underhill_threadpool/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

#![cfg_attr(not(target_os = "linux"), expect(missing_docs))]
#![cfg(target_os = "linux")]

//! The Underhill per-CPU thread pool used to run async tasks and IO.
//!
//! This is built on top of [`pal_uring`] and [`pal_async`].

#![forbid(unsafe_code)]

use inspect::Inspect;
use loan_cell::LoanCell;
use pal::unix::affinity::CpuSet;
use pal_async::fd::FdReadyDriver;
use pal_async::task::Runnable;
use pal_async::task::Schedule;
use pal_async::task::Spawn;
use pal_async::task::SpawnLocal;
use pal_async::task::TaskMetadata;
use pal_async::timer::TimerDriver;
use pal_async::wait::WaitDriver;
use pal_uring::FdReady;
use pal_uring::FdWait;
use pal_uring::IdleControl;
use pal_uring::Initiate;
use pal_uring::IoInitiator;
use pal_uring::IoUringPool;
use pal_uring::PoolClient;
use pal_uring::Timer;
use parking_lot::Mutex;
use std::future::poll_fn;
use std::io;
use std::marker::PhantomData;
use std::os::fd::RawFd;
use std::sync::Arc;
use std::sync::OnceLock;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering::Relaxed;
use std::task::Poll;
use std::task::Waker;
use thiserror::Error;

/// Represents the internal state of an `AffinitizedThreadpool`.
#[derive(Debug, Inspect)]
struct AffinitizedThreadpoolState {
    #[inspect(iter_by_index)]
    drivers: Vec<ThreadpoolDriver>,
}

/// A pool of affinitized worker threads.
#[derive(Clone, Debug, Inspect)]
#[inspect(transparent)]
pub struct AffinitizedThreadpool {
    state: Arc<AffinitizedThreadpoolState>,
}

/// A builder for [`AffinitizedThreadpool`].
#[derive(Debug, Clone)]
pub struct ThreadpoolBuilder {
    max_bounded_workers: Option<u32>,
    max_unbounded_workers: Option<u32>,
    ring_size: u32,
}

impl ThreadpoolBuilder {
    /// Returns a new builder.
    pub fn new() -> Self {
        Self {
            max_bounded_workers: None,
            max_unbounded_workers: None,
            ring_size: 256,
        }
    }

    /// Sets the maximum number of bounded kernel workers for each worker ring,
    /// per NUMA node.
    ///
    /// This defaults in the kernel to `min(io_ring_size, cpu_count * 4)`.
    pub fn max_bounded_workers(&mut self, n: u32) -> &mut Self {
        self.max_bounded_workers = Some(n);
        self
    }

    /// Sets the maximum number of unbounded kernel workers for each worker
    /// ring, per NUMA node.
    ///
    /// This defaults to the process's `RLIMIT_NPROC` limit at time of
    /// threadpool creation.
    pub fn max_unbounded_workers(&mut self, n: u32) -> &mut Self {
        self.max_unbounded_workers = Some(n);
        self
    }

    /// Sets the IO ring size. Defaults to 256.
    pub fn ring_size(&mut self, ring_size: u32) -> &mut Self {
        assert_ne!(ring_size, 0);
        self.ring_size = ring_size;
        self
    }

    /// Builds the thread pool.
    pub fn build(&self) -> io::Result<AffinitizedThreadpool> {
        let proc_count = pal::unix::affinity::max_present_cpu()? + 1;

        let builder = Arc::new(self.clone());
        let mut drivers = Vec::with_capacity(proc_count as usize);
        drivers.extend((0..proc_count).map(|processor| ThreadpoolDriver {
            inner: Arc::new(ThreadpoolDriverInner {
                once: OnceLock::new(),
                cpu: processor,
                builder: builder.clone(),
                name: format!("threadpool-{}", processor).into(),
                affinity_set: false.into(),
                state: Mutex::new(ThreadpoolDriverState {
                    notifier: None,
                    affinity: AffinityState::Waiting(Vec::new()),
                    spawned: false,
                }),
            }),
        }));

        let state = Arc::new(AffinitizedThreadpoolState { drivers });

