underhill_threadpool/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
#![cfg_attr(not(target_os = "linux"), expect(missing_docs))]
#![cfg(target_os = "linux")]
//! The Underhill per-CPU thread pool used to run async tasks and IO.
//!
//! This is built on top of [`pal_uring`] and [`pal_async`].
#![forbid(unsafe_code)]
use inspect::Inspect;
use loan_cell::LoanCell;
use pal::unix::affinity::CpuSet;
use pal_async::fd::FdReadyDriver;
use pal_async::task::Runnable;
use pal_async::task::Schedule;
use pal_async::task::Spawn;
use pal_async::task::SpawnLocal;
use pal_async::task::TaskMetadata;
use pal_async::timer::TimerDriver;
use pal_async::wait::WaitDriver;
use pal_uring::FdReady;
use pal_uring::FdWait;
use pal_uring::IdleControl;
use pal_uring::Initiate;
use pal_uring::IoInitiator;
use pal_uring::IoUringPool;
use pal_uring::PoolClient;
use pal_uring::Timer;
use parking_lot::Mutex;
use std::future::poll_fn;
use std::io;
use std::marker::PhantomData;
use std::os::fd::RawFd;
use std::sync::Arc;
use std::sync::OnceLock;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering::Relaxed;
use std::task::Poll;
use std::task::Waker;
use thiserror::Error;
/// Represents the internal state of an `AffinitizedThreadpool`.
#[derive(Debug, Inspect)]
struct AffinitizedThreadpoolState {
#[inspect(iter_by_index)]
drivers: Vec<ThreadpoolDriver>,
}
/// A pool of affinitized worker threads.
#[derive(Clone, Debug, Inspect)]
#[inspect(transparent)]
pub struct AffinitizedThreadpool {
state: Arc<AffinitizedThreadpoolState>,
}
/// A builder for [`AffinitizedThreadpool`].
#[derive(Debug, Clone)]
pub struct ThreadpoolBuilder {
max_bounded_workers: Option<u32>,
max_unbounded_workers: Option<u32>,
ring_size: u32,
}
impl ThreadpoolBuilder {
/// Returns a new builder.
pub fn new() -> Self {
Self {
max_bounded_workers: None,
max_unbounded_workers: None,
ring_size: 256,
}
}
/// Sets the maximum number of bounded kernel workers for each worker ring,
/// per NUMA node.
///
/// This defaults in the kernel to `min(io_ring_size, cpu_count * 4)`.
pub fn max_bounded_workers(&mut self, n: u32) -> &mut Self {
self.max_bounded_workers = Some(n);
self
}
/// Sets the maximum number of unbounded kernel workers for each worker
/// ring, per NUMA node.
///
/// This defaults to the process's `RLIMIT_NPROC` limit at time of
/// threadpool creation.
pub fn max_unbounded_workers(&mut self, n: u32) -> &mut Self {
self.max_unbounded_workers = Some(n);
self
}
/// Sets the IO ring size. Defaults to 256.
pub fn ring_size(&mut self, ring_size: u32) -> &mut Self {
assert_ne!(ring_size, 0);
self.ring_size = ring_size;
self
}
/// Builds the thread pool.
pub fn build(&self) -> io::Result<AffinitizedThreadpool> {
let proc_count = pal::unix::affinity::max_present_cpu()? + 1;
let builder = Arc::new(self.clone());
let mut drivers = Vec::with_capacity(proc_count as usize);
drivers.extend((0..proc_count).map(|processor| ThreadpoolDriver {
inner: Arc::new(ThreadpoolDriverInner {
once: OnceLock::new(),
cpu: processor,
builder: builder.clone(),
name: format!("threadpool-{}", processor).into(),
affinity_set: false.into(),
state: Mutex::new(ThreadpoolDriverState {
notifier: None,
affinity: AffinityState::Waiting(Vec::new()),
spawned: false,
}),
}),
}));
let state = Arc::new(AffinitizedThreadpoolState { drivers });
Ok(AffinitizedThreadpool { state })
}
// Spawn a pool on the specified CPU.
