underhill_mem/
registrar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Code to register lower VTL memory with the kernel as needed.
//!
//! For many kernel operations that operate on memory, such as passing a buffer
//! to a device for DMA, the kernel requires that has allocated a `struct page`
//! object for each page being accessed. Thanks to some optimizations for large
//! memory allocations, the space overhead of this for guest memory is not too
//! large, but the initialization time overhead can be significant for large
//! VMs.
//!
//! To avoid this overhead, we only register memory with the kernel as needed,
//! when a VA might leak out of a `GuestMemory` object and possibly be passed to
//! a kernel routine.
//!
//! This is done by registering memory in 2GB chunks, which is large enough to
//! get large pages in the kernel, but small enough to keep the overhead of the
//! initial registration for a chunk small. We track whether a given chunk has
//! been registered via a small bitmap.

use inspect::Inspect;
use memory_range::MemoryRange;
use memory_range::overlapping_ranges;
use parking_lot::Mutex;
use std::ops::Range;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering::Acquire;
use std::sync::atomic::Ordering::Release;
use vm_topology::memory::MemoryLayout;

const PAGE_SIZE: u64 = guestmem::PAGE_SIZE as u64;

#[derive(Debug)]
pub struct MemoryRegistrar<T> {
    registered: Bitmap,
    chunk_count: u64,
    state: Mutex<RegistrarState>,
    register: T,
    ram: Vec<MemoryRange>,
    registration_offset: u64,
}

impl<T> Inspect for MemoryRegistrar<T> {
    fn inspect(&self, req: inspect::Request<'_>) {
        req.respond()
            .field_with("chunks_registered", || {
                (0..self.chunk_count)
                    .filter(|&chunk| self.registered.get(chunk))
                    .count()
            })
            .field("chunk_count", self.chunk_count)
            .hex("registration_offset", self.registration_offset);
    }
}

#[derive(Debug)]
struct RegistrarState {
    failed: Bitmap,
}

#[derive(Debug)]
struct Bitmap(Vec<AtomicU64>);

impl Bitmap {
    fn new(address_space_size: u64) -> Self {
        let chunks = address_space_size.div_ceil(GRANULARITY);
        let words = (chunks + 63) / 64;
        let mut v = Vec::new();
        v.resize_with(words as usize, AtomicU64::default);
        Self(v)
    }

    fn get(&self, chunk: u64) -> bool {
        self.0[chunk as usize / 64].load(Acquire) & (1 << (chunk % 64)) != 0
    }

    fn get_mut(&mut self, chunk: u64) -> bool {
        *self.0[chunk as usize / 64].get_mut() & (1 << (chunk % 64)) != 0
    }

    fn set(&self, chunk: u64, value: bool) {
        if value {
            self.0[chunk as usize / 64].fetch_or(1 << (chunk % 64), Release);
        } else {
            self.0[chunk as usize / 64].fetch_and(!(1 << (chunk % 64)), Release);
        }
    }

    fn set_mut(&mut self, chunk: u64, value: bool) {
        if value {
            *self.0[chunk as usize / 64].get_mut() |= 1 << (chunk % 64);
        } else {
            *self.0[chunk as usize / 64].get_mut() &= !(1 << (chunk % 64));
        }
    }
}

pub trait RegisterMemory {
    fn register_range(&self, range: MemoryRange) -> Result<(), impl 'static + std::error::Error>;
}

impl<T: Fn(MemoryRange) -> Result<(), E>, E: 'static + std::error::Error> RegisterMemory for T {
    fn register_range(&self, range: MemoryRange) -> Result<(), impl 'static + std::error::Error> {
        (self)(range)
    }
}

/// Register in 2GB chunks.
const GRANULARITY: u64 = 2 << 30;

impl<T: RegisterMemory> MemoryRegistrar<T> {
    pub fn new(layout: &MemoryLayout, registration_offset: u64, register: T) -> Self {
        let address_space_size = layout.ram().last().unwrap().range.end();

