underhill_mem/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Underhill VM memory management.
#![cfg(target_os = "linux")]
mod init;
mod mapping;
mod registrar;
pub use init::BootInit;
pub use init::Init;
pub use init::MemoryMappings;
pub use init::init;
use guestmem::PAGE_SIZE;
use guestmem::ranges::PagedRange;
use hcl::GuestVtl;
use hcl::ioctl::AcceptPagesError;
use hcl::ioctl::ApplyVtlProtectionsError;
use hcl::ioctl::Mshv;
use hcl::ioctl::MshvHvcall;
use hcl::ioctl::MshvVtl;
use hcl::ioctl::snp::SnpPageError;
use hv1_structs::VtlArray;
use hvdef::HV_MAP_GPA_PERMISSIONS_ALL;
use hvdef::HV_PAGE_SIZE;
use hvdef::HvError;
use hvdef::HvMapGpaFlags;
use hvdef::HypercallCode;
use hvdef::Vtl;
use hvdef::hypercall::AcceptMemoryType;
use hvdef::hypercall::HostVisibilityType;
use hvdef::hypercall::HvInputVtl;
use mapping::GuestMemoryMapping;
use memory_range::MemoryRange;
use parking_lot::Mutex;
use registrar::RegisterMemory;
use std::sync::Arc;
use thiserror::Error;
use virt::IsolationType;
use virt_mshv_vtl::ProtectIsolatedMemory;
use virt_mshv_vtl::TlbFlushLockAccess;
use vm_topology::memory::MemoryLayout;
use x86defs::snp::SevRmpAdjust;
use x86defs::tdx::GpaVmAttributes;
use x86defs::tdx::GpaVmAttributesMask;
use x86defs::tdx::TdgMemPageAttrWriteR8;
use x86defs::tdx::TdgMemPageGpaAttr;
/// Error querying vtl permissions on a page
#[derive(Debug, Error)]
pub enum QueryVtlPermissionsError {
/// An SNP-specific error
#[error("failed to query rmp permissions")]
Snp(#[source] SnpPageError),
}
#[derive(Debug)]
struct MshvVtlWithPolicy {
mshv_vtl: MshvVtl,
ignore_registration_failure: bool,
shared: bool,
}
impl RegisterMemory for MshvVtlWithPolicy {
fn register_range(&self, range: MemoryRange) -> Result<(), impl 'static + std::error::Error> {
match self.mshv_vtl.add_vtl0_memory(range, self.shared) {
Ok(()) => Ok(()),
// TODO: remove this once the kernel driver tracks registration
Err(err) if self.ignore_registration_failure => {
tracing::warn!(
error = &err as &dyn std::error::Error,
"registration failure, could be expected"
);
Ok(())
}
Err(err) => Err(err),
}
}
}
#[derive(Debug, Error)]
#[error("failed to register memory with kernel")]
struct RegistrationError;
/// Currently built for hardware CVMs, which only define permissions for VTL
/// 0 and VTL 1 to express what those VTLs have access to. If this were to
/// extend to non-hardware CVMs, those would need to define permissions
/// instead for VTL 2 and VTL 1 to express what the lower VTLs have access
/// to.
///
/// Default VTL memory permissions applied to any mapped memory
struct DefaultVtlPermissions {
vtl0: HvMapGpaFlags,
vtl1: Option<HvMapGpaFlags>,
}
impl DefaultVtlPermissions {
fn set(&mut self, vtl: GuestVtl, permissions: HvMapGpaFlags) {
match vtl {
GuestVtl::Vtl0 => self.vtl0 = permissions,
GuestVtl::Vtl1 => self.vtl1 = Some(permissions),
}
}
}
/// Represents the vtl permissions on a page for a given isolation type
#[derive(Copy, Clone)]
enum GpaVtlPermissions {
Vbs(HvMapGpaFlags),
Snp(SevRmpAdjust),
Tdx((TdgMemPageGpaAttr, TdgMemPageAttrWriteR8)),
}
impl GpaVtlPermissions {
fn new(isolation: IsolationType, vtl: GuestVtl, protections: HvMapGpaFlags) -> Self {
match isolation {
IsolationType::None => unreachable!(),
IsolationType::Vbs => GpaVtlPermissions::Vbs(protections),
IsolationType::Snp => {
let mut vtl_permissions = GpaVtlPermissions::Snp(SevRmpAdjust::new());
vtl_permissions.set(vtl, protections);
vtl_permissions
}
IsolationType::Tdx => {
let mut vtl_permissions = GpaVtlPermissions::Tdx((
TdgMemPageGpaAttr::new(),
TdgMemPageAttrWriteR8::new(),
));
