user_driver/
vfio.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Support for accessing a MANA device via VFIO on Linux.

#![cfg(target_os = "linux")]
#![cfg(feature = "vfio")]

use crate::DeviceBacking;
use crate::DeviceRegisterIo;
use crate::DmaClient;
use crate::interrupt::DeviceInterrupt;
use crate::interrupt::DeviceInterruptSource;
use anyhow::Context;
use futures::FutureExt;
use futures_concurrency::future::Race;
use inspect::Inspect;
use inspect_counters::SharedCounter;
use pal_async::task::Spawn;
use pal_async::task::Task;
use pal_async::wait::PolledWait;
use pal_event::Event;
use std::os::fd::AsFd;
use std::os::unix::fs::FileExt;
use std::path::Path;
use std::sync::Arc;
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering::Relaxed;
use std::time::Duration;
use uevent::UeventListener;
use vfio_bindings::bindings::vfio::VFIO_PCI_CONFIG_REGION_INDEX;
use vfio_sys::IommuType;
use vfio_sys::IrqInfo;
use vmcore::vm_task::VmTaskDriver;
use vmcore::vm_task::VmTaskDriverSource;
use zerocopy::FromBytes;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

/// A device backend accessed via VFIO.
#[derive(Inspect)]
pub struct VfioDevice {
    pci_id: Arc<str>,
    #[inspect(skip)]
    _container: vfio_sys::Container,
    #[inspect(skip)]
    _group: vfio_sys::Group,
    #[inspect(skip)]
    device: Arc<vfio_sys::Device>,
    #[inspect(skip)]
    msix_info: IrqInfo,
    #[inspect(skip)]
    driver_source: VmTaskDriverSource,
    #[inspect(iter_by_index)]
    interrupts: Vec<Option<InterruptState>>,
    #[inspect(skip)]
    config_space: vfio_sys::RegionInfo,
    dma_client: Arc<dyn DmaClient>,
}

#[derive(Inspect)]
struct InterruptState {
    #[inspect(skip)]
    interrupt: DeviceInterrupt,
    target_cpu: Arc<AtomicU32>,
    #[inspect(skip)]
    _task: Task<()>,
}

impl VfioDevice {
    /// Creates a new VFIO-backed device for the PCI device with `pci_id`.
    pub async fn new(
        driver_source: &VmTaskDriverSource,
        pci_id: &str,
        dma_client: Arc<dyn DmaClient>,
    ) -> anyhow::Result<Self> {
        Self::restore(driver_source, pci_id, false, dma_client).await
    }

    /// Creates a new VFIO-backed device for the PCI device with `pci_id`.
    /// or creates a device from the saved state if provided.
    pub async fn restore(
        driver_source: &VmTaskDriverSource,
        pci_id: &str,
        keepalive: bool,
        dma_client: Arc<dyn DmaClient>,
    ) -> anyhow::Result<Self> {
        let path = Path::new("/sys/bus/pci/devices").join(pci_id);

        // The vfio device attaches asynchronously after the PCI device is added,
        // so make sure that it has completed by checking for the vfio-dev subpath.
        let vmbus_device =
            std::fs::read_link(&path).context("failed to read link for pci device")?;
        let instance_path = Path::new("/sys").join(vmbus_device.strip_prefix("../../..")?);
        let vfio_arrived_path = instance_path.join("vfio-dev");
        let uevent_listener = UeventListener::new(&driver_source.simple())?;
        let wait_for_vfio_device =
            uevent_listener.wait_for_matching_child(&vfio_arrived_path, async |_, _| Some(()));
        let mut ctx = mesh::CancelContext::new().with_timeout(Duration::from_secs(1));
        // Ignore any errors and always attempt to open.
        let _ = ctx.until_cancelled(wait_for_vfio_device).await;

        let container = vfio_sys::Container::new()?;
        let group_id = vfio_sys::Group::find_group_for_device(&path)?;
        let group = vfio_sys::Group::open_noiommu(group_id)?;
        group.set_container(&container)?;
        if !group.status()?.viable() {
            anyhow::bail!("group is not viable");
        }