        Self {
            chunk_count: address_space_size.div_ceil(GRANULARITY),
            registered: Bitmap::new(address_space_size),
            state: Mutex::new(RegistrarState {
                failed: Bitmap::new(address_space_size),
            }),
            register,
            ram: layout.ram().iter().map(|r| r.range).collect(),
            registration_offset,
        }
    }

    fn chunks(range: MemoryRange) -> Range<u64> {
        let start = range.start() / GRANULARITY;
        let end = range.end().div_ceil(GRANULARITY);
        start..end
    }

    pub fn register(&self, address: u64, len: u64) -> Result<(), u64> {
        // Page align the requested range.
        let requested_range = MemoryRange::new(
            address & !(PAGE_SIZE - 1)..(address + len + (PAGE_SIZE - 1)) & !(PAGE_SIZE - 1),
        );

        // Check if the range is already registered.
        'check_registered: {
            for chunk in Self::chunks(requested_range) {
                if !self.registered.get(chunk) {
                    break 'check_registered;
                }
            }
            return Ok(());
        }

        // Register each chunk one at a time. We don't typically lock lots of
        // memory at a time, so in practice there should only be one chunk
        // anyway.
        let mut state = self.state.lock();
        for chunk in Self::chunks(requested_range) {
            if self.registered.get(chunk) {
                continue;
            }
            if state.failed.get_mut(chunk) {
                return Err(chunk * GRANULARITY);
            }
            // Register the full chunk, bounded by the RAM regions. This could
            // be more efficient, but again, we expect there to only be one
            // chunk in practice.
            let full_range = MemoryRange::new(chunk * GRANULARITY..(chunk + 1) * GRANULARITY);
            for range in overlapping_ranges([full_range], self.ram.iter().copied()) {
                let range = MemoryRange::new(
                    self.registration_offset + range.start()
                        ..self.registration_offset + range.end(),
                );
                tracing::info!(%range, "registering memory");
                if let Err(err) = self.register.register_range(range) {
                    tracing::error!(
                        %range,
                        registration_offset = self.registration_offset,
                        error = &err as &dyn std::error::Error,
                        "failed to register memory"
                    );
                    state.failed.set_mut(chunk, true);
                    return Err(range.start());
                }
            }
            self.registered.set(chunk, true);
        }
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::MemoryRegistrar;
    use crate::registrar::GRANULARITY;
    use memory_range::MemoryRange;
    use std::cell::RefCell;
    use std::convert::Infallible;
    use vm_topology::memory::MemoryLayout;

    #[test]
    fn test_registrar() {
        let layout = MemoryLayout::new(
            1 << 40,
            &[
                MemoryRange::new(0x10000..0x20000),
                MemoryRange::new(1 << 40..2 << 40),
            ],
            None,
        )
        .unwrap();

        let offset = 1 << 50;
        let ranges = RefCell::new(Vec::new());
        let registrar = MemoryRegistrar::new(&layout, offset, |range| {
            println!("registering {:#x?}", range);
            ranges.borrow_mut().push(range);
            Ok::<_, Infallible>(())
        });

        for range in [
            0x1000..0x8000,
            0x20000..0x30000,
            0x100000..0x200000,
            1u64 << 33..(1u64 << 35) + 1,
        ] {
            registrar
                .register(range.start, range.end - range.start)
                .unwrap();
        }

        let mut expected = vec![
            MemoryRange::new(offset..offset | 0x10000),
            MemoryRange::new(offset | 0x20000..offset | GRANULARITY),
        ];
        expected.extend(
            (1 << 33..(1 << 35) + GRANULARITY)
                .step_by(GRANULARITY as usize)
                .map(|start| MemoryRange::new(offset | start..offset | (start + GRANULARITY))),
        );

        let ranges = ranges.take();
        assert_eq!(
            ranges.as_slice(),
            expected.as_slice(),
            "ranges: {}\n\nexpected: {}",
            ranges
                .iter()
                .map(|r| r.to_string())
                .collect::<Vec<_>>()
                .join("\n"),
            expected
                .iter()
                .map(|r| r.to_string())
                .collect::<Vec<_>>()
                .join("\n")
        );
    }
}