEM_ENABLE_PORT => {
                // This is used only by IBM. It always returns 0x80 on other systems.
                data_read = 0x80;
            }

            _ => {
                data_read = 0xFF;
            }
        }

        data_read
    }

    fn write_vga_port(&mut self, port_num: VgaPort, data_to_write: u8) {
        match port_num {
            VgaPort::INDEX_DATA_REG_ATTR_PORT
            | VgaPort::SEQ_INDEX_REGISTER_PORT
            | VgaPort::SEQ_DATA_REGISTER_PORT
            | VgaPort::GRAPHICS_INDEX_REG_PORT
            | VgaPort::GRAPHICS_DATA_REG_PORT => {
                // This should be handled by the specialized function
                // for attribute, sequencer, and GC registers.
                tracing::warn!(?port_num, "unexpected vga write");
            }

            VgaPort::MISC_OUTPUT_WRITE_PORT => {
                self.state.persistent_state.misc_output_reg = data_to_write;
                self.calculate_monitor_timing();
            }

            VgaPort::SUBSYSTEM_ENABLE_PORT => {
                // Just ignore this field - not a standard port, only used by IBM
            }

            VgaPort::GRAPHICS_POS_REGISTER2_PORT | VgaPort::GRAPHICS_POS_REGISTER1_PORT => {
                //
                // These are obsolete and are here only for EGA compatibility.
                // We will ignore any writes to these locations.
                //
            }

            VgaPort::PEL_ADDRESS_WRITE_REGISTER_PORT => {
                self.state.persistent_state.pel_reg_write_index = data_to_write as u16 * 3;
            }

            VgaPort::PEL_ADDRESS_READ_REGISTER_PORT => {
                self.state.persistent_state.pel_reg_read_index = data_to_write as u16 * 3;
            }

            VgaPort::PEL_DATA_REGISTER_PORT => {
                self.write_pel_data_register(data_to_write);
            }

            VgaPort::PEL_MASK_REGISTER_PORT => {
                self.state.persistent_state.pel_mask_register = data_to_write;
            }

            _ => {
                // Do nothing...
            }
        }
    }

    fn is_vertical_retrace_active(&self) -> bool {
        let period = 1e6 / 600.; // 600 Hz refresh
        let time = self.vmtime.now();
        let us = (time.as_100ns() / 10) as f64;
        let time_into_cycle = us % period;
        time_into_cycle < 0.04 * period
    }

    fn write_crt_control_register(&mut self, reg: CrtControlReg, mut value: u8) {
        tracing::trace!(?reg, value, "write crt control register");
        let old_value = self.state.persistent_state.crt_control_regs[reg];
        if old_value == value && reg != CrtControlReg::CUSTOM_VS_GENERAL_EXTENSION_REGISTER {
            return;
        }

        if self.state.persistent_state.crt_regs_locked {
            #[expect(clippy::comparison_chain)]
            if reg == CrtControlReg::OVERFLOW_REGISTER {
                // Only update bit 4.
                value &= 0x10;
                value |= self.state.persistent_state.crt_control_regs[reg] & !0x10;
            } else if reg < CrtControlReg::OVERFLOW_REGISTER {
                // No changes allowed.
                return;
            }
        }

        self.state.persistent_state.crt_control_regs[reg] = value;
        match reg {
            CrtControlReg::OVERFLOW_REGISTER
            | CrtControlReg::MAX_SCANLINE_REGISTER
            | CrtControlReg::LINE_COMPARE_REGISTER => {
                // We need to recalc the bit depth first
                self.calculate_graphics_mode_variables();

                // Then resize the screen based on the dot clock
                // and the current bit depth.
                self.calculate_monitor_timing();

                // Then update any other text-related variable.
                self.calculate_text_mode_variables();
            }

            CrtControlReg::START_ADDRESS_HI_REGISTER | CrtControlReg::START_ADDRESS_LO_REGISTER => {
                self.calculate_page_offset();
            }
            CrtControlReg::OFFSET_REGISTER => {
                self.calculate_line_offset_pixels();
            }

            CrtControlReg::UNDERLINE_LOCATION_REGISTER => {
                self.state.dbl_word_mode = (value & spec::CRT_UNDERLINE_MODE_DWMASK) != 0;
                self.update_access_vars();
            }

            CrtControlReg::MODE_CONTROL_REGISTER => {
                self.calculate_graphics_mode_variables();
            }

            CrtControlReg::CURSOR_START_REGISTER
            | CrtControlReg::CURSOR_END_REGISTER
            | CrtControlReg::CURSOR_LOCATION_HI_REGISTER
            | CrtControlReg::CURSOR_LOCATION_LO_REGISTER => {
                self.calculate_text_cursor_variables();
            }

            CrtControlReg::START_HORIZONTAL_BLANK_REGISTER => {
                // This register is used to determine the number
                // of text columns, so we may need to redraw if it changes.
                self.calculate_text_mode_variables();
            }

            CrtControlReg::HORIZONTAL_TOTAL_REGISTER
            | CrtControlReg::END_HORIZONTAL_BLANK_REGISTER
            | CrtControlReg::START_HORIZONTAL_RETRACE_REGISTER
            | CrtControlReg::END_HORIZONTAL_RETRACE_REGISTER
            | CrtControlReg::VERTICAL_TOTAL_REGISTER
            | CrtControlReg::PRESET_ROW_SCAN_REGISTER
            | CrtControlReg::VERTICAL_RETRACE_HI_REGISTER
            | CrtControlReg::END_VERTICAL_BLANK_REGISTER => {
                // Ignore writes to these registers
            }

            CrtControlReg::VERTICAL_RETRACE_LO_REGISTER => {
                // CRT register 0 through 7 are locked when the top bit
                // of this register is set to true.
                self.state.persistent_state.crt_regs_locked = value & 0x80 != 0;
            }

            CrtControlReg::HORIZONTAL_DISPLAY_END_REGISTER
            | CrtControlReg::VERTICAL_DISPLAY_END_REGISTER
            | CrtControlReg::START_VERTICAL_BLANK_REGISTER => {
                self.calculate_monitor_timing();
            }

            CrtControlReg::S3_DEVICE_ID_HI_REGISTER => {
                // Since this is read-only, we will replace the value
                // just written to it by the original value.
                self.state.persistent_state.crt_control_regs[reg] =
                    (spec::PCI_DEVICE_ID >> 8) as u8;
            }

            CrtControlReg::S3_DEVICE_ID_LO_REGISTER => {
                // Since this is read-only, we will replace the value
                // just written to it by the original value.
                self.state.persistent_state.crt_control_regs[reg] = spec::PCI_DEVICE_ID as u8;
            }

            CrtControlReg::S3_DEVICE_REVISION_REGISTER => {
                // Since this is read-only, we will replace the value
                // just written to it by the original value.
                self.state.persistent_state.crt_control_regs[reg] = spec::PCI_REVISION;
            }

            CrtControlReg::S3_CHIP_REVISION_NUMBER_REGISTER => {
                // Make sure we don't change the chip rev number
                self.state.persistent_state.crt_control_regs[reg] =
                    spec::S3_TRIO_CHIPSET_REV_NUMBER;
            }

            CrtControlReg::S3_MEMORY_CONFIGURATION_REGISTER => {
                // Most of the bits in this register can be ignored. We
                // need to pay attention to the following:
                //      bit 0 - use separate text page?
                //      bit 1 - two-page screen image?
                //      bit 3 - enhanced memory map (vs. VGA memory map)?
                //      bit 4-5 - bits 16-17 of start address & cursor location reg

                // Apparently, the page offset register gets zeroed
                // implicitly when the mem config register is modified.
                self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_3_REGISTER] = 0;

                // We would normally have to call CalculatePageOffset here
                // as well, but UpdateS3State does that for us.
                self.update_s3_state();
            }

            CrtControlReg::S3_BACKWARD_COMPATIBILITY_1_REGISTER => {
                // We'll implement these if we need to
                tracing::warn!("unexpected register access");
            }

            CrtControlReg::S3_BACKWARD_COMPATIBILITY_2_REGISTER => {
                // We'll implement these if we need to, except
                // bits 5 and 3 which we can ignore
                if old_value & 0xD7 != value & 0xD7 {
                    tracing::warn!("unexpected register access");
                }
            }

            CrtControlReg::S3_REGISTER_LOCK_REGISTER => {
                // Bits 4 & 5 control locking of other CRT registers. We
                // won't honor these lock bits for now.
                // Bits 0-3 control the current 64Kb block accessed in
                // the video buffer.