//
// If the specified CPU is present but not online, spawns a thread with
// affinity set to all processors that are in the same package, if possible.
//
// Note that this sets affinity of the current thread and does not revert
// it. Call this from a temporary thread to avoid permanently changing the
// affinity of the current thread.
fn spawn_pool(&self, cpu: u32, driver: ThreadpoolDriver) -> io::Result<PoolClient> {
tracing::debug!(cpu, "starting threadpool thread");
let online = is_cpu_online(cpu)?;
let mut affinity = CpuSet::new();
if online {
affinity.set(cpu);
} else {
// The CPU is not online. Set the affinity to match the package.
//
// TODO: figure out how to do this (maybe pass in
// ProcessorTopology)--the sysfs topology directory does not exist
// for offline CPUs. For now, just allow all CPUs.
let online_cpus = fs_err::read_to_string("/sys/devices/system/cpu/online")?;
affinity
.set_mask_list(&online_cpus)
.map_err(|err| io::Error::new(io::ErrorKind::Other, err))?;
}
// Set the current thread's affinity so that allocations for the worker
// thread are performed in the correct node.
let affinity_ok = match pal::unix::affinity::set_current_thread_affinity(&affinity) {
Ok(()) => true,
Err(err) if err.kind() == io::ErrorKind::InvalidInput && !online => {
// None of the CPUs in the package are online. That's not ideal,
// because the thread will probably get allocated with the wrong node,
// but it's recoverable.
tracing::warn!(
cpu,
error = &err as &dyn std::error::Error,
"could not set package affinity for thread pool thread"
);
false
}
Err(err) => return Err(err),
};
let this = self.clone();
let (send, recv) = std::sync::mpsc::channel();
let thread = std::thread::Builder::new()
.name("tp".to_owned())
.spawn(move || {
// Create the pool and report back the result. This must be done
// on the thread so that the io-uring task context gets created.
// If we create this back on the initiating thread, then the
// task context gets created and then destroyed, and subsequent
// calls to update the affinity fail until the task context gets
// recreated (next time an IO is issued).
//
// FUTURE: take advantage of the per-thread task context and
// pre-register the ring via IORING_REGISTER_RING_FDS.
let pool = match this
.make_ring(driver.inner.name.clone(), affinity_ok.then_some(&affinity))
{
Ok(pool) => pool,
Err(err) => {
send.send(Err(err)).ok();
return;
}
};
let driver = driver;
{
let mut state = driver.inner.state.lock();
state.spawned = true;
if let Some(notifier) = state.notifier.take() {
(notifier.0)();
}
if online {
// There cannot be any waiters yet since they can only
// be registered from the current thread.
driver.inner.affinity_set.store(true, Relaxed);
state.affinity = AffinityState::Set;
}
}
send.send(Ok(pool.client().clone())).ok();
// Store the current thread's driver so that spawned tasks can
// find it via `Thread::current()`. Do this via a loan instead
// of storing it directly in TLS to avoid the overhead of
// registering a destructor.
CURRENT_THREAD_DRIVER.with(|current| {
current.lend(&driver, || pool.run());
});
})?;
// Wait for the pool to be initialized.
recv.recv().unwrap().inspect_err(|_| {
// Wait for the child thread to exit to bound resource use.
thread.join().unwrap();
})
}
fn make_ring(&self, name: Arc<str>, affinity: Option<&CpuSet>) -> io::Result<IoUringPool> {
let pool = IoUringPool::new(name, self.ring_size)?;
let client = pool.client();
client.set_iowq_max_workers(self.max_bounded_workers, self.max_unbounded_workers)?;
if let Some(affinity) = affinity {
client.set_iowq_affinity(affinity)?
}
Ok(pool)
}
}
/// Returns whether the specified CPU is online.
pub fn is_cpu_online(cpu: u32) -> io::Result<bool> {
// Depending at the very minimum on whether the kernel has been built with
// `CONFIG_HOTPLUG_CPU` or not, the individual `online` pseudo-files will be
// present or absent.