        container.set_iommu(IommuType::NoIommu)?;
        if keepalive {
            // Prevent physical hardware interaction when restoring.
            group.set_keep_alive(pci_id)?;
        }
        let device = group.open_device(pci_id)?;
        let msix_info = device.irq_info(vfio_bindings::bindings::vfio::VFIO_PCI_MSIX_IRQ_INDEX)?;
        if msix_info.flags.noresize() {
            anyhow::bail!("unsupported: kernel does not support dynamic msix allocation");
        }

        let config_space = device.region_info(VFIO_PCI_CONFIG_REGION_INDEX)?;
        let this = Self {
            pci_id: pci_id.into(),
            _container: container,
            _group: group,
            device: Arc::new(device),
            msix_info,
            config_space,
            driver_source: driver_source.clone(),
            interrupts: Vec::new(),
            dma_client,
        };

        // Ensure bus master enable and memory space enable are set, and that
        // INTx is disabled.
        this.enable_device().context("failed to enable device")?;
        Ok(this)
    }

    fn enable_device(&self) -> anyhow::Result<()> {
        let offset = pci_core::spec::cfg_space::HeaderType00::STATUS_COMMAND.0;
        let status_command = self.read_config(offset)?;
        let command = pci_core::spec::cfg_space::Command::from(status_command as u16);

        let command = command
            .with_bus_master(true)
            .with_intx_disable(true)
            .with_mmio_enabled(true);

        let status_command = (status_command & 0xffff0000) | u16::from(command) as u32;
        self.write_config(offset, status_command)?;
        Ok(())
    }

    pub fn read_config(&self, offset: u16) -> anyhow::Result<u32> {
        if offset as u64 > self.config_space.size - 4 {
            anyhow::bail!("invalid config offset");
        }

        let mut buf = [0u8; 4];
        self.device
            .as_ref()
            .as_ref()
            .read_at(&mut buf, self.config_space.offset + offset as u64)
            .context("failed to read config")?;

        Ok(u32::from_ne_bytes(buf))
    }

    pub fn write_config(&self, offset: u16, data: u32) -> anyhow::Result<()> {
        if offset as u64 > self.config_space.size - 4 {
            anyhow::bail!("invalid config offset");
        }

        let buf = data.to_ne_bytes();
        self.device
            .as_ref()
            .as_ref()
            .write_at(&buf, self.config_space.offset + offset as u64)
            .context("failed to write config")?;

        Ok(())
    }

    /// Maps PCI BAR[n] to VA space.
    fn map_bar(&self, n: u8) -> anyhow::Result<MappedRegionWithFallback> {
        if n >= 6 {
            anyhow::bail!("invalid bar");
        }
        let info = self.device.region_info(n.into())?;
        let mapping = self.device.map(info.offset, info.size as usize, true)?;
        sparse_mmap::initialize_try_copy();
        Ok(MappedRegionWithFallback {
            device: self.device.clone(),
            mapping,
            len: info.size as usize,
            offset: info.offset,
            read_fallback: SharedCounter::new(),
            write_fallback: SharedCounter::new(),
        })
    }
}

/// A mapped region that falls back to read/write if the memory mapped access
/// fails.
///
/// This should only happen for CVM, and only when the MMIO is emulated by the
/// host.
#[derive(Inspect)]
pub struct MappedRegionWithFallback {
    #[inspect(skip)]
    device: Arc<vfio_sys::Device>,
    #[inspect(skip)]
    mapping: vfio_sys::MappedRegion,
    offset: u64,
    len: usize,
    read_fallback: SharedCounter,
    write_fallback: SharedCounter,
}

impl DeviceBacking for VfioDevice {
    type Registers = MappedRegionWithFallback;

    fn id(&self) -> &str {
        &self.pci_id
    }

    fn map_bar(&mut self, n: u8) -> anyhow::Result<Self::Registers> {
        (*self).map_bar(n)
    }

    fn dma_client(&self) -> Arc<dyn DmaClient> {
        self.dma_client.clone()
    }

    fn max_interrupt_count(&self) -> u32 {
        self.msix_info.count
    }

    fn map_interrupt(&mut self, msix: u32, cpu: u32) -> anyhow::Result<DeviceInterrupt> {
        if msix >= self.msix_info.count {
            anyhow::bail!("invalid msix index");
        }
        if self.interrupts.len() <= msix as usize {
            self.interrupts.resize_with(msix as usize + 1, || None);
        }