vtl_permissions.set(vtl, protections);
vtl_permissions
}
}
}
fn set(&mut self, vtl: GuestVtl, protections: HvMapGpaFlags) {
match self {
GpaVtlPermissions::Vbs(flags) => *flags = protections,
GpaVtlPermissions::Snp(rmpadjust) => {
*rmpadjust = SevRmpAdjust::new()
.with_enable_read(protections.readable())
.with_enable_write(protections.writable())
.with_enable_user_execute(protections.user_executable())
.with_enable_kernel_execute(protections.kernel_executable())
.with_target_vmpl(match vtl {
GuestVtl::Vtl0 => x86defs::snp::Vmpl::Vmpl2.into(),
GuestVtl::Vtl1 => x86defs::snp::Vmpl::Vmpl1.into(),
});
}
GpaVtlPermissions::Tdx((attributes, mask)) => {
let vm_attributes = GpaVmAttributes::new()
.with_valid(true)
.with_read(protections.readable())
.with_write(protections.writable())
.with_kernel_execute(protections.kernel_executable())
.with_user_execute(protections.user_executable());
let (new_attributes, new_mask) = match vtl {
GuestVtl::Vtl0 => {
let attributes = TdgMemPageGpaAttr::new().with_l2_vm1(vm_attributes);
let mask = TdgMemPageAttrWriteR8::new()
.with_l2_vm1(GpaVmAttributesMask::ALL_CHANGED);
(attributes, mask)
}
GuestVtl::Vtl1 => {
let attributes = TdgMemPageGpaAttr::new().with_l2_vm2(vm_attributes);
let mask = TdgMemPageAttrWriteR8::new()
.with_l2_vm2(GpaVmAttributesMask::ALL_CHANGED);
(attributes, mask)
}
};
*attributes = new_attributes;
*mask = new_mask;
}
}
}
}
/// Interface to accept and manipulate lower VTL memory acceptance and page
/// protections.
///
/// FUTURE: this should go away as a separate object once all the logic is moved
/// into this crate.
pub struct MemoryAcceptor {
mshv_hvcall: MshvHvcall,
mshv_vtl: MshvVtl,
isolation: IsolationType,
}
impl MemoryAcceptor {
/// Create a new instance.
pub fn new(isolation: IsolationType) -> Result<Self, hcl::ioctl::Error> {
let mshv = Mshv::new()?;
let mshv_vtl = mshv.create_vtl()?;
let mshv_hvcall = MshvHvcall::new()?;
mshv_hvcall.set_allowed_hypercalls(&[
HypercallCode::HvCallAcceptGpaPages,
HypercallCode::HvCallModifySparseGpaPageHostVisibility,
HypercallCode::HvCallModifyVtlProtectionMask,
]);
// On boot, VTL 0 should have permissions.
Ok(Self {
mshv_hvcall,
mshv_vtl,
isolation,
})
}
/// Accept pages for VTL0.
pub fn accept_vtl0_pages(&self, range: MemoryRange) -> Result<(), AcceptPagesError> {
match self.isolation {
IsolationType::None => unreachable!(),
IsolationType::Vbs => self
.mshv_hvcall
.accept_gpa_pages(range, AcceptMemoryType::RAM),
IsolationType::Snp => {
self.mshv_vtl
.pvalidate_pages(range, true, false)
.map_err(|err| AcceptPagesError::Snp {
failed_operation: err,
range,
})
}
IsolationType::Tdx => {
let attributes = TdgMemPageGpaAttr::new().with_l2_vm1(GpaVmAttributes::FULL_ACCESS);
let mask =
TdgMemPageAttrWriteR8::new().with_l2_vm1(GpaVmAttributesMask::ALL_CHANGED);
self.mshv_vtl
.tdx_accept_pages(range, Some((attributes, mask)))
.map_err(|err| AcceptPagesError::Tdx { error: err, range })
}
}
}
fn unaccept_vtl0_pages(&self, range: MemoryRange) {
match self.isolation {
IsolationType::None => unreachable!(),
IsolationType::Vbs => {
// TODO VBS: is there something to do here?
}
IsolationType::Snp => self
.mshv_vtl
.pvalidate_pages(range, false, false)
.expect("pvalidate should not fail"),
IsolationType::Tdx => {
// Nothing to do for TDX.
}
}
}
/// Tell the host to change the visibility of the given GPAs.
pub fn modify_gpa_visibility(
&self,
host_visibility: HostVisibilityType,
gpns: &[u64],
) -> Result<(), HvError> {
self.mshv_hvcall
.modify_gpa_visibility(host_visibility, gpns)
}
/// Apply the initial protections on lower-vtl memory.