                // Only allow the change if the register set is unlocked. If the registers
                // are locked (i.e. CRT register 0x38 ANDed with 0xCC does not equal
                // 0x48), we need to put the old 0x35 register value back. At least
                // one VESA driver uses this to verify it is dealing with an S3 chip.

                if self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_UNLOCK_VGA_REGISTERS_1_REGISTER]
                    & 0xCC
                    == 0x48
                {
                    self.update_access_vars();
                } else {
                    self.state.persistent_state.crt_control_regs[reg] = old_value;
                }
            }

            CrtControlReg::S3_UNLOCK_VGA_REGISTERS_1_REGISTER => {
                //Currently, only use is above (CrtControlReg::S3_REGISTER_LOCK_REGISTER => {
                // as in this case the extraneous bits are "don't care", not "reserved", we should probably
                // preserve them in the register and do the masking on use.  But if we were using it a lot,
                // it might make sense to do the mask here once and for all.
            }

            CrtControlReg::S3_UNLOCK_VGA_REGISTERS_2_REGISTER => {}

            CrtControlReg::S3_CONFIGURATION_1_REGISTER => {
                // Bits 0-1 are read-only. We need to replace them to
                // indicate the card is PCI-based.
                self.state.persistent_state.crt_control_regs[reg] =
                    (value & 0xFC) | (old_value & 0x3);
                self.update_s3_state();
            }

            CrtControlReg::S3_CONFIGURATION_2_REGISTER => self.update_s3_state(),

            CrtControlReg::S3_BACKWARD_COMPATIBILITY_3_REGISTER
            | CrtControlReg::S3_MISC_1_REGISTER
            | CrtControlReg::S3_DATA_TRANSFER_REGISTER
            | CrtControlReg::S3_INTERLACE_START_REGISTER
            | CrtControlReg::S3_EXTENDED_BIOS_FLAG_1_REGISTER
            | CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_2_REGISTER
            | CrtControlReg::S3_EXTERNAL_SYNC_CONTROL_1_REGISTER
            | CrtControlReg::S3_EXTERNAL_SYNC_CONTROL_2_REGISTER => {
                // These registers control hardware-related functions
                // which we can completely ignore in our emulation.
            }

            CrtControlReg::S3_SYSTEM_CONFIGURATION_REGISTER => {
                // In general, we can ignore everything involved with
                // this register. It controls memory wait states, etc.
                // The only bit we need to be careful with is bit 0 which
                // controls the locking/unlocking of the other enahnced
                // registers (0x40 and above). We will ignore this for
                // now, but may need to implement it in the future.
            }

            CrtControlReg::S3_MODE_CONTROL_REGISTER => self.calculate_monitor_timing(),

            CrtControlReg::S3_EXTENDED_MODE_REGISTER => self.calculate_line_offset_pixels(),

            CrtControlReg::S3_HW_CURSOR_DEAD_1
            | CrtControlReg::S3_HW_CURSOR_DEAD_2
            | CrtControlReg::S3_HW_CURSOR_DEAD_3
            | CrtControlReg::S3_HW_CURSOR_DEAD_4
            | CrtControlReg::S3_HW_CURSOR_DEAD_5
            | CrtControlReg::S3_HW_CURSOR_DEAD_6
            | CrtControlReg::S3_HW_CURSOR_DEAD_7
            | CrtControlReg::S3_HW_CURSOR_DEAD_8
            | CrtControlReg::S3_HW_CURSOR_DEAD_9
            | CrtControlReg::S3_HW_CURSOR_DEAD_10
            | CrtControlReg::S3_HW_CURSOR_DEAD_11 => {
                tracing::warn!("hw cursor accessed");
            }

            CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_1_REGISTER => {
                // Bits 0-3 can be ignored. The following are important:
                //      bit 4-5     - pixel length (1, 2, reserved, 4 bytes)
                //      bit 0/6-7   - graphics engine screen width
                self.update_s3_state();
            }

            CrtControlReg::S3_GENERAL_OUTPUT_REGISTER => {
                // Bits 0-3 are read-only, so we will put them back to their old value.
                self.state.persistent_state.crt_control_regs[reg] &= 0xF0;
                self.state.persistent_state.crt_control_regs[reg] |= old_value & 0x0F;
            }

            CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_CONTROL_REGISTER => {
                // We can ignore most of the bits in this register. Several
                // are important:
                //      bit 0-1 - linear address window size (64k, 1Mb, 2Mb, 4Mb)
                //      bit 4   - enable linear addressing
                self.s3_setup_linear_address_window();
                self.update_access_vars();
            }

            CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_2_REGISTER => {
                self.calculate_page_offset();
                self.update_access_vars();
                self.calculate_line_offset_pixels();
            }

            CrtControlReg::S3_EXTENDED_DAC_CONTROL_REGISTER => {
                // This used to tell us if the hardware cursor was in Windows mode or X11.
                // With no more hardware cursor, we don't do anything with this.
            }

            CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_1_REGISTER
            | CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_2_REGISTER => {
                let new_base = (self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_2_REGISTER]
                    as u64
                    | ((self.state.persistent_state.crt_control_regs
                        [CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_1_REGISTER]
                        as u64)
                        << 8))
                    * 64
                    * 1024;
                self.s3_set_linear_address_base(new_base);
            }

            CrtControlReg::S3_EXTENDED_BIOS_FLAG_2_REGISTER
            | CrtControlReg::S3_EXTENDED_BUS_GRANT_REGISTER => {
                tracing::warn!(?reg, value, "unexpected access");
            }

            CrtControlReg::S3_EXTENDED_VERTICAL_OVERFLOW_REGISTER
            | CrtControlReg::S3_EXTENDED_HORIZONTAL_OVERFLOW_REGISTER => {
                self.calculate_monitor_timing();
            }

            CrtControlReg::S3_BIOS_FLAG_REGISTER
            | CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_3_REGISTER
            | CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_5_REGISTER
            | CrtControlReg::S3_EXTENDED_MISC_CONTROL_0_REGISTER
            | CrtControlReg::S3_CONFIGURATION_3_REGISTER
            | CrtControlReg::S3_EXTENDED_BIOS_FLAG_3_REGISTER
            | CrtControlReg::S3_EXTENDED_BIOS_FLAG_4_REGISTER
            | CrtControlReg::S3_EXTENDED_BIOS_FLAG_5_REGISTER
            | CrtControlReg::S3_EXTENDED_BIOS_FLAG_6_REGISTER
            | CrtControlReg::CONFIGURATION_4_REGISTER => {
                // We don't need to support these
            }

            CrtControlReg::S3_EXTENDED_MEMORY_CONTROL_4_REGISTER => {
                // Bits 5-6 control byte-swapping (?). Other bits are always zero.
                if value & 0x60 != 0 {
                    tracing::warn!(?reg, value, "unexpected bit");
                }

                self.state.persistent_state.crt_control_regs[reg] &= 0x60;
            }

            CrtControlReg::S3_EXTENDED_MISC_CONTROL_1_REGISTER => {
                // The low-order bit of this register is the same as
                // that of 0x4AE8 and controls the enabling of enhanced mode.
                // None of the other bits are interesting.
                self.state.persistent_state.s3.adv_function_control_reg &= !0x0001;
                self.state.persistent_state.s3.adv_function_control_reg |= value as u16 & 0x01;
                self.calculate_graphics_mode_variables();
            }

            CrtControlReg::S3_EXTENDED_MISC_CONTROL_2_REGISTER => {
                // Bits 4-7 control the color mode. Bits 2-3 control
                // the "streams processor" which is not available on
                // the Trio.
                self.calculate_graphics_mode_variables();

                // The dot-clock routine uses the bits-per-pixel
                // setting which is adjusted by RecalcGraphicsModeVars
                // above. So we may need to readjust it.
                self.calculate_monitor_timing();
            }

            CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_3_REGISTER => {
                // This is an alternate way of setting the display
                // start address (at which pixels are to be displayed).
                // If this value is zero, the value is obtained using
                // the older mechanism where bits are scattered in a
                // number of registers. If non-zero, these older
                // registers are ignored.
                // NOTE:  The spec says that only the low 4 bits count.  But see NOTE in
                // CalculatePageOffset().  --richyam
                self.state.persistent_state.crt_control_regs[reg] &= 0x3F;
                self.state.persistent_state.crt_control_regs_shadow[reg] = value;
                self.calculate_page_offset();
            }

            CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_4_REGISTER => {
                // This is an alternate way of setting the CPU base
                // address (used to access windows within the display
                // RAM). Similar to 0x69 above.