        Ok(AffinitizedThreadpool { state })
    }

    // Spawn a pool on the specified CPU.
    //
    // If the specified CPU is present but not online, spawns a thread with
    // affinity set to all processors that are in the same package, if possible.
    //
    // Note that this sets affinity of the current thread and does not revert
    // it. Call this from a temporary thread to avoid permanently changing the
    // affinity of the current thread.
    fn spawn_pool(&self, cpu: u32, driver: ThreadpoolDriver) -> io::Result<PoolClient> {
        tracing::debug!(cpu, "starting threadpool thread");

        let online = is_cpu_online(cpu)?;
        let mut affinity = CpuSet::new();
        if online {
            affinity.set(cpu);
        } else {
            // The CPU is not online. Set the affinity to match the package.
            //
            // TODO: figure out how to do this (maybe pass in
            // ProcessorTopology)--the sysfs topology directory does not exist
            // for offline CPUs. For now, just allow all CPUs.
            let online_cpus = fs_err::read_to_string("/sys/devices/system/cpu/online")?;
            affinity
                .set_mask_list(&online_cpus)
                .map_err(|err| io::Error::new(io::ErrorKind::Other, err))?;
        }

        // Set the current thread's affinity so that allocations for the worker
        // thread are performed in the correct node.
        let affinity_ok = match pal::unix::affinity::set_current_thread_affinity(&affinity) {
            Ok(()) => true,
            Err(err) if err.kind() == io::ErrorKind::InvalidInput && !online => {
                // None of the CPUs in the package are online. That's not ideal,
                // because the thread will probably get allocated with the wrong node,
                // but it's recoverable.
                tracing::warn!(
                    cpu,
                    error = &err as &dyn std::error::Error,
                    "could not set package affinity for thread pool thread"
                );
                false
            }
            Err(err) => return Err(err),
        };

        let this = self.clone();
        let (send, recv) = std::sync::mpsc::channel();
        let thread = std::thread::Builder::new()
            .name("tp".to_owned())
            .spawn(move || {
                // Create the pool and report back the result. This must be done
                // on the thread so that the io-uring task context gets created.
                // If we create this back on the initiating thread, then the
                // task context gets created and then destroyed, and subsequent
                // calls to update the affinity fail until the task context gets
                // recreated (next time an IO is issued).
                //
                // FUTURE: take advantage of the per-thread task context and
                // pre-register the ring via IORING_REGISTER_RING_FDS.
                let pool = match this
                    .make_ring(driver.inner.name.clone(), affinity_ok.then_some(&affinity))
                {
                    Ok(pool) => pool,
                    Err(err) => {
                        send.send(Err(err)).ok();
                        return;
                    }
                };

                let driver = driver;
                {
                    let mut state = driver.inner.state.lock();
                    state.spawned = true;
                    if let Some(notifier) = state.notifier.take() {
                        (notifier.0)();
                    }
                    if online {
                        // There cannot be any waiters yet since they can only
                        // be registered from the current thread.
                        driver.inner.affinity_set.store(true, Relaxed);
                        state.affinity = AffinityState::Set;
                    }
                }

                send.send(Ok(pool.client().clone())).ok();

                // Store the current thread's driver so that spawned tasks can
                // find it via `Thread::current()`. Do this via a loan instead
                // of storing it directly in TLS to avoid the overhead of
                // registering a destructor.
                CURRENT_THREAD_DRIVER.with(|current| {
                    current.lend(&driver, || pool.run());
                });
            })?;

        // Wait for the pool to be initialized.
        recv.recv().unwrap().inspect_err(|_| {
            // Wait for the child thread to exit to bound resource use.
            thread.join().unwrap();
        })
    }

    fn make_ring(&self, name: Arc<str>, affinity: Option<&CpuSet>) -> io::Result<IoUringPool> {
        let pool = IoUringPool::new(name, self.ring_size)?;
        let client = pool.client();
        client.set_iowq_max_workers(self.max_bounded_workers, self.max_unbounded_workers)?;
        if let Some(affinity) = affinity {
            client.set_iowq_affinity(affinity)?
        }
        Ok(pool)
    }
}