//
// The other factors at play are the firmware-reported system properties and
// the `cpu_ops` structures defined for the platform. All these lead ultimately
// to setting the `hotpluggable` property on the cpu device in the kernel.
// If that property is set, the `online` file will be present for the given CPU.
//
// If that file is absent for the CPU in question, that means it is online, and
// due to various factors (e.g. BSP on x86_64, missing `cpu_die` handler, etc)
// the CPU is not allowed to be offlined.
//
// The well-established cross-platform tools (e.g. `perf`) in the kernel repo
// rely on the same: if the `online` file is missing, assume the CPU is online
// provided the CPU "home" directory is present (although they don't have
// comments like this one :)).
let cpu_sysfs_home = format!("/sys/devices/system/cpu/cpu{cpu}");
let cpu_sysfs_home = std::path::Path::new(cpu_sysfs_home.as_str());
let online = cpu_sysfs_home.join("online");
match fs_err::read_to_string(online) {
Ok(s) => Ok(s.trim() == "1"),
Err(err) if err.kind() == io::ErrorKind::NotFound => Ok(cpu_sysfs_home.exists()),
Err(err) => Err(err),
}
}
/// Sets the specified CPU online, if it is not already online.
pub fn set_cpu_online(cpu: u32) -> io::Result<()> {
let online = format!("/sys/devices/system/cpu/cpu{cpu}/online");
match fs_err::read_to_string(&online) {
Ok(s) if s.trim() == "0" => {
fs_err::write(&online, "1")?;
}
Ok(_) => {
// Already online.
}
Err(err) if err.kind() == io::ErrorKind::NotFound => {
// The file doesn't exist, so the processor is always online.
}
Err(err) => return Err(err),
}
Ok(())
}
impl AffinitizedThreadpool {
/// Creates a new threadpool with the specified ring size.
pub fn new(io_ring_size: u32) -> io::Result<Self> {
ThreadpoolBuilder::new().ring_size(io_ring_size).build()
}
/// Returns an object that can be used to submit IOs or spawn tasks to the
/// current processor's ring.
///
/// Spawned tasks will remain affinitized to the current thread. Spawn
/// directly on the threadpool object to get a task that will run on any
/// thread.
pub fn current_driver(&self) -> &ThreadpoolDriver {
self.driver(pal::unix::affinity::get_cpu_number())
}
/// Returns an object that can be used to submit IOs to the specified ring
/// in the pool, or to spawn tasks on the specified thread.
///
/// Spawned tasks will remain affinitized to the specified thread. Spawn
/// directly on the threadpool object to get a task that will run on any
/// thread.
pub fn driver(&self, ring_id: u32) -> &ThreadpoolDriver {
&self.state.drivers[ring_id as usize]
}
/// Returns an iterator of drivers for threads that are running and have
/// their affinity set.
///
/// This is useful for getting a set of drivers that can be used to
/// parallelize work.
pub fn active_drivers(&self) -> impl Iterator<Item = &ThreadpoolDriver> + Clone {
self.state
.drivers
.iter()
.filter(|driver| driver.is_affinity_set())
}
}
impl Schedule for AffinitizedThreadpoolState {
fn schedule(&self, runnable: Runnable) {
self.drivers[pal::unix::affinity::get_cpu_number() as usize]
.client(Some(runnable.metadata()))
.schedule(runnable);
}
fn name(&self) -> Arc<str> {
static NAME: OnceLock<Arc<str>> = OnceLock::new();
NAME.get_or_init(|| "tp".into()).clone()
}
}
impl Spawn for AffinitizedThreadpool {
fn scheduler(&self, _metadata: &TaskMetadata) -> Arc<dyn Schedule> {
self.state.clone()
}
}
/// Initiate IOs to the current CPU's thread.
impl Initiate for AffinitizedThreadpool {
fn initiator(&self) -> &IoInitiator {
self.current_driver().initiator()
}
}
/// The state for the thread pool thread for the currently running CPU.