///
/// After initialization, the default protections should be applied.
pub fn apply_initial_lower_vtl_protections(
&self,
range: MemoryRange,
) -> Result<(), ApplyVtlProtectionsError> {
self.apply_protections_from_flags(range, GuestVtl::Vtl0, HV_MAP_GPA_PERMISSIONS_ALL)
}
/// Query the current permissions for a vtl on a page.
fn vtl_permissions(
&self,
vtl: Vtl,
gpa: u64,
) -> Result<GpaVtlPermissions, QueryVtlPermissionsError> {
match self.isolation {
IsolationType::None | IsolationType::Vbs => unimplemented!(),
IsolationType::Snp => {
// TODO CVM GUEST VSM: track the permissions directly in
// underhill. For now, use rmpquery--but note this is only
// supported on Genoa+.
let rmpadjust = self
.mshv_vtl
.rmpquery_page(
gpa,
vtl.try_into()
.expect("only query non-VTL 2 permissions on hardware cvm"),
)
.map_err(QueryVtlPermissionsError::Snp)?;
Ok(GpaVtlPermissions::Snp(rmpadjust))
}
IsolationType::Tdx => todo!(),
}
}
fn apply_protections_from_flags(
&self,
range: MemoryRange,
vtl: GuestVtl,
flags: HvMapGpaFlags,
) -> Result<(), ApplyVtlProtectionsError> {
let permissions = GpaVtlPermissions::new(self.isolation, vtl, flags);
self.apply_protections(range, vtl.into(), permissions)
}
fn apply_protections(
&self,
range: MemoryRange,
vtl: Vtl,
protections: GpaVtlPermissions,
) -> Result<(), ApplyVtlProtectionsError> {
match protections {
GpaVtlPermissions::Vbs(flags) => {
// For VBS-isolated VMs, the permissions apply to all lower
// VTLs. Therefore VTL 0 cannot set its own permissions.
assert_ne!(vtl, Vtl::Vtl0);
self.mshv_hvcall
.modify_vtl_protection_mask(range, flags, HvInputVtl::from(vtl))
}
GpaVtlPermissions::Snp(rmpadjust) => {
// For SNP VMs, the permissions apply to the specified VTL.
// Therefore VTL 2 cannot specify its own permissions.
assert_ne!(vtl, Vtl::Vtl2);
self.mshv_vtl
.rmpadjust_pages(range, rmpadjust, false)
.map_err(|err| ApplyVtlProtectionsError::Snp {
failed_operation: err,
range,
permissions: rmpadjust,
vtl: vtl.into(),
})
}
GpaVtlPermissions::Tdx((attributes, mask)) => {
// For TDX VMs, the permissions apply to the specified VTL.
// Therefore VTL 2 cannot specify its own permissions.
assert_ne!(vtl, Vtl::Vtl2);
self.mshv_vtl
.tdx_set_page_attributes(range, attributes, mask)
.map_err(|err| ApplyVtlProtectionsError::Tdx {
error: err,
range,
permissions: attributes,
vtl: vtl.into(),
})
}
}
}
}
/// An implementation of [`ProtectIsolatedMemory`] for Underhill VMs.
pub struct HardwareIsolatedMemoryProtector {
// Serves as a lock for synchronizing visibility and page-protection changes.
inner: Mutex<HardwareIsolatedMemoryProtectorInner>,
layout: MemoryLayout,
acceptor: Arc<MemoryAcceptor>,
hypercall_overlay: VtlArray<Arc<Mutex<Option<HypercallOverlay>>>, 2>,
}
struct HypercallOverlay {
gpn: u64,
permissions: GpaVtlPermissions,
}
struct HardwareIsolatedMemoryProtectorInner {
shared: Arc<GuestMemoryMapping>,
encrypted: Arc<GuestMemoryMapping>,
default_vtl_permissions: DefaultVtlPermissions,
vtl1_protections_enabled: bool,
}
impl HardwareIsolatedMemoryProtector {
/// Returns a new instance.
///
/// `shared` provides the mapping for shared memory. `vtl0` provides the
/// mapping for encrypted memory.
pub fn new(
shared: Arc<GuestMemoryMapping>,
encrypted: Arc<GuestMemoryMapping>,
layout: MemoryLayout,
acceptor: Arc<MemoryAcceptor>,
) -> Self {
Self {
inner: Mutex::new(HardwareIsolatedMemoryProtectorInner {
shared,
encrypted,
// Grant only VTL 0 all permissions. This will be altered
// later by VTL 1 enablement and by VTL 1 itself.