/// Returns whether the specified CPU is online.
pub fn is_cpu_online(cpu: u32) -> io::Result<bool> {
    // Depending at the very minimum on whether the kernel has been built with
    // `CONFIG_HOTPLUG_CPU` or not, the individual `online` pseudo-files will be
    // present or absent.
    //
    // The other factors at play are the firmware-reported system properties and
    // the `cpu_ops` structures defined for the platform. All these lead ultimately
    // to setting the `hotpluggable` property on the cpu device in the kernel.
    // If that property is set, the `online` file will be present for the given CPU.
    //
    // If that file is absent for the CPU in question, that means it is online, and
    // due to various factors (e.g. BSP on x86_64, missing `cpu_die` handler, etc)
    // the CPU is not allowed to be offlined.
    //
    // The well-established cross-platform tools (e.g. `perf`) in the kernel repo
    // rely on the same: if the `online` file is missing, assume the CPU is online
    // provided the CPU "home" directory is present (although they don't have
    // comments like this one :)).

    let cpu_sysfs_home = format!("/sys/devices/system/cpu/cpu{cpu}");
    let cpu_sysfs_home = std::path::Path::new(cpu_sysfs_home.as_str());
    let online = cpu_sysfs_home.join("online");
    match fs_err::read_to_string(online) {
        Ok(s) => Ok(s.trim() == "1"),
        Err(err) if err.kind() == io::ErrorKind::NotFound => Ok(cpu_sysfs_home.exists()),
        Err(err) => Err(err),
    }
}

/// Sets the specified CPU online, if it is not already online.
pub fn set_cpu_online(cpu: u32) -> io::Result<()> {
    let online = format!("/sys/devices/system/cpu/cpu{cpu}/online");
    match fs_err::read_to_string(&online) {
        Ok(s) if s.trim() == "0" => {
            fs_err::write(&online, "1")?;
        }
        Ok(_) => {
            // Already online.
        }
        Err(err) if err.kind() == io::ErrorKind::NotFound => {
            // The file doesn't exist, so the processor is always online.
        }
        Err(err) => return Err(err),
    }
    Ok(())
}

impl AffinitizedThreadpool {
    /// Creates a new threadpool with the specified ring size.
    pub fn new(io_ring_size: u32) -> io::Result<Self> {
        ThreadpoolBuilder::new().ring_size(io_ring_size).build()
    }

    /// Returns an object that can be used to submit IOs or spawn tasks to the
    /// current processor's ring.
    ///
    /// Spawned tasks will remain affinitized to the current thread. Spawn
    /// directly on the threadpool object to get a task that will run on any
    /// thread.
    pub fn current_driver(&self) -> &ThreadpoolDriver {
        self.driver(pal::unix::affinity::get_cpu_number())
    }

    /// Returns an object that can be used to submit IOs to the specified ring
    /// in the pool, or to spawn tasks on the specified thread.
    ///
    /// Spawned tasks will remain affinitized to the specified thread. Spawn
    /// directly on the threadpool object to get a task that will run on any
    /// thread.
    pub fn driver(&self, ring_id: u32) -> &ThreadpoolDriver {
        &self.state.drivers[ring_id as usize]
    }

    /// Returns an iterator of drivers for threads that are running and have
    /// their affinity set.
    ///
    /// This is useful for getting a set of drivers that can be used to
    /// parallelize work.
    pub fn active_drivers(&self) -> impl Iterator<Item = &ThreadpoolDriver> + Clone {
        self.state
            .drivers
            .iter()
            .filter(|driver| driver.is_affinity_set())
    }
}

impl Schedule for AffinitizedThreadpoolState {
    fn schedule(&self, runnable: Runnable) {
        self.drivers[pal::unix::affinity::get_cpu_number() as usize]
            .client(Some(runnable.metadata()))
            .schedule(runnable);
    }

    fn name(&self) -> Arc<str> {
        static NAME: OnceLock<Arc<str>> = OnceLock::new();
        NAME.get_or_init(|| "tp".into()).clone()
    }
}

impl Spawn for AffinitizedThreadpool {
    fn scheduler(&self, _metadata: &TaskMetadata) -> Arc<dyn Schedule> {
        self.state.clone()
    }
}

/// Initiate IOs to the current CPU's thread.
impl Initiate for AffinitizedThreadpool {
    fn initiator(&self) -> &IoInitiator {
        self.current_driver().initiator()
    }
}