        let interrupt = &mut self.interrupts[msix as usize];
        if let Some(interrupt) = interrupt {
            // The interrupt has been mapped before. Just retarget it to the new
            // CPU on the next interrupt, if needed.
            if interrupt.target_cpu.load(Relaxed) != cpu {
                interrupt.target_cpu.store(cpu, Relaxed);
            }
            return Ok(interrupt.interrupt.clone());
        }

        let new_interrupt = {
            let name = format!("vfio-interrupt-{pci_id}-{msix}", pci_id = self.pci_id);
            let driver = self
                .driver_source
                .builder()
                .run_on_target(true)
                .target_vp(cpu)
                .build(&name);

            let event =
                PolledWait::new(&driver, Event::new()).context("failed to allocate polled wait")?;

            let source = DeviceInterruptSource::new();
            self.device
                .map_msix(msix, [event.get().as_fd()])
                .context("failed to map msix")?;

            // The interrupt's CPU affinity will be set by the task when it
            // starts. This can block the thread briefly, so it's better to do
            // it on the target CPU.
            let irq = vfio_sys::find_msix_irq(&self.pci_id, msix)
                .context("failed to find irq for msix")?;

            let target_cpu = Arc::new(AtomicU32::new(cpu));

            let interrupt = source.new_target();

            let task = driver.spawn(
                name,
                InterruptTask {
                    driver: driver.clone(),
                    target_cpu: target_cpu.clone(),
                    pci_id: self.pci_id.clone(),
                    msix,
                    irq,
                    event,
                    source,
                }
                .run(),
            );

            InterruptState {
                interrupt,
                target_cpu,
                _task: task,
            }
        };

        Ok(interrupt.insert(new_interrupt).interrupt.clone())
    }
}

struct InterruptTask {
    driver: VmTaskDriver,
    target_cpu: Arc<AtomicU32>,
    pci_id: Arc<str>,
    msix: u32,
    irq: u32,
    event: PolledWait<Event>,
    source: DeviceInterruptSource,
}

impl InterruptTask {
    async fn run(mut self) {
        let mut current_cpu = !0;
        loop {
            let next_cpu = self.target_cpu.load(Relaxed);
            let r = if next_cpu == current_cpu {
                self.event.wait().await
            } else {
                self.driver.retarget_vp(next_cpu);
                // Wait until the target CPU is ready before updating affinity,
                // since otherwise the CPU may not be online.
                enum Event {
                    TargetVpReady(()),
                    Interrupt(std::io::Result<()>),
                }
                match (
                    self.driver.wait_target_vp_ready().map(Event::TargetVpReady),
                    self.event.wait().map(Event::Interrupt),
                )
                    .race()
                    .await
                {
                    Event::TargetVpReady(()) => {
                        if let Err(err) = set_irq_affinity(self.irq, next_cpu) {
                            // This should only occur due to extreme low resources.
                            // However, it is not a fatal error--it will just result in
                            // worse performance--so do not panic.
                            tracing::error!(
                                pci_id = self.pci_id.as_ref(),
                                msix = self.msix,
                                irq = self.irq,
                                error = &err as &dyn std::error::Error,
                                "failed to set irq affinity"
                            );
                        }
                        current_cpu = next_cpu;
                        continue;
                    }
                    Event::Interrupt(r) => {
                        // An interrupt arrived while waiting for the VP to be
                        // ready. Signal and loop around to try again.
                        r
                    }
                }
            };

            r.expect("wait cannot fail on eventfd");
            self.source.signal();
        }
    }
}

fn set_irq_affinity(irq: u32, cpu: u32) -> std::io::Result<()> {
    fs_err::write(
        format!("/proc/irq/{}/smp_affinity_list", irq),
        cpu.to_string(),
    )
}

impl DeviceRegisterIo for vfio_sys::MappedRegion {
    fn len(&self) -> usize {
        self.len()
    }

    fn read_u32(&self, offset: usize) -> u32 {
        self.read_u32(offset)
    }

    fn read_u64(&self, offset: usize) -> u64 {
        self.read_u64(offset)
    }

    fn write_u32(&self, offset: usize, data: u32) {
        self.write_u32(offset, data)
    }