                // other bits are reserved
                self.state.persistent_state.crt_control_regs[reg] &= 0x3F;
                self.state.persistent_state.crt_control_regs_shadow[reg] = value;
                self.update_access_vars();
            }

            CrtControlReg::CUSTOM_VS_1_REGISTER | CrtControlReg::CUSTOM_VS_2_REGISTER => {
                // These two registers are used to deal with large resolutions above
                // the 1600x1200 screen size.
                self.update_s3_state();
            }

            CrtControlReg::CUSTOM_VS_BIOS_LOGO_REGISTER => {
                // This register is used by the BIOS to enable and disable a
                // special "BIOS Logo" mode. When enabled, all video comes
                // from our private splash screen instead of vram.
                self.record_video_mode_change();
                self.force_screen_redraw();
            }

            CrtControlReg::CUSTOM_VS_GENERAL_EXTENSION_REGISTER => {
                self.handle_general_extension_register_write(value);
            }

            _ => {}
        }
    }

    /// Handles writes to the general extension register, which handles certain special
    /// needs:
    ///
    /// The bios needs a way to clear the screen.  It used to use the S3 accelerator,
    /// but we took that out, since it was complicated and burdensome to maintain, while
    /// being slow and undesirable.  But the bios still needs a way to clear the screen,
    /// so we gave it this little backdoor.
    ///
    /// As of win8, the synthvid vsc needs a way to use this device to handle crash blue
    /// screens.
    fn handle_general_extension_register_write(&mut self, requested_operation: u8) {
        match requested_operation {
            spec::BIOS_CLEAR_SCREEN_CODE => {
                // The way the old bios code drove the accelerator for this, it ended up
                // zeroing all of vram, so we shall just do that directly.
                self.vram
                    .fill_at(0, 0, self.vram_size as usize)
                    .expect("framebuffer is mapped");
            }

            spec::SYNTHVID_BLUE_SCREEN_CODE => {
                // Handles a request from the synthvid vsc to prepare for handling a crash
                // blue screen.  This means switching modes and becoming the active video.
                // Then the vsc can drive the blue screen, because we share vram.  (It can't
                // drive it through the VideoSynthDevice because that requires vmbus, which
                // isn't functional during a guest crash).
                self.do_blue_screen_mode_change();
                self.suppress_initial_activation = false;
                self.request_activation();
            }

            _ => {
                // Anything we don't expect just gets ignored.
            }
        }
    }

    fn write_vga_sequence_reg(&mut self, reg_index: VgaSequencerReg, new_value: u8) {
        let old_reg_value = self.state.persistent_state.vga_sequencer_regs[reg_index];

        if old_reg_value != new_value {
            self.state.persistent_state.vga_sequencer_regs[reg_index] = new_value;

            match reg_index {
                VgaSequencerReg::RESET_REGISTER => {
                    // Do nothing.. we don't need to do a hardware clock reset here
                }

                VgaSequencerReg::CLOCKING_MODE_REGISTER => {
                    // Check to see whether we're turning the video on or off. Did state change?
                    if (old_reg_value ^ new_value) & 0x20 != 0 {
                        self.state.persistent_state.video_enabled = (0x20 & new_value) == 0;
                        self.force_screen_redraw();

                        /* TODO
                        if self.state.PersistentState.VideoEnabled && todo!("!m_IsTheActiveVideo") {
                            self.RequestActivation();
                        }
                        */
                    }

                    // If they are changing the dot clock value, we may need
                    // to pixel double.
                    if (old_reg_value ^ new_value) & 0x08 != 0 {
                        self.calculate_monitor_timing();
                    }
                }

                VgaSequencerReg::PLANE_WRITE_MASK_REGISTER => {
                    self.state.persistent_state.vga_sequencer_regs_shadow[reg_index] = new_value;
                    let masked = new_value & 0xF;
                    self.state.persistent_state.vga_sequencer_regs[reg_index] = masked;

                    if self.state.plane_write_mask != masked {
                        self.state.plane_write_mask = masked;
                        self.update_access_vars();
                    }
                }

                VgaSequencerReg::CHARACTER_FONT_SELECT_REGISTER => {
                    self.calculate_text_mode_variables();
                }

                VgaSequencerReg::MEMORY_MODE_CONTROL_REGISTER => {
                    self.state.chain_4_mode = (new_value & spec::SEQ_MEM_MODE_CHAIN4_MASK) != 0;
                    self.state.odd_even_mode = (new_value & spec::SEQ_MODE_ODD_EVEN_MASK) == 0;
                    self.update_access_vars();
                    self.calculate_graphics_mode_variables();
                    self.calculate_monitor_timing();
                }

                VgaSequencerReg::UNLOCK_S3_EXTENDED_SEQUENCER_REGISTERS_REGISTER => {
                    // We'll ignore the locking/unlocking for now
                }

                //
                // Old comment:
                // All of these registers are new on the trio-64 and did not exist on
                // the 928. These registers aren't set properly by the current 928 BIOS,
                // so we'll set their values, but ignore them. This MUST change if we
                // get a proper trio 64 BIOS. See SetSVGADotClock for more details.

                // Seems to be dated, because the original registered cased here
                // Didn't even correspond to what's in the Trio64V docs.  And there appears
                // to no longer be any "SetSVGADotClock" to see.  An old comment also
                // suggested that Corel Linux installer accesses register 10, but I'm not sure
                // we're even talking about the same registers anymore.  In any case, we
                // continue to quietly do nothing with these:
                //
                VgaSequencerReg::UNSUPPORTED_09_REGISTER
                | VgaSequencerReg::UNSUPPORTED_0A_REGISTER
                | VgaSequencerReg::UNSUPPORTED_0B_REGISTER
                | VgaSequencerReg::UNSUPPORTED_0D_REGISTER
                | VgaSequencerReg::UNSUPPORTED_10_REGISTER
                | VgaSequencerReg::UNSUPPORTED_11_REGISTER
                | VgaSequencerReg::UNSUPPORTED_12_REGISTER
                | VgaSequencerReg::UNSUPPORTED_13_REGISTER
                | VgaSequencerReg::UNSUPPORTED_14_REGISTER
                | VgaSequencerReg::UNSUPPORTED_15_REGISTER
                | VgaSequencerReg::UNSUPPORTED_16_REGISTER
                | VgaSequencerReg::UNSUPPORTED_17_REGISTER
                | VgaSequencerReg::UNSUPPORTED_18_REGISTER
                | VgaSequencerReg::UNSUPPORTED_1C_REGISTER => {}

                _ => {
                    // non-existent register
                }
            }
        }
    }

    fn write_vga_attribute_reg(&mut self, attrib_reg: VgaAttribReg, new_value: u8) {
        let old_value = self.state.persistent_state.vga_attrib_regs[attrib_reg];

        if old_value != new_value {
            self.state.persistent_state.vga_attrib_regs[attrib_reg] = new_value;

            if (attrib_reg >= VgaAttribReg::PALETTE_0_REGISTER)
                && (attrib_reg <= VgaAttribReg::PALETTE_F_REGISTER)
            {
                // Colors could have changed, so force complete redraw
                self.mark_palette_dirty();
            } else {
                match attrib_reg {
                    VgaAttribReg::MODE_CONTROL_REGISTER => {
                        let was_text_mode = self.state.persistent_state.text_mode;

                        self.state.persistent_state.text_mode =
                            (new_value & spec::ATTRIBUTE_CONTROLLER_MODE_CONTROL_AG_MASK) == 0;

                        // This can change the color attributes, so force redraw
                        self.force_screen_redraw();