/// The state for the thread pool thread for the currently running CPU.
#[derive(Debug, Copy, Clone)]
pub struct Thread {
    _not_send_sync: PhantomData<*const ()>,
}

impl Thread {
    /// Returns an instance for the current CPU.
    pub fn current() -> Option<Self> {
        if !CURRENT_THREAD_DRIVER.with(|current| current.is_lent()) {
            return None;
        }
        Some(Self {
            _not_send_sync: PhantomData,
        })
    }

    /// Calls `f` with the driver for the current thread.
    pub fn with_driver<R>(&self, f: impl FnOnce(&ThreadpoolDriver) -> R) -> R {
        CURRENT_THREAD_DRIVER.with(|current| current.borrow(|driver| f(driver.unwrap())))
    }

    fn with_once<R>(&self, f: impl FnOnce(&ThreadpoolDriver, &ThreadpoolDriverOnce) -> R) -> R {
        self.with_driver(|driver| f(driver, driver.inner.once.get().unwrap()))
    }

    /// Sets the idle task to run. The task is returned by `f`, which receives
    /// the file descriptor of the IO ring.
    ///
    /// The idle task is run before waiting on the IO ring. The idle task can
    /// block synchronously by first calling [`IdleControl::pre_block`], and
    /// then by polling on the IO ring while the task blocks.
    pub fn set_idle_task<F>(&self, f: F)
    where
        F: 'static + Send + AsyncFnOnce(IdleControl),
    {
        self.with_once(|_, once| once.client.set_idle_task(f))
    }

    /// Tries to set the affinity to this thread's intended CPU, if it has not
    /// already been set. Returns `Ok(false)` if the intended CPU is still
    /// offline.
    pub fn try_set_affinity(&self) -> Result<bool, SetAffinityError> {
        self.with_once(|driver, once| {
            let mut state = driver.inner.state.lock();
            if matches!(state.affinity, AffinityState::Set) {
                return Ok(true);
            }
            if !is_cpu_online(driver.inner.cpu).map_err(SetAffinityError::Online)? {
                return Ok(false);
            }

            let mut affinity = CpuSet::new();
            affinity.set(driver.inner.cpu);

            pal::unix::affinity::set_current_thread_affinity(&affinity)
                .map_err(SetAffinityError::Thread)?;
            once.client
                .set_iowq_affinity(&affinity)
                .map_err(SetAffinityError::Ring)?;

            let old_affinity_state = std::mem::replace(&mut state.affinity, AffinityState::Set);
            driver.inner.affinity_set.store(true, Relaxed);
            drop(state);

            match old_affinity_state {
                AffinityState::Waiting(wakers) => {
                    for waker in wakers {
                        waker.wake();
                    }
                }
                AffinityState::Set => unreachable!(),
            }
            Ok(true)
        })
    }

    /// Returns the that caused this thread to spawn.
    ///
    /// Returns `None` if the thread was spawned to issue IO.
    pub fn first_task(&self) -> Option<TaskInfo> {
        self.with_once(|_, once| once.first_task.clone())
    }
}

/// An error that can occur when setting the affinity of a thread.
#[derive(Debug, Error)]
pub enum SetAffinityError {
    /// An error occurred while checking if the CPU is online.
    #[error("failed to check if CPU is online")]
    Online(#[source] io::Error),
    /// An error occurred while setting the thread affinity.
    #[error("failed to set thread affinity")]
    Thread(#[source] io::Error),
    /// An error occurred while setting the IO ring affinity.
    #[error("failed to set io-uring affinity")]
    Ring(#[source] io::Error),
}

thread_local! {
    static CURRENT_THREAD_DRIVER: LoanCell<ThreadpoolDriver> = const { LoanCell::new() };
}

impl SpawnLocal for Thread {
    fn scheduler_local(&self, metadata: &TaskMetadata) -> Arc<dyn Schedule> {
        self.with_driver(|driver| driver.scheduler(metadata).clone())
    }
}

/// A driver for [`AffinitizedThreadpool`] that is targeted at a specific
/// CPU.
#[derive(Debug, Clone, Inspect)]
#[inspect(transparent)]
pub struct ThreadpoolDriver {
    inner: Arc<ThreadpoolDriverInner>,
}