#[derive(Debug, Copy, Clone)]
pub struct Thread {
_not_send_sync: PhantomData<*const ()>,
}
impl Thread {
/// Returns an instance for the current CPU.
pub fn current() -> Option<Self> {
if !CURRENT_THREAD_DRIVER.with(|current| current.is_lent()) {
return None;
}
Some(Self {
_not_send_sync: PhantomData,
})
}
/// Calls `f` with the driver for the current thread.
pub fn with_driver<R>(&self, f: impl FnOnce(&ThreadpoolDriver) -> R) -> R {
CURRENT_THREAD_DRIVER.with(|current| current.borrow(|driver| f(driver.unwrap())))
}
fn with_once<R>(&self, f: impl FnOnce(&ThreadpoolDriver, &ThreadpoolDriverOnce) -> R) -> R {
self.with_driver(|driver| f(driver, driver.inner.once.get().unwrap()))
}
/// Sets the idle task to run. The task is returned by `f`, which receives
/// the file descriptor of the IO ring.
///
/// The idle task is run before waiting on the IO ring. The idle task can
/// block synchronously by first calling [`IdleControl::pre_block`], and
/// then by polling on the IO ring while the task blocks.
pub fn set_idle_task<F>(&self, f: F)
where
F: 'static + Send + AsyncFnOnce(IdleControl),
{
self.with_once(|_, once| once.client.set_idle_task(f))
}
/// Tries to set the affinity to this thread's intended CPU, if it has not
/// already been set. Returns `Ok(false)` if the intended CPU is still
/// offline.
pub fn try_set_affinity(&self) -> Result<bool, SetAffinityError> {
self.with_once(|driver, once| {
let mut state = driver.inner.state.lock();
if matches!(state.affinity, AffinityState::Set) {
return Ok(true);
}
if !is_cpu_online(driver.inner.cpu).map_err(SetAffinityError::Online)? {
return Ok(false);
}
let mut affinity = CpuSet::new();
affinity.set(driver.inner.cpu);
pal::unix::affinity::set_current_thread_affinity(&affinity)
.map_err(SetAffinityError::Thread)?;
once.client
.set_iowq_affinity(&affinity)
.map_err(SetAffinityError::Ring)?;
let old_affinity_state = std::mem::replace(&mut state.affinity, AffinityState::Set);
driver.inner.affinity_set.store(true, Relaxed);
drop(state);
match old_affinity_state {
AffinityState::Waiting(wakers) => {
for waker in wakers {
waker.wake();
}
}
AffinityState::Set => unreachable!(),
}
Ok(true)
})
}
/// Returns the that caused this thread to spawn.
///
/// Returns `None` if the thread was spawned to issue IO.
pub fn first_task(&self) -> Option<TaskInfo> {
self.with_once(|_, once| once.first_task.clone())
}
}
/// An error that can occur when setting the affinity of a thread.
#[derive(Debug, Error)]
pub enum SetAffinityError {
/// An error occurred while checking if the CPU is online.
#[error("failed to check if CPU is online")]
Online(#[source] io::Error),
/// An error occurred while setting the thread affinity.
#[error("failed to set thread affinity")]
Thread(#[source] io::Error),
/// An error occurred while setting the IO ring affinity.
#[error("failed to set io-uring affinity")]
Ring(#[source] io::Error),
}
thread_local! {
static CURRENT_THREAD_DRIVER: LoanCell<ThreadpoolDriver> = const { LoanCell::new() };
}
impl SpawnLocal for Thread {
fn scheduler_local(&self, metadata: &TaskMetadata) -> Arc<dyn Schedule> {
self.with_driver(|driver| driver.scheduler(metadata).clone())
}
}
/// A driver for [`AffinitizedThreadpool`] that is targeted at a specific
/// CPU.