                        if was_text_mode != self.state.persistent_state.text_mode {
                            self.record_video_mode_change();
                            self.mark_palette_dirty();
                        }

                        // Recompute text mode variables to handling blinking and mono modes
                        if self.state.persistent_state.text_mode {
                            // This call also calls SetLegacyWritesTimer() - this is
                            // potentially needed to get direct text mode memory block
                            // write notifications set up.
                            self.calculate_text_mode_variables();
                        }
                    }

                    VgaAttribReg::COLOR_PLANE_ENABLE_REGISTER
                    | VgaAttribReg::PIXEL_PADDING_REGISTER => {
                        // These can change the color attributes, so force redraw
                        self.mark_palette_dirty();
                        self.calculate_graphics_mode_variables();
                    }

                    VgaAttribReg::HORIZONTAL_PIXEL_PANNING_REGISTER => {
                        // This can affect scrolling; force a redraw
                        self.force_screen_redraw();
                    }

                    VgaAttribReg::VGA_EXTENSION_REGISTER_16 => {
                        //
                        // Must not allow bit 4 of this register to flip or the
                        // Tseng Labs ET4000 driver (under Windows 2000) will think that
                        // this is an ET4000 chip.  Note that I have no idea what this
                        // register (which previously wasn't even defined in this code
                        // base) actually "does" in the mind of a 1995-era VGA board
                        // designer.  Presumably it does nothing on non-Tseng parts,
                        // or the Tseng driver wouldn't believe so strongly that
                        // writability implies ownership.
                        //

                        self.state.persistent_state.vga_attrib_regs[attrib_reg] &= !(1 << 4);
                    }
                    _ => {}
                }
            }
        }
    }

    fn write_vga_graphics_control_reg(&mut self, graphics_reg: VgaGraphicsReg, new_value: u8) {
        let old_value = self.state.persistent_state.vga_graphics_regs[graphics_reg];

        if old_value != new_value {
            self.state.persistent_state.vga_graphics_regs[graphics_reg] = new_value;

            match graphics_reg {
                VgaGraphicsReg::SET_RESET_DATA_REGISTER => {
                    let masked = new_value & 0xF;
                    self.state.set_reset_value = masked;
                    self.state.persistent_state.vga_graphics_regs[graphics_reg] = masked;
                    self.state.persistent_state.vga_graphics_regs_shadow[graphics_reg] = new_value;
                    self.update_access_vars();
                }

                VgaGraphicsReg::ENABLE_SET_RESET_DATA_REGISTER => {
                    let masked = new_value & 0xF;
                    self.state.set_reset_mask = masked;
                    self.state.persistent_state.vga_graphics_regs[graphics_reg] = masked;
                    self.state.persistent_state.vga_graphics_regs_shadow[graphics_reg] = new_value;
                    self.update_access_vars();
                }

                VgaGraphicsReg::COLOR_COMPARE_REGISTER => {
                    let masked = new_value & 0xF;
                    self.state.color_compare_value = masked;
                    self.state.persistent_state.vga_graphics_regs[graphics_reg] = masked;
                    self.state.persistent_state.vga_graphics_regs_shadow[graphics_reg] = new_value;
                    // Compute the color compare mask
                    self.state.color_compare_mask32 = expand_mask(self.state.color_compare_value);
                }

                VgaGraphicsReg::RASTER_OP_ROTATE_COUNT_REGISTER => {
                    // Convert from rotate right to rotate left value
                    self.state.data_rotate_value = new_value & 0x7;
                    if self.state.data_rotate_value != 0 {
                        self.state.data_rotate_value = 8 - self.state.data_rotate_value;
                    }

                    self.state.function_select = (new_value >> 3) & 0x3;
                    self.update_access_vars();
                }

                VgaGraphicsReg::READ_PLANE_SELECT_REGISTER => {
                    let masked = new_value & 0x3;
                    self.state.plane_read_num = masked;
                    self.state.persistent_state.vga_graphics_regs[graphics_reg] = masked;
                    self.state.persistent_state.vga_graphics_regs_shadow[graphics_reg] = new_value;
                }

                VgaGraphicsReg::MODE_REGISTER => {
                    self.state.write_mode = new_value & 0x3;
                    self.state.read_mode = (new_value >> 3) & 0x1;

                    // If the color shift value changed, we also need to
                    // recalculate the palette.
                    if ((new_value ^ old_value) & 0x60) != 0 {
                        self.calculate_graphics_mode_variables();
                        self.calculate_monitor_timing();
                    }
                }

                VgaGraphicsReg::MEMORY_MAP_MODE_CONTROL_REGISTER => {
                    self.calculate_vga_address_range();
                    self.update_access_vars();
                }

                VgaGraphicsReg::COLOR_DONT_CARE_REGISTER => {
                    let masked = new_value & 0xF;
                    self.state.color_dont_care = masked;
                    self.state.persistent_state.vga_graphics_regs[graphics_reg] = masked;
                    self.state.persistent_state.vga_graphics_regs_shadow[graphics_reg] = new_value;

                    // Compute the color-don't-care mask
                    self.state.color_dont_care_mask32 = !expand_mask(self.state.color_dont_care);
                }

                VgaGraphicsReg::BIT_MASK_REGISTER => {
                    let v = new_value as u32;
                    self.state.pixel_mask32 = v | (v << 8) | (v << 16) | (v << 24);
                }
                _ => {}
            }
        }
    }

    /// This routine recalculates any access variables derived from
    /// other access variables. It should be called when any of
    /// the other values change.
    fn update_access_vars(&mut self) {
        // The "window" or 64Kb chunk we can currently address is stored in
        // two different CRT registers - unless they are overridden by a
        // newer mechanism which stores the entire address in a single register.

        assert_eq!(
            self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_4_REGISTER]
                & !0x3F,
            0
        );

        let mut new_video_offset = self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_4_REGISTER]
            as u32;

        if new_video_offset == 0 || !self.state.persistent_state.s3.enhanced_mode {
            new_video_offset = (self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_REGISTER_LOCK_REGISTER] as u32
                & 0xF)
                | ((self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_2_REGISTER]
                    as u32
                    & 0xC)
                    << 2);
        }

        // Multiply by 64Kb to get the requested window base.
        new_video_offset <<= 16;

        if self.state.video_window_offset != new_video_offset {
            self.state.video_window_offset = new_video_offset;

            self.s3_setup_linear_address_window();
        }

        if self.state.persistent_state.s3.enhanced_mode {
            self.state.dbl_word_mode = false;
        } else {
            self.state.dbl_word_mode = (self.state.persistent_state.crt_control_regs
                [CrtControlReg::UNDERLINE_LOCATION_REGISTER]
                & spec::CRT_UNDERLINE_MODE_DWMASK)
                != 0;

            let pixel_mask = self.state.persistent_state.vga_graphics_regs
                [VgaGraphicsReg::BIT_MASK_REGISTER] as u32;

            self.state.pixel_mask32 =
                pixel_mask | (pixel_mask << 8) | (pixel_mask << 16) | (pixel_mask << 24);

            self.state.plane_write_mask32 = expand_mask(self.state.plane_write_mask);
            self.state.plane_3_in_use = (self.state.plane_write_mask32 & 0xFF000000) != 0;
            self.state.set_reset_mask32 = expand_mask(self.state.set_reset_mask);
            self.state.set_reset_value32 = expand_mask(self.state.set_reset_value);

            // Mask out unenabled set/reset fields
            self.state.set_reset_mask_value32 =
                self.state.set_reset_value32 & self.state.set_reset_mask32;
        }
    }

    /// This routine is called when a new linear base register is written to the
    /// PCI card's base address register.
    fn s3_set_linear_address_base(&mut self, new_base: u64) {
        // Convert to 64Kb block index
        let converted_base = (new_base / (64 * 1024)) as u32;

        if new_base != self.state.persistent_state.s3.linear_addr_window as u64 {
            // Write the value to the S3 registers
            self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_2_REGISTER] =
                converted_base as u8;

            self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_POSITION_1_REGISTER] =
                (converted_base >> 8) as u8;

            self.state.persistent_state.s3.linear_addr_window = new_base as u32;

            // Change the mapping
            self.s3_setup_linear_address_window();
        }
    }