#[derive(Debug, Inspect)]
struct ThreadpoolDriverInner {
    #[inspect(flatten)]
    once: OnceLock<ThreadpoolDriverOnce>,
    #[inspect(skip)]
    builder: Arc<ThreadpoolBuilder>,
    cpu: u32,
    name: Arc<str>,
    affinity_set: AtomicBool,
    #[inspect(flatten)]
    state: Mutex<ThreadpoolDriverState>,
}

#[derive(Debug, Inspect)]
struct ThreadpoolDriverOnce {
    #[inspect(skip)]
    client: PoolClient,
    first_task: Option<TaskInfo>,
}

/// Information about a task that caused a thread to spawn.
#[derive(Debug, Clone, Inspect)]
pub struct TaskInfo {
    /// The name of the task.
    pub name: Arc<str>,
    /// The location of the task.
    #[inspect(display)]
    pub location: &'static std::panic::Location<'static>,
}

#[derive(Debug, Inspect)]
struct ThreadpoolDriverState {
    affinity: AffinityState,
    #[inspect(with = "|x| x.is_some()")]
    notifier: Option<AffinityNotifier>,
    spawned: bool,
}

#[derive(Debug, Inspect)]
#[inspect(external_tag)]
enum AffinityState {
    #[inspect(transparent)]
    Waiting(#[inspect(with = "|x| x.len()")] Vec<Waker>),
    Set,
}

struct AffinityNotifier(Box<dyn FnOnce() + Send>);

impl std::fmt::Debug for AffinityNotifier {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.pad("AffinityNotifier")
    }
}

impl ThreadpoolDriver {
    fn once(&self, metadata: Option<&TaskMetadata>) -> &ThreadpoolDriverOnce {
        self.inner.once.get_or_init(|| {
            let this = self.clone();
            let client = std::thread::spawn(move || {
                let inner = this.inner.clone();
                inner.builder.spawn_pool(inner.cpu, this)
            })
            .join()
            .unwrap()
            .expect("failed to spawn thread pool thread");

            // If no task metadata was provided (because the thread is being
            // spawned to issue IO) use the current task's metadata as the
            // initiating task.
            pal_async::task::with_current_task_metadata(|current_metadata| {
                let metadata = metadata.or(current_metadata);
                ThreadpoolDriverOnce {
                    client,
                    first_task: metadata.map(|metadata| TaskInfo {
                        name: metadata.name().clone(),
                        location: metadata.location(),
                    }),
                }
            })
        })
    }

    fn client(&self, metadata: Option<&TaskMetadata>) -> &PoolClient {
        &self.once(metadata).client
    }

    /// Returns the target CPU number for this thread.
    ///
    /// This may be different from the CPU tasks actually run on if the affinity
    /// has not yet been set for the thread.
    pub fn target_cpu(&self) -> u32 {
        self.inner.cpu
    }

    /// Returns whether this thread's CPU affinity has been set to the intended
    /// CPU.
    pub fn is_affinity_set(&self) -> bool {
        self.inner.affinity_set.load(Relaxed)
    }

    /// Waits for the affinity to be set to this thread's intended CPU. If the
    /// CPU was not online when the thread was created, then this will block
    /// until the CPU is online and someone calls `try_set_affinity`.
    pub async fn wait_for_affinity(&self) {
        // Ensure the thread has been spawned and that the notifier has been
        // called. Use the calling task as the initiating task for diagnostics
        // purposes.
        pal_async::task::with_current_task_metadata(|metadata| self.once(metadata));
        poll_fn(|cx| {
            let mut state = self.inner.state.lock();
            match &mut state.affinity {
                AffinityState::Waiting(wakers) => {
                    if !wakers.iter().any(|w| w.will_wake(cx.waker())) {
                        wakers.push(cx.waker().clone());
                    }
                    Poll::Pending
                }
                AffinityState::Set => Poll::Ready(()),
            }
        })
        .await
    }