    fn write_u64(&self, offset: usize, data: u64) {
        self.write_u64(offset, data)
    }
}

impl MappedRegionWithFallback {
    fn mapping<T>(&self, offset: usize) -> *mut T {
        assert!(offset <= self.mapping.len() - size_of::<T>() && offset % align_of::<T>() == 0);
        if cfg!(feature = "mmio_simulate_fallback") {
            return std::ptr::NonNull::dangling().as_ptr();
        }
        // SAFETY: the offset is validated to be in bounds.
        unsafe { self.mapping.as_ptr().byte_add(offset).cast() }
    }

    fn read_from_mapping<T: IntoBytes + FromBytes + Immutable + KnownLayout>(
        &self,
        offset: usize,
    ) -> Result<T, sparse_mmap::MemoryError> {
        // SAFETY: the offset is validated to be in bounds and aligned.
        unsafe { sparse_mmap::try_read_volatile(self.mapping::<T>(offset)) }
    }

    fn write_to_mapping<T: IntoBytes + FromBytes + Immutable + KnownLayout>(
        &self,
        offset: usize,
        data: T,
    ) -> Result<(), sparse_mmap::MemoryError> {
        // SAFETY: the offset is validated to be in bounds and aligned.
        unsafe { sparse_mmap::try_write_volatile(self.mapping::<T>(offset), &data) }
    }

    fn read_from_file(&self, offset: usize, buf: &mut [u8]) {
        tracing::trace!(offset, n = buf.len(), "read");
        self.read_fallback.increment();
        let n = self
            .device
            .as_ref()
            .as_ref()
            .read_at(buf, self.offset + offset as u64)
            .expect("valid mapping");
        assert_eq!(n, buf.len());
    }

    fn write_to_file(&self, offset: usize, buf: &[u8]) {
        tracing::trace!(offset, n = buf.len(), "write");
        self.write_fallback.increment();
        let n = self
            .device
            .as_ref()
            .as_ref()
            .write_at(buf, self.offset + offset as u64)
            .expect("valid mapping");
        assert_eq!(n, buf.len());
    }
}

impl DeviceRegisterIo for MappedRegionWithFallback {
    fn len(&self) -> usize {
        self.len
    }

    fn read_u32(&self, offset: usize) -> u32 {
        self.read_from_mapping(offset).unwrap_or_else(|_| {
            let mut buf = [0u8; 4];
            self.read_from_file(offset, &mut buf);
            u32::from_ne_bytes(buf)
        })
    }

    fn read_u64(&self, offset: usize) -> u64 {
        self.read_from_mapping(offset).unwrap_or_else(|_| {
            let mut buf = [0u8; 8];
            self.read_from_file(offset, &mut buf);
            u64::from_ne_bytes(buf)
        })
    }

    fn write_u32(&self, offset: usize, data: u32) {
        self.write_to_mapping(offset, data).unwrap_or_else(|_| {
            self.write_to_file(offset, &data.to_ne_bytes());
        })
    }

    fn write_u64(&self, offset: usize, data: u64) {
        self.write_to_mapping(offset, data).unwrap_or_else(|_| {
            self.write_to_file(offset, &data.to_ne_bytes());
        })
    }
}

#[derive(Clone, Copy, Debug)]
pub enum PciDeviceResetMethod {
    NoReset,
    Acpi,
    Flr,
    AfFlr,
    Pm,
    Bus,
}

pub fn vfio_set_device_reset_method(
    pci_id: impl AsRef<str>,
    method: PciDeviceResetMethod,
) -> std::io::Result<()> {
    let reset_method = match method {
        PciDeviceResetMethod::NoReset => "\0".as_bytes(),
        PciDeviceResetMethod::Acpi => "acpi\0".as_bytes(),
        PciDeviceResetMethod::Flr => "flr\0".as_bytes(),
        PciDeviceResetMethod::AfFlr => "af_flr\0".as_bytes(),
        PciDeviceResetMethod::Pm => "pm\0".as_bytes(),
        PciDeviceResetMethod::Bus => "bus\0".as_bytes(),
    };

    let path: std::path::PathBuf = ["/sys/bus/pci/devices", pci_id.as_ref(), "reset_method"]
        .iter()
        .collect();
    fs_err::write(path, reset_method)?;
    Ok(())
}