#[derive(Debug, Clone, Inspect)]
#[inspect(transparent)]
pub struct ThreadpoolDriver {
inner: Arc<ThreadpoolDriverInner>,
}
#[derive(Debug, Inspect)]
struct ThreadpoolDriverInner {
#[inspect(flatten)]
once: OnceLock<ThreadpoolDriverOnce>,
#[inspect(skip)]
builder: Arc<ThreadpoolBuilder>,
cpu: u32,
name: Arc<str>,
affinity_set: AtomicBool,
#[inspect(flatten)]
state: Mutex<ThreadpoolDriverState>,
}
#[derive(Debug, Inspect)]
struct ThreadpoolDriverOnce {
#[inspect(skip)]
client: PoolClient,
first_task: Option<TaskInfo>,
}
/// Information about a task that caused a thread to spawn.
#[derive(Debug, Clone, Inspect)]
pub struct TaskInfo {
/// The name of the task.
pub name: Arc<str>,
/// The location of the task.
#[inspect(display)]
pub location: &'static std::panic::Location<'static>,
}
#[derive(Debug, Inspect)]
struct ThreadpoolDriverState {
affinity: AffinityState,
#[inspect(with = "|x| x.is_some()")]
notifier: Option<AffinityNotifier>,
spawned: bool,
}
#[derive(Debug, Inspect)]
#[inspect(external_tag)]
enum AffinityState {
#[inspect(transparent)]
Waiting(#[inspect(with = "|x| x.len()")] Vec<Waker>),
Set,
}
struct AffinityNotifier(Box<dyn FnOnce() + Send>);
impl std::fmt::Debug for AffinityNotifier {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.pad("AffinityNotifier")
}
}
impl ThreadpoolDriver {
fn once(&self, metadata: Option<&TaskMetadata>) -> &ThreadpoolDriverOnce {
self.inner.once.get_or_init(|| {
let this = self.clone();
let client = std::thread::spawn(move || {
let inner = this.inner.clone();
inner.builder.spawn_pool(inner.cpu, this)
})
.join()
.unwrap()
.expect("failed to spawn thread pool thread");
// If no task metadata was provided (because the thread is being
// spawned to issue IO) use the current task's metadata as the
// initiating task.
pal_async::task::with_current_task_metadata(|current_metadata| {
let metadata = metadata.or(current_metadata);
ThreadpoolDriverOnce {
client,
first_task: metadata.map(|metadata| TaskInfo {
name: metadata.name().clone(),
location: metadata.location(),
}),
}
})
})
}
fn client(&self, metadata: Option<&TaskMetadata>) -> &PoolClient {
&self.once(metadata).client
}
/// Returns the target CPU number for this thread.
///
/// This may be different from the CPU tasks actually run on if the affinity
/// has not yet been set for the thread.
pub fn target_cpu(&self) -> u32 {
self.inner.cpu
}
/// Returns whether this thread's CPU affinity has been set to the intended
/// CPU.
pub fn is_affinity_set(&self) -> bool {
self.inner.affinity_set.load(Relaxed)
}
/// Waits for the affinity to be set to this thread's intended CPU. If the
/// CPU was not online when the thread was created, then this will block
/// until the CPU is online and someone calls `try_set_affinity`.
pub async fn wait_for_affinity(&self) {
// Ensure the thread has been spawned and that the notifier has been
// called. Use the calling task as the initiating task for diagnostics
// purposes.
pal_async::task::with_current_task_metadata(|metadata| self.once(metadata));
poll_fn(|cx| {
let mut state = self.inner.state.lock();
match &mut state.affinity {
AffinityState::Waiting(wakers) => {
if !wakers.iter().any(|w| w.will_wake(cx.waker())) {
wakers.push(cx.waker().clone());
}
Poll::Pending
}
AffinityState::Set => Poll::Ready(()),
}
})
.await
}
/// Sets a function to be called when the thread gets spawned.