    /// Sets a function to be called when the thread gets spawned.
    ///
    /// Return false if the thread is already spawned.
    pub fn set_spawn_notifier(&self, f: impl 'static + Send + FnOnce()) -> bool {
        let notifier = AffinityNotifier(Box::new(f));
        let mut state = self.inner.state.lock();
        if !state.spawned {
            state.notifier = Some(notifier);
            true
        } else {
            false
        }
    }
}

impl Initiate for ThreadpoolDriver {
    fn initiator(&self) -> &IoInitiator {
        self.client(None).initiator()
    }
}

impl Spawn for ThreadpoolDriver {
    fn scheduler(&self, metadata: &TaskMetadata) -> Arc<dyn Schedule> {
        self.client(Some(metadata)).initiator().scheduler(metadata)
    }
}

impl FdReadyDriver for ThreadpoolDriver {
    type FdReady = FdReady<Self>;

    fn new_fd_ready(&self, fd: RawFd) -> io::Result<Self::FdReady> {
        Ok(FdReady::new(self.clone(), fd))
    }
}

impl WaitDriver for ThreadpoolDriver {
    type Wait = FdWait<Self>;

    fn new_wait(&self, fd: RawFd, read_size: usize) -> io::Result<Self::Wait> {
        Ok(FdWait::new(self.clone(), fd, read_size))
    }
}

impl TimerDriver for ThreadpoolDriver {
    type Timer = Timer<Self>;

    fn new_timer(&self) -> Self::Timer {
        Timer::new(self.clone())
    }
}

/// A driver for [`AffinitizedThreadpool`] that can be retargeted to different
/// CPUs.
#[derive(Debug, Clone)]
pub struct RetargetableDriver {
    inner: Arc<RetargetableDriverInner>,
}

#[derive(Debug)]
struct RetargetableDriverInner {
    threadpool: AffinitizedThreadpool,
    target_cpu: AtomicU32,
}

impl RetargetableDriver {
    /// Returns a new driver, initially targeted to `target_cpu`.
    pub fn new(threadpool: AffinitizedThreadpool, target_cpu: u32) -> Self {
        Self {
            inner: Arc::new(RetargetableDriverInner {
                threadpool,
                target_cpu: target_cpu.into(),
            }),
        }
    }

    /// Retargets the driver to `target_cpu`.
    ///
    /// In-flight IOs will not be retargeted.
    pub fn retarget(&self, target_cpu: u32) {
        self.inner.target_cpu.store(target_cpu, Relaxed);
    }

    /// Returns the current target CPU.
    pub fn current_target_cpu(&self) -> u32 {
        self.inner.target_cpu.load(Relaxed)
    }

    /// Returns the current driver.
    pub fn current_driver(&self) -> &ThreadpoolDriver {
        self.inner.current_driver()
    }
}

impl Initiate for RetargetableDriver {
    fn initiator(&self) -> &IoInitiator {
        self.inner.current_driver().initiator()
    }
}

impl Spawn for RetargetableDriver {
    fn scheduler(&self, _metadata: &TaskMetadata) -> Arc<dyn Schedule> {
        self.inner.clone()
    }
}

impl RetargetableDriverInner {
    fn current_driver(&self) -> &ThreadpoolDriver {
        self.threadpool.driver(self.target_cpu.load(Relaxed))
    }
}

impl Schedule for RetargetableDriverInner {
    fn schedule(&self, runnable: Runnable) {
        self.current_driver()
            .client(Some(runnable.metadata()))
            .schedule(runnable)
    }

    fn name(&self) -> Arc<str> {
        self.current_driver().inner.name.clone()
    }
}

impl FdReadyDriver for RetargetableDriver {
    type FdReady = FdReady<Self>;

    fn new_fd_ready(&self, fd: RawFd) -> io::Result<Self::FdReady> {
        Ok(FdReady::new(self.clone(), fd))
    }
}

impl WaitDriver for RetargetableDriver {
    type Wait = FdWait<Self>;

    fn new_wait(&self, fd: RawFd, read_size: usize) -> io::Result<Self::Wait> {
        Ok(FdWait::new(self.clone(), fd, read_size))
    }
}

impl TimerDriver for RetargetableDriver {
    type Timer = Timer<Self>;

    fn new_timer(&self) -> Self::Timer {
        Timer::new(self.clone())
    }
}