user_driver/
interrupt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Interrupt handling for user-mode device drivers.

use parking_lot::Mutex;
use std::future::poll_fn;
use std::sync::Arc;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering::Acquire;
use std::sync::atomic::Ordering::Relaxed;
use std::sync::atomic::Ordering::Release;
use std::task::Context;
use std::task::Poll;
use std::task::Waker;

/// A mapped device interrupt.
///
/// This interrupt can be cloned multiple times. Each clone will be separately
/// pollable. Initially, the clone is in the not-signaled state, even if the
/// original instance is signaled.
pub struct DeviceInterrupt {
    slot: Arc<DeviceInterruptSlot>,
    inner: Arc<DeviceInterruptInner>,
}

impl Clone for DeviceInterrupt {
    fn clone(&self) -> Self {
        self.inner.new_interrupt()
    }
}

impl Drop for DeviceInterrupt {
    fn drop(&mut self) {
        let mut slots = self.inner.slots.lock();
        let i = slots
            .iter()
            .position(|s| Arc::ptr_eq(s, &self.slot))
            .unwrap();
        slots.swap_remove(i);
        self.inner.slots_updated.store(true, Release);
    }
}

impl DeviceInterrupt {
    /// Polls the interrupt, returning `Poll::Ready` if the interrupt is
    /// signaled.
    pub fn poll(&mut self, cx: &mut Context<'_>) -> Poll<()> {
        self.slot.poll(cx)
    }

    /// Waits for the interrupt to be signaled.
    pub async fn wait(&mut self) {
        poll_fn(|cx| self.poll(cx)).await
    }
}

struct DeviceInterruptSlot {
    signaled: AtomicBool,
    waker: Mutex<Option<Waker>>,
}

impl DeviceInterruptSlot {
    fn new() -> Self {
        Self {
            signaled: AtomicBool::new(false),
            waker: Mutex::new(None),
        }
    }

    fn poll(&self, cx: &mut Context<'_>) -> Poll<()> {
        if self.signaled.load(Acquire) {
            self.signaled.store(false, Release);
            Poll::Ready(())
        } else {
            let _old_waker;
            let mut waker = self.waker.lock();
            // Check again under the lock.
            if self.signaled.load(Acquire) {
                self.signaled.store(false, Release);
                return Poll::Ready(());
            }
            if waker.as_ref().is_none_or(|w| !w.will_wake(cx.waker())) {
                _old_waker = waker.replace(cx.waker().clone());
            }
            Poll::Pending
        }
    }

    fn signal(&self) {
        self.signaled.store(true, Release);
        if let Some(waker) = self.waker.lock().take() {
            waker.wake();
        }
    }
}

struct DeviceInterruptInner {
    slots: Mutex<Vec<Arc<DeviceInterruptSlot>>>,
    slots_updated: AtomicBool,
}

impl DeviceInterruptInner {
    fn new_interrupt(self: &Arc<Self>) -> DeviceInterrupt {
        let slot = Arc::new(DeviceInterruptSlot::new());
        self.slots.lock().push(slot.clone());
        self.slots_updated.store(true, Release);
        DeviceInterrupt {
            slot,
            inner: self.clone(),
        }
    }
}

/// A source of device interrupts.
///
/// This is intended to be used by the device backends to signal the
/// [`DeviceInterrupt`] instances used by the drivers.
pub struct DeviceInterruptSource {
    slots: Vec<Arc<DeviceInterruptSlot>>,
    inner: Arc<DeviceInterruptInner>,
}

impl DeviceInterruptSource {
    /// Creates a new interrupt source.
    pub fn new() -> Self {
        Self {
            inner: Arc::new(DeviceInterruptInner {
                slots: Mutex::new(Vec::new()),
                slots_updated: false.into(),
            }),
            slots: Vec::new(),
        }
    }

    /// Creates a new interrupt target, each of which is notified when `signal`
    /// is called.
    pub fn new_target(&self) -> DeviceInterrupt {
        self.inner.new_interrupt()
    }

    /// Signals all interrupt targets.
    pub fn signal(&mut self) {
        if self.inner.slots_updated.load(Acquire) {
            let slots = self.inner.slots.lock();
            self.inner.slots_updated.store(false, Relaxed);
            self.slots.clone_from(&*slots);
        }
        for slot in &self.slots {
            slot.signal();
        }
    }

    /// Signals all interrupt targets without using the target cache. Use
    /// `signal` instead when you have a mutable reference.
    pub fn signal_uncached(&self) {
        for slot in &*self.inner.slots.lock() {
            slot.signal();
        }
    }
}

#[cfg(test)]
mod tests {
    use super::DeviceInterruptSource;
    use pal_async::DefaultDriver;
    use pal_async::async_test;
    use pal_async::task::Spawn;

    #[async_test]
    async fn test_interrupt(driver: DefaultDriver) {
        let mut source = DeviceInterruptSource::new();
        let mut target = source.new_target();
        source.signal();
        target.wait().await;
        let mut target_clone = target.clone();
        let task = driver.spawn("test", async move { target_clone.wait().await });
        source.signal();
        task.await;
        target.wait().await;
    }
}