    /// This routine should be called when the base or window offset
    /// of the linear address is changing. It remaps the emulated
    /// linear frame buffer as necessary to address the specified
    /// window within VRAM.
    fn s3_setup_linear_address_window(&mut self) {
        let use_linear_addr = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_CONTROL_REGISTER]
            & 0x10)
            != 0;

        let window_size_code = self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_LINEAR_ADDRESS_WINDOW_CONTROL_REGISTER]
            & 0x3;

        let mut window_size = if window_size_code == 0 {
            64 * 1024
        } else {
            (1 << (window_size_code - 1)) * (1024 * 1024)
        };

        // Limit the actual window size to the size of VRAM
        if window_size > self.vram_size {
            window_size = self.vram_size;
        }

        // The linear base window is always scaled by 64Kb, but must be aligned to the window size.
        let mut window_base = self.state.persistent_state.s3.linear_addr_window;
        window_base &= !(window_size - 1);

        //
        // It's generally a bad mistake to set the linear frame
        // buffer address to zero when feature is enabled!
        //
        assert!(!(window_base == 0 && use_linear_addr));

        if use_linear_addr {
            self.control.map(
                window_base.into(),
                Some(MemoryRange::new(0..window_size.into())),
            );
        } else {
            self.control.unmap();
        }

        self.state.persistent_state.s3.addr_window_offset = self.state.video_window_offset;
        self.state.persistent_state.s3.linear_mapping = use_linear_addr;
        self.state.persistent_state.s3.addr_window_size = window_size;
        self.state.persistent_state.s3.addr_window_base = window_base;
    }

    /// This function recalculates the internal graphics-mode variables when ever
    /// the mode registers are altered.
    fn calculate_graphics_mode_variables(&mut self) {
        let current_dac_mode = self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_MISC_CONTROL_2_REGISTER]
            & 0xF0;

        let new_bits_per_pixel;

        // Are we using enhanced-mode features?
        if (self.state.persistent_state.s3.adv_function_control_reg & 0x1) != 0 {
            self.state.persistent_state.enhanced_dac_mode = true;

            if current_dac_mode == 0x70 {
                tracing::warn!("We don't support 24-bpp mode");
            }

            if current_dac_mode == 0xD0 {
                new_bits_per_pixel = 32;
            } else if current_dac_mode == 0x50 {
                new_bits_per_pixel = 16;
            } else if current_dac_mode == 0x30 {
                new_bits_per_pixel = 15;
            } else {
                new_bits_per_pixel = 8;
            }
        } else {
            self.state.persistent_state.enhanced_dac_mode = false;

            // Shift mode 2/3 indicates we should use 256 colors, 1 indicates
            // 4 colors and 0 indicates 16 colors.
            let shift_reg_value =
                (self.state.persistent_state.vga_graphics_regs[VgaGraphicsReg::MODE_REGISTER] >> 5)
                    & 0x3;

            if shift_reg_value >= 2 {
                new_bits_per_pixel = 8;
            } else if shift_reg_value == 1 {
                new_bits_per_pixel = 2;
            } else if (self.state.persistent_state.crt_control_regs
                [CrtControlReg::MODE_CONTROL_REGISTER]
                & 0x20)
                == 0
                && self.state.persistent_state.vga_attrib_regs
                    [VgaAttribReg::COLOR_PLANE_ENABLE_REGISTER]
                    == 1
            {
                new_bits_per_pixel = 1;
            } else {
                new_bits_per_pixel = 4;
            }
        }

        // If the bits-per-pixel changed, we need to force a complete redraw.
        if self.state.persistent_state.bits_per_pixel != new_bits_per_pixel {
            self.state.persistent_state.bits_per_pixel = new_bits_per_pixel;
            self.record_video_mode_change();
            self.mark_palette_dirty();
            self.calculate_monitor_timing();
        }

        // Get the line compare value.
        let new_line_compare = self.get_line_compare_value();

        if new_line_compare != self.state.persistent_state.line_compare_value {
            self.state.persistent_state.line_compare_value = new_line_compare;
            self.force_screen_redraw();
        }
    }

    /// This function sets a new dot clock value which defines the visible size of
    /// the screen.
    ///
    /// We actually ignore the clock timings completely.  The clock timing is
    /// usually just calculated as:
    ///
    /// Horizontal Total * Vertical Total * refresh rate.
    ///
    /// Since the Horizontal Total and Vertical Total are mostly just used to
    /// configure a real monitor, those values aren't too useful to us.  The real
    /// mechanism we use to determine the size of the visible display are the
    /// Horizontal and Vertical End registers.
    ///
    /// Under normal circumstances, we can read these values directly and calculate
    /// the size of the display from them.  However, there are at least two special
    /// cases that the Linux drivers use.  As of yet, I haven't been able to find a
    /// real piece of Trio64 that documents these, so we just assume that the Linux
    /// driver is correct for now, and we'll keep hunting for better documentation.
    /// Our custom-hacked SVGA bios now uses these assumptions when configuring the
    /// registers.
    ///
    /// In addition, CGA modes are also special cased.
    fn calculate_monitor_timing(&mut self) {
        // The vertical limit is stored in three different registers.
        let mut vertical_end_reg = 1 + self.state.persistent_state.crt_control_regs
            [CrtControlReg::VERTICAL_DISPLAY_END_REGISTER]
            as u16;

        if self.state.persistent_state.crt_control_regs[CrtControlReg::OVERFLOW_REGISTER] & (1 << 1)
            != 0
        {
            vertical_end_reg += 256;
        }
        if self.state.persistent_state.crt_control_regs[CrtControlReg::OVERFLOW_REGISTER] & (1 << 6)
            != 0
        {
            vertical_end_reg += 512;
        }
        if self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_VERTICAL_OVERFLOW_REGISTER]
            & (1 << 1)
            != 0
        {
            vertical_end_reg += 1024;
        }

        // In some cases (e.g. The Incredible Machine) they set up the display end registers
        // but they also set the vertical blanking register to a value lower than the display
        // end.  On real hardware, I think this would result in a black area drawn for the
        // rest of the screen.  In our case (taken from earlier VPC versions), we just
        // shorten the screen.
        let vertical_blank_reg = 1
            + (self.state.persistent_state.crt_control_regs
                [CrtControlReg::START_VERTICAL_BLANK_REGISTER] as u16
                | ((self.state.persistent_state.crt_control_regs[CrtControlReg::OVERFLOW_REGISTER]
                    as u16
                    & (1 << 3))
                    << 5)
                | ((self.state.persistent_state.crt_control_regs
                    [CrtControlReg::MAX_SCANLINE_REGISTER] as u16
                    & (1 << 5))
                    << 4)
                | ((self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_VERTICAL_OVERFLOW_REGISTER]
                    as u16
                    & (1 << 2))
                    << 8));

        if vertical_blank_reg < vertical_end_reg {
            vertical_end_reg = vertical_blank_reg - 1;
        }

        // The horizontal limit is stored in two different registers.  The final
        // result is multiplied by 8 because we're scanning out 8 pixels each time
        // -- this is related to text scanning, but the graphics hardware works the
        // same way.

        let mut horizontal_end_reg = 1 + self.state.persistent_state.crt_control_regs
            [CrtControlReg::HORIZONTAL_DISPLAY_END_REGISTER]
            as u16;

        if self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_HORIZONTAL_OVERFLOW_REGISTER]
            & (1 << 1)
            != 0
        {
            horizontal_end_reg += 256;
        }

        horizontal_end_reg *= 8;

        let mut new_width = horizontal_end_reg;
        let mut new_height = vertical_end_reg;

        // Linux special case #1
        // When the depth is 16 on a Trio 64, the Linux driver doubles all of the
        // horizontal register values.
        if self.state.persistent_state.bits_per_pixel == 16 {
            new_width /= 2;
        } else if self.state.persistent_state.bits_per_pixel == 2 {
            // CGA mode
            new_width *= 2;
        } else if self.state.persistent_state.bits_per_pixel == 4
            && (self.state.persistent_state.vga_sequencer_regs
                [VgaSequencerReg::CLOCKING_MODE_REGISTER]
                & 0x08)
                != 0
        {
            // EGA/VGA mode
            new_width *= 2;
        }