///
/// Return false if the thread is already spawned.
pub fn set_spawn_notifier(&self, f: impl 'static + Send + FnOnce()) -> bool {
let notifier = AffinityNotifier(Box::new(f));
let mut state = self.inner.state.lock();
if !state.spawned {
state.notifier = Some(notifier);
true
} else {
false
}
}
}
impl Initiate for ThreadpoolDriver {
fn initiator(&self) -> &IoInitiator {
self.client(None).initiator()
}
}
impl Spawn for ThreadpoolDriver {
fn scheduler(&self, metadata: &TaskMetadata) -> Arc<dyn Schedule> {
self.client(Some(metadata)).initiator().scheduler(metadata)
}
}
impl FdReadyDriver for ThreadpoolDriver {
type FdReady = FdReady<Self>;
fn new_fd_ready(&self, fd: RawFd) -> io::Result<Self::FdReady> {
Ok(FdReady::new(self.clone(), fd))
}
}
impl WaitDriver for ThreadpoolDriver {
type Wait = FdWait<Self>;
fn new_wait(&self, fd: RawFd, read_size: usize) -> io::Result<Self::Wait> {
Ok(FdWait::new(self.clone(), fd, read_size))
}
}
impl TimerDriver for ThreadpoolDriver {
type Timer = Timer<Self>;
fn new_timer(&self) -> Self::Timer {
Timer::new(self.clone())
}
}
/// A driver for [`AffinitizedThreadpool`] that can be retargeted to different
/// CPUs.
#[derive(Debug, Clone)]
pub struct RetargetableDriver {
inner: Arc<RetargetableDriverInner>,
}
#[derive(Debug)]
struct RetargetableDriverInner {
threadpool: AffinitizedThreadpool,
target_cpu: AtomicU32,
}
impl RetargetableDriver {
/// Returns a new driver, initially targeted to `target_cpu`.
pub fn new(threadpool: AffinitizedThreadpool, target_cpu: u32) -> Self {
Self {
inner: Arc::new(RetargetableDriverInner {
threadpool,
target_cpu: target_cpu.into(),
}),
}
}
/// Retargets the driver to `target_cpu`.
///
/// In-flight IOs will not be retargeted.
pub fn retarget(&self, target_cpu: u32) {
self.inner.target_cpu.store(target_cpu, Relaxed);
}
/// Returns the current target CPU.
pub fn current_target_cpu(&self) -> u32 {
self.inner.target_cpu.load(Relaxed)
}
/// Returns the current driver.
pub fn current_driver(&self) -> &ThreadpoolDriver {
self.inner.current_driver()
}
}
impl Initiate for RetargetableDriver {
fn initiator(&self) -> &IoInitiator {
self.inner.current_driver().initiator()
}
}
impl Spawn for RetargetableDriver {
fn scheduler(&self, _metadata: &TaskMetadata) -> Arc<dyn Schedule> {
self.inner.clone()
}
}
impl RetargetableDriverInner {
fn current_driver(&self) -> &ThreadpoolDriver {
self.threadpool.driver(self.target_cpu.load(Relaxed))
}
}
impl Schedule for RetargetableDriverInner {
fn schedule(&self, runnable: Runnable) {
self.current_driver()
.client(Some(runnable.metadata()))
.schedule(runnable)
}
fn name(&self) -> Arc<str> {
self.current_driver().inner.name.clone()
}
}
impl FdReadyDriver for RetargetableDriver {
type FdReady = FdReady<Self>;
fn new_fd_ready(&self, fd: RawFd) -> io::Result<Self::FdReady> {
Ok(FdReady::new(self.clone(), fd))
}
}
impl WaitDriver for RetargetableDriver {
type Wait = FdWait<Self>;
fn new_wait(&self, fd: RawFd, read_size: usize) -> io::Result<Self::Wait> {
Ok(FdWait::new(self.clone(), fd, read_size))
}
}
impl TimerDriver for RetargetableDriver {
type Timer = Timer<Self>;
fn new_timer(&self) -> Self::Timer {
Timer::new(self.clone())
}
}