        // Linux special case #2
        // When setting up an interlaced mode, the Linux driver only uses half
        // the normal vertical register values.
        if self.state.persistent_state.crt_control_regs[CrtControlReg::S3_MODE_CONTROL_REGISTER]
            & (1 << 5)
            != 0
        {
            new_height *= 2;
        }

        // Make sure we don't use an errantly large width or height.
        // Note that max value for newWidth is 4096 (following max-case paths to
        // this point), and max value for newHeight is 2048, so the below
        // multiplication does not overflow.

        if (new_width as u32 * new_height as u32 * (self.get_current_video_depth() / 8) as u32)
            > self.vram_size
        {
            // totally bogus setting, ignore entirely
            return;
        }

        // Did any of the values change?
        let mut mode_changed = false;
        if self.state.persistent_state.pcvideo_width != new_width {
            self.state.persistent_state.pcvideo_width = new_width;
            mode_changed = true;
        }

        if self.state.persistent_state.pcvideo_height != new_height {
            self.state.persistent_state.pcvideo_height = new_height;
            mode_changed = true;
        }

        if self.state.persistent_state.adj_pcvideo_height != new_height {
            self.state.persistent_state.adj_pcvideo_height = new_height;
            mode_changed = true;
        }

        if mode_changed {
            if self.state.persistent_state.text_mode {
                self.calculate_text_mode_variables();
            }

            self.record_video_mode_change();
        }
    }

    /// This function recalculates the internal text-mode variables when
    /// ever the mode registers are altered.
    fn calculate_text_mode_variables(&mut self) {
        // Determine the new base of the text mode video buffer
        let temp_byte = self.state.persistent_state.vga_sequencer_regs
            [VgaSequencerReg::CHARACTER_FONT_SELECT_REGISTER];

        let old_value = self.text.char_set_1;
        self.text.char_set_1 = ((temp_byte >> 1) & 0x6) | ((temp_byte >> 5) & 0x1);

        if self.text.char_set_1 != old_value {
            self.force_screen_redraw();
        }

        let old_value = self.text.char_set_2;
        self.text.char_set_2 = ((temp_byte << 1) & 0x6) | ((temp_byte >> 4) & 0x1);

        if self.text.char_set_2 != old_value {
            self.force_screen_redraw();
        }

        self.text.character_set_512 = self.text.char_set_1 != self.text.char_set_2;

        // Set the text font height (assume it is always at least 10 pixels)
        let old_value = self.text.text_char_height;

        let temp_byte = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::MAX_SCANLINE_REGISTER]
            & 0x1F)
            + 1;

        // Make sure we are using a screen height within reason
        let mut screen_rows = self.state.persistent_state.pcvideo_height;
        if !(320..=480).contains(&screen_rows) {
            screen_rows = 400;
        }

        if temp_byte >= 8 {
            self.text.text_char_height = temp_byte;
        } else {
            self.text.text_char_height = spec::DEFAULT_VGA_CHARACTER_HEIGHT;
        }

        if self.text.text_char_height != old_value {
            // Force a resizing of the window if necessary
            // This also does a redraw
            self.record_video_mode_change();
        }

        //
        // Make sure we don't overflow some of our internal arrays -
        // limit the row count to match our assumptions.
        //
        let old_value = self.text.text_rows;
        self.text.text_rows = (screen_rows / self.text.text_char_height as u16) as u8;
        if self.text.text_rows > spec::TOTAL_VGA_MAX_TEXT_ROWS {
            self.text.text_rows = spec::TOTAL_VGA_MAX_TEXT_ROWS;
        }

        if self.text.text_rows != old_value {
            // Force a resizing of the window if necessary
            // This also does a redraw
            self.record_video_mode_change();
        }

        let is_lo_res = self.state.persistent_state.crt_control_regs
            [CrtControlReg::START_HORIZONTAL_BLANK_REGISTER]
            <= spec::TOTAL_VGA_LORES_TEXT_COLUMNS;
        if is_lo_res != self.text.lo_res_text_mode {
            // If we are switching from lo to hi res, or vice versa, force redraw
            self.record_video_mode_change();
        }

        self.text.lo_res_text_mode = is_lo_res;
        self.text.current_text_columns = if is_lo_res {
            spec::TOTAL_VGA_LORES_TEXT_COLUMNS.into()
        } else {
            spec::TOTAL_VGA_HIRES_TEXT_COLUMNS.into()
        };

        self.text.text_char_width = if is_lo_res {
            spec::VGA_LORES_CHARACTER_WIDTH
        } else {
            spec::VGA_HIRES_CHARACTER_WIDTH
        };

        // check for blinking
        let attr_mode_control =
            self.state.persistent_state.vga_attrib_regs[VgaAttribReg::MODE_CONTROL_REGISTER];

        self.text.blinking_enabled = (attr_mode_control & 0x08) != 0;
        self.evaluate_text_blink_timer_active_status();
        self.text.mono_text_mode = (attr_mode_control & 0x02) != 0;

        self.calculate_text_cursor_variables();
    }

    /// This function recalculates the internal cursor variables when
    /// ever the cursor changes position or other video parameters change.
    fn calculate_text_cursor_variables(&mut self) {
        self.text.draw_text_cursor = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::CURSOR_START_REGISTER]
            & spec::CURSOR_ENABLED_FLAG)
            == 0;

        self.evaluate_cursor_blink_timer_active_status();

        let start_scan_line = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::CURSOR_START_REGISTER]
            & spec::CURSOR_SCAN_LINE_MASK) as u16;

        let end_scan_line = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::CURSOR_END_REGISTER]
            & spec::CURSOR_SCAN_LINE_MASK) as u16;

        let char_height = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::MAX_SCANLINE_REGISTER]
            & spec::CRT_MAX_SCAN_LINE_MASK) as u16
            + 1;

        // Calculate cursor offset and height
        self.text.cursor_first_scanline = start_scan_line;

        let cursor_height = if end_scan_line >= start_scan_line && start_scan_line <= char_height {
            end_scan_line - start_scan_line + 1
        } else {
            0
        };

        // Finally, calculate the last line of the cursor.
        self.text.cursor_last_scanline = self.text.cursor_first_scanline + cursor_height;
        self.text.cursor_first_scanline += 1;

        let mut cursor_loc = (((self.state.persistent_state.crt_control_regs
            [CrtControlReg::CURSOR_LOCATION_HI_REGISTER] as u16)
            << 8)
            & 0x3F00)
            | self.state.persistent_state.crt_control_regs
                [CrtControlReg::CURSOR_LOCATION_LO_REGISTER] as u16;

        cursor_loc =
            cursor_loc.saturating_sub(self.state.persistent_state.cur_page_start_offset as u16);

        // Calculate the current cursor row/column for this video mode
        self.text.cursor_row = cursor_loc / self.text.current_text_columns;
        self.text.cursor_col = cursor_loc % self.text.current_text_columns;
    }

    /// This function recalculates the line offset pixels (the row-pixels
    /// for the x86 video buffer). It forces a complete redraw if the
    /// line offset pixels value changes.
    ///
    /// Note that previously, this was called "line offset bytes", despite
    /// the fact that the value being set/calculated is actually in pixels.
    /// This was too confusing to keep.  Ideally, this routine *should*
    /// calculate the value in bytes, so that we don't have to keep multiplying
    /// by the pixel size every time we use it.  But at the present time,
    /// the risk seemed a little high, since we'd have to make sure we
    /// called this routine in *every* scenario where the mode might change
    /// and therefore the pixels-to-bytes calculation would need to be
    /// done again.
    fn calculate_line_offset_pixels(&mut self) {
        let line_offset = self.get_line_offset_pixels();
        if line_offset != self.state.persistent_state.line_offset_pixels {
            self.state.persistent_state.line_offset_pixels = line_offset;
            self.calculate_monitor_timing();
            self.force_screen_redraw();
        }
    }

    /// This routine recalculates the page start offset stored in four different CRT
    /// registers:
    ///
    /// bits 0-7    CRT reg 0x0C
    /// bits 8-15   CRT reg 0x0D
    ///
    /// if (bits 0-3 of CRT reg 0x69 are zero)
    ///   bits 16-17  CRT reg 0x31 bits 5-4
    ///   bits 18-19  CRT reg 0x51 bits 0-1
    /// else
    ///   bits 16-23  CRT reg 0x69 bits 0-7
    ///
    /// NOTE:  we have some confusion here.  CRT69 is defined as having the top 4
    /// bits reserved.  However, this seems to be some kind of mistake, because if
    /// that's so, there's no way to address all 4 meg of vram.  It makes logical
    /// sense to just use the whole register, and the comment above about bits 0-7
    /// seems to confirm that that's really what it's supposed to be.  I'm changing
    /// the bios to use CRT69 in this manner.  We'll still mask out the top two
    /// bits, to make sure we don't get an address beyond our hard-coded 4 meg vram.
    /// --richyam
    fn calculate_page_offset(&mut self) {
        let new_offset = self.get_page_offset();

        if self.state.persistent_state.cur_page_start_offset != new_offset {
            self.state.persistent_state.cur_page_start_offset = new_offset;

            if self.state.persistent_state.s3.enhanced_mode {
                self.force_screen_redraw();
            }
        }
    }

    /// This routine recalculates any S3 variables derived from
    /// other access variables. It should be called when any of
    /// the other values change.
    fn update_s3_state(&mut self) {
        // Update the graphics engine bits per pixel
        let pixel_len = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_1_REGISTER]
            >> 4)
            & 0x3;

        match pixel_len {
            0 => {
                self.state.persistent_state.s3.bits_per_pixel = 8;
            }

            1 => {
                self.state.persistent_state.s3.bits_per_pixel = 16;
            }

            2 | 3 => {
                // Case 2 is undefined, but there is some
                // indicatation that it actually represents
                // 24-bpp mode. We don't support it.
                if pixel_len == 2 {
                    tracing::warn!("unexpected pixel length 2");
                }
                self.state.persistent_state.s3.bits_per_pixel = 32;
            }
            _ => unreachable!(),
        }

        // Determine the screen width used by graphics coprocessor
        let screen_width_code = ((self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_1_REGISTER]
            >> 6)
            & 0x3)
            | ((self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_1_REGISTER]
                << 2)
                & 0x4);

        match screen_width_code {
            0 => {
                self.state.persistent_state.s3.screen_pixel_width = 1024;
            }

            1 => {
                self.state.persistent_state.s3.screen_pixel_width = 640;
            }

            2 => {
                self.state.persistent_state.s3.screen_pixel_width = 800;
            }

            3 => {
                self.state.persistent_state.s3.screen_pixel_width = 1280;
            }

            4 => {
                self.state.persistent_state.s3.screen_pixel_width = 1152;
            }

            5 => {
                // This is reserved on the real hardware, but used in the virtual hardware.
                self.state.persistent_state.s3.screen_pixel_width = 896;
            }

            6 => {
                self.state.persistent_state.s3.screen_pixel_width = 1600;
            }

            code => {
                // This is reserved on the real hardware, but unused in the virtual hardware.
                tracing::warn!(code, "unexpected screen width code");
            }
        }

        // Are we enabling/disabling enhanced mode?
        let enhanced_mode = (self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_MEMORY_CONFIGURATION_REGISTER]
            & 0x08)
            != 0;

        if self.state.persistent_state.s3.enhanced_mode != enhanced_mode {
            self.state.persistent_state.s3.enhanced_mode = enhanced_mode;

            self.update_access_vars();
            self.force_screen_redraw();
        }

        self.calculate_page_offset();
    }

    /// This routine recalculates the VGA access range. It should be
    /// called when the graphics controller misc register value is
    /// changed.
    fn calculate_vga_address_range(&mut self) {
        let range_start;
        let range_end;

        let address_mode = (self.state.persistent_state.vga_graphics_regs
            [VgaGraphicsReg::MEMORY_MAP_MODE_CONTROL_REGISTER]
            >> 2)
            & 0x3;

        // Calculate the new host memory staring/ending addresses
        match address_mode {
            0 => {
                range_start = 0xA0000;
                range_end = 0xC0000;
            }

            1 => {
                range_start = 0xA0000;
                range_end = 0xB0000;
            }

            2 => {
                range_start = 0xB0000;
                range_end = 0xB8000;
            }

            3 => {
                range_start = 0xB8000;
                range_end = 0xC0000;
            }
            _ => unreachable!(),
        }

        self.state.video_start_bus_range_offset = range_start;
        self.state.video_end_bus_range_offset = range_end;
    }

    fn write_pel_data_register(&mut self, data: u8) {
        let pel_reg_entry = self.state.persistent_state.pel_colors.as_mut_bytes();
        let len = pel_reg_entry.len();

        //
        // Only update the PEL register if the value changed
        //
        if pel_reg_entry[self.state.persistent_state.pel_reg_write_index as usize] != data {
            pel_reg_entry[self.state.persistent_state.pel_reg_write_index as usize] = data;

            //
            // Notify that the palette changed.
            //
            self.mark_palette_dirty();
        }

        self.state.persistent_state.pel_reg_write_index += 1;
        if self.state.persistent_state.pel_reg_write_index as usize >= len {
            self.state.persistent_state.pel_reg_write_index = 0;
        }
    }

    fn is_text_mode(&self) -> bool {
        self.state.persistent_state.video_enabled && self.state.persistent_state.text_mode
    }

    /// Considers modes like CGA, EGA, etc to be part of VGA mode.
    fn _is_vga_mode(&self) -> bool {
        self.state.persistent_state.video_enabled
            && !self.state.persistent_state.text_mode
            && !self.state.persistent_state.s3.enhanced_mode
    }

    fn _is_legacy_mode(&self) -> bool {
        self._is_vga_mode() || self.is_text_mode()
    }

    /// Requests that we become active video device.
    fn request_activation(&mut self) {
        if self.suppress_initial_activation {
            self.suppress_initial_activation = false;
        } else {
            todo!("ActivationRequested.Fire()");
        }
    }

    /// Records that a change has been made to the video mode,
    /// resolution or bit depth.
    fn record_video_mode_change(&mut self) {
        if self.suppress_initial_activation {
            // This is not the initial mode change, it is a fresh one.
            // Make sure it causes an activation when complete.
            self.suppress_initial_activation = false;
        }

        if !self.is_mode_change_pending {
            self.is_mode_change_pending = true;
            self.set_mode_change_timer();
        }
    }

    fn set_delayed_redraw_timer(&mut self) {
        self.is_delayed_redraw_timer_set = true;
        self.set_multi_purpose_timer();
    }

    fn set_multi_purpose_timer(&mut self) {
        // todo!()
    }

    fn set_mode_change_timer(&mut self) {
        // todo!()
    }

    fn evaluate_text_blink_timer_active_status(&mut self) {
        /*
        let textBlinkTimerShouldBeEnabled = self.IsTextMode()
            && self.text.BlinkingEnabled
            && self.IsRunning()
            && self.m_IsTheActiveVideo;

        if (textBlinkTimerShouldBeEnabled != (m_TextBlinkTimer->IsSet() == S_OK))
        {
            m_TextBlinkTimer->SetEnabled(textBlinkTimerShouldBeEnabled);
        }
        */
    }

    fn evaluate_cursor_blink_timer_active_status(&mut self) {
        /*        BOOL cursorBlinkTimerShouldBeEnabled =
            IsTextMode() &&
            m_TextModeState.DrawTextCursor &&
            IsRunning() &&
            m_IsTheActiveVideo;

        if (cursorBlinkTimerShouldBeEnabled != (m_CursorBlinkTimer->IsSet() == S_OK))
        {
            m_CursorBlinkTimer->SetEnabled(cursorBlinkTimerShouldBeEnabled);
        }*/
    }

    /// This function returns the proper mapping table for mapping
    /// an indexed PC palette into the direct colors.  It ensures that
    /// the tables are up to date for the current PC palette.
    fn rebuild_mapping_table(&mut self) {
        // If the palette has changed since the last time we generated the
        // mapping tables, we need to regenerate them.
        if self.palette_change_count == self.pixel_values_palette_count {
            return;
        }
        let max_index = if self.state.persistent_state.bits_per_pixel >= 8 {
            255
        } else {
            15
        };

        for pixel_value_index in 0..=max_index {
            self.mapping_table[pixel_value_index as usize] =
                self.vgacolor_index_to_argb32(pixel_value_index);
        }

        self.pixel_values_palette_count = self.palette_change_count;
    }

    fn update_render_state(&mut self) {
        self.rebuild_mapping_table();
        let render_state = if self.is_text_mode() {
            RenderState::Text(TextRenderState {
                text: self.text.clone(),
                cur_page_start_offset: self.state.persistent_state.cur_page_start_offset,
                mapping_table: self.mapping_table,
            })
        } else {
            RenderState::Graphics(GraphicsRenderState {
                bits_per_pixel: self.state.persistent_state.bits_per_pixel,
                cur_page_start_offset: self.state.persistent_state.cur_page_start_offset,
                line_offset_pixels: self.state.persistent_state.line_offset_pixels,
                width: self.state.persistent_state.pcvideo_width,
                height: self.state.persistent_state.adj_pcvideo_height,
                // Look at the dot clock to determine whether we need to pixel double
                pixel_double: self.state.persistent_state.vga_sequencer_regs
                    [VgaSequencerReg::CLOCKING_MODE_REGISTER]
                    & 0x08
                    != 0,
                pixel_pan: self.state.persistent_state.vga_attrib_regs
                    [VgaAttribReg::HORIZONTAL_PIXEL_PANNING_REGISTER]
                    & 7,
                mapping_table: self.mapping_table,
            })
        };
        self.render_control.update(render_state);
    }

    /// This function converts a color index into an RGB value. The
    /// method of conversion depends on the current mode.
    fn vgacolor_index_to_argb32(&self, index: u8) -> u32 {
        let color_reg_index = if (self.state.persistent_state.bits_per_pixel < 8)
            && (!self.state.persistent_state.enhanced_dac_mode)
        {
            // Turn off some of the planes if specified by the plane enable reg
            let palette_reg_index = index
                & self.state.persistent_state.vga_attrib_regs
                    [VgaAttribReg::COLOR_PLANE_ENABLE_REGISTER];

            let palette_reg_value =
                self.state.persistent_state.vga_attrib_regs[VgaAttribReg(palette_reg_index & 0xF)];

            if (self.state.persistent_state.vga_attrib_regs[VgaAttribReg::MODE_CONTROL_REGISTER]
                & spec::ATTRIBUTE_CONTROLLER_MODE_CONTROL_IPS_MASK)
                == 0
            {
                // Use bits 0-5 from palette register and bits 6-7 from pixel padding reg
                (palette_reg_value & 0x3F)
                    | ((self.state.persistent_state.vga_attrib_regs
                        [VgaAttribReg::PIXEL_PADDING_REGISTER]
                        << 4)
                        & 0xC0)
            } else {
                // Use bits 0-3 from palette register and bits 4-7 from pixel padding reg
                (palette_reg_value & 0x0F)
                    | ((self.state.persistent_state.vga_attrib_regs
                        [VgaAttribReg::PIXEL_PADDING_REGISTER]
                        << 4)
                        & 0xF0)
            }
        } else {
            index
        };

        let color_comp =
            self.state.persistent_state.pel_colors[color_reg_index as usize].red & 0x3F;
        let red = ((color_comp << 2) | (color_comp >> 4)) as u32;

        let color_comp =
            self.state.persistent_state.pel_colors[color_reg_index as usize].green & 0x3F;
        let green = ((color_comp << 2) | (color_comp >> 4)) as u32;

        let color_comp =
            self.state.persistent_state.pel_colors[color_reg_index as usize].blue & 0x3F;
        let blue = ((color_comp << 2) | (color_comp >> 4)) as u32;

        0xFF000000 | (red << 16) | (green << 8) | blue
    }

    fn mark_palette_dirty(&mut self) {
        self.palette_change_count += 1;
        self.force_screen_redraw();
    }

    /// Forces a screen redraw by arming the appropriate timer
    fn force_screen_redraw(&mut self) {
        //
        // A mode change trumps a full refresh, so if a mode change
        // is already pending, don't bother with a full refresh since
        // the mode change already includes a full refresh also.
        //
        if !self.is_mode_change_pending && !self.is_full_refresh_pending {
            self.is_full_refresh_pending = true;
            self.set_delayed_redraw_timer();
        }
    }

    fn get_line_offset_pixels(&self) -> u16 {
        // The value in the register(s) is innately half-the-desired-size, so we must double each piece,
        // either by multiplying by 2 or overshifting.

        let mut line_offset =
            self.state.persistent_state.crt_control_regs[CrtControlReg::OFFSET_REGISTER] as u16 * 2;

        if (self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_2_REGISTER]
            & 0x30)
            != 0
        {
            line_offset += (self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_2_REGISTER]
                as u16
                & 0x30)
                << 5;
        } else if (self.state.persistent_state.crt_control_regs
            [CrtControlReg::S3_EXTENDED_MODE_REGISTER]
            & 0x4)
            != 0
        {
            line_offset += 1 << 9;
        }

        // This is undocumented, but it appears that a zero line offset is equivalent
        // to 512. MAME (DOS) relies on this.
        if line_offset == 0 {
            line_offset = 512;
        }

        line_offset
    }

    /// Calculates the line compare value.
    ///
    /// If the computation logic changes, we need to update VerifyPersistentState() accordingly.
    fn get_line_compare_value(&self) -> u16 {
        // Calculate the line compare value stored in four places. We need to
        // OR these together to get the final value.
        self.state.persistent_state.crt_control_regs[CrtControlReg::LINE_COMPARE_REGISTER] as u16
            | ((self.state.persistent_state.crt_control_regs[CrtControlReg::OVERFLOW_REGISTER]
                as u16
                & 0x10)
                << 4)
            | ((self.state.persistent_state.crt_control_regs[CrtControlReg::MAX_SCANLINE_REGISTER]
                as u16
                & 0x40)
                << 3)
            | ((self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_EXTENDED_VERTICAL_OVERFLOW_REGISTER] as u16
                & 0x40)
                << 4)
    }

    fn get_page_offset(&self) -> u32 {
        let mut new_offset = self.state.persistent_state.crt_control_regs
            [CrtControlReg::START_ADDRESS_LO_REGISTER] as u32;

        new_offset |= (self.state.persistent_state.crt_control_regs
            [CrtControlReg::START_ADDRESS_HI_REGISTER] as u32)
            << 8;

        if self.state.persistent_state.s3.enhanced_mode {
            if self.state.persistent_state.crt_control_regs
                [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_3_REGISTER]
                == 0
            {
                new_offset |= ((self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_MEMORY_CONFIGURATION_REGISTER]
                    as u32)
                    << (16 - 4))
                    & 0x00030000;

                new_offset |= ((self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_2_REGISTER]
                    as u32)
                    << 18)
                    & 0x000C0000;
            } else {
                new_offset |= (self.state.persistent_state.crt_control_regs
                    [CrtControlReg::S3_EXTENDED_SYSTEM_CONTROL_3_REGISTER]
                    as u32)
                    << 16;
            }
        }

        new_offset
    }

    fn displaying_splash_screen(&self) -> bool {
        self.state.persistent_state.crt_control_regs[CrtControlReg::CUSTOM_VS_BIOS_LOGO_REGISTER]
            != 0xFF
    }

    fn get_current_video_depth(&self) -> u8 {
        if self.displaying_splash_screen() {
            SPLASH_SCREEN_BYTES_PER_PIXEL * 8
        } else if self.state.persistent_state.text_mode {
            0
        } else {
            self.state.persistent_state.bits_per_pixel
        }
    }

    fn _get_current_video_width(&self) -> u16 {
        if self.displaying_splash_screen() {
            _SPLASH_SCREEN_WIDTH
        } else if self.state.persistent_state.text_mode {
            spec::TOTAL_VGA_HIRES_TEXT_COLUMNS as u16 * spec::VGA_HIRES_CHARACTER_WIDTH as u16
        } else {
            self.state.persistent_state.pcvideo_width
        }
    }

    fn _get_current_video_height(&self) -> u16 {
        if self.displaying_splash_screen() {
            _SPLASH_SCREEN_HEIGHT
        } else if self.state.persistent_state.text_mode {
            self.text.text_rows as u16 * self.text.text_char_height as u16
        } else {
            self.state.persistent_state.adj_pcvideo_height
        }
    }
}