default_vtl_permissions: DefaultVtlPermissions {
vtl0: HV_MAP_GPA_PERMISSIONS_ALL,
vtl1: None,
},
vtl1_protections_enabled: false,
}),
layout,
acceptor,
hypercall_overlay: VtlArray::from_fn(|_| Arc::new(Mutex::new(None))),
}
}
fn apply_protections_with_overlay_handling(
&self,
vtl: GuestVtl,
ranges: &[MemoryRange],
protections: HvMapGpaFlags,
) -> Result<(), ApplyVtlProtectionsError> {
// The overlay page cannot change over the course of this operation
let mut overlay_lock = self.hypercall_overlay[vtl].lock();
for range in ranges {
match overlay_lock.as_mut() {
Some(overlay) if range.contains_addr(overlay.gpn * HV_PAGE_SIZE) => {
overlay.permissions.set(vtl, protections);
let overlay_address = overlay.gpn * HV_PAGE_SIZE;
let overlay_offset = range.offset_of(overlay_address).unwrap();
let (left, right) = range.split_at_offset(overlay_offset);
self.acceptor
.apply_protections_from_flags(left, vtl, protections)?;
let sub_range = MemoryRange::new((overlay.gpn + 1) * HV_PAGE_SIZE..right.end());
if !sub_range.is_empty() {
self.acceptor
.apply_protections_from_flags(sub_range, vtl, protections)?;
}
}
_ => {
self.acceptor
.apply_protections_from_flags(*range, vtl, protections)?;
}
}
}
Ok(())
}
/// Restore the original protections on the page that is overlaid.
fn restore_overlay_permissions(
&self,
vtl: GuestVtl,
overlay: &HypercallOverlay,
) -> Result<(), ApplyVtlProtectionsError> {
let range = MemoryRange::new(overlay.gpn * HV_PAGE_SIZE..(overlay.gpn + 1) * HV_PAGE_SIZE);
self.acceptor
.apply_protections(range, vtl.into(), overlay.permissions)?;
Ok(())
}
}
impl ProtectIsolatedMemory for HardwareIsolatedMemoryProtector {
fn change_host_visibility(
&self,
shared: bool,
gpns: &[u64],
tlb_access: &mut dyn TlbFlushLockAccess,
) -> Result<(), (HvError, usize)> {
// Validate the ranges are RAM.
for &gpn in gpns {
if !self
.layout
.ram()
.iter()
.any(|r| r.range.contains_addr(gpn * HV_PAGE_SIZE))
{
return Err((HvError::OperationDenied, 0));
}
// Don't allow the hypercall overlay to have shared visibility.
if shared {
for vtl in [Vtl::Vtl1, Vtl::Vtl0] {
let overlay = self.hypercall_overlay[vtl].lock();
if let Some(overlay) = &*overlay {
if overlay.gpn == gpn {
return Err((HvError::OperationDenied, 0));
}
}
}
}
}
let inner = self.inner.lock();
// Filter out the GPNs that are already in the correct state.
let orig_gpns = gpns;
let gpns = gpns
.iter()
.copied()
.filter(|&gpn| inner.shared.check_bitmap(gpn) != shared)
.collect::<Vec<_>>();
tracing::debug!(
orig = orig_gpns.len(),
len = gpns.len(),
first = gpns.first(),
shared,
"change vis"
);
let ranges = PagedRange::new(0, gpns.len() * PagedRange::PAGE_SIZE, &gpns)
.unwrap()
.ranges()
.map(|r| r.map(|r| MemoryRange::new(r.start..r.end)))
.collect::<Result<Vec<_>, _>>()
.unwrap(); // Ok to unwrap, we've validated the gpns above.
// Prevent accesses via the wrong address.
let clear_bitmap = if shared {
&inner.encrypted
} else {
&inner.shared
};
for &range in &ranges {
clear_bitmap.update_bitmap(range, false);
}
// TODO SNP: flush concurrent accessors.
if let IsolationType::Snp = self.acceptor.isolation {
// We need to ensure that the guest TLB has been fully flushed since
// the unaccept operation is not guaranteed to do so in hardware,
// and the hypervisor is also not trusted with TLB hygiene.
tlb_access.flush_entire();
}
// TODO SNP: check list of locks, roll back bitmap changes if there was one.
if shared {
// Unaccept the pages so that the hypervisor can reclaim them.
for &range in &ranges {
self.acceptor.unaccept_vtl0_pages(range);
}
}
// Ask the hypervisor to update visibility.
let host_visibility = if shared {
HostVisibilityType::SHARED
} else {
HostVisibilityType::PRIVATE
};
if let Err(err) = self.acceptor.modify_gpa_visibility(host_visibility, &gpns) {
if shared {
panic!(
"the hypervisor refused to transition pages to shared, we cannot safely roll back: {:?}",
err
);
}
todo!("roll back bitmap changes and report partial success");
}
if !shared {
// Accept the pages so that the guest can use them.
for &range in &ranges {
self.acceptor
.accept_vtl0_pages(range)
.expect("everything should be in a state where we can accept VTL0 pages");
// For SNP, zero the memory before allowing the guest to access
// them. For TDX, this is done by the TDX module. For mshv, this is
// done by the hypervisor.
if self.acceptor.isolation == IsolationType::Snp {
inner.encrypted.zero_range(range).expect("VTL 2 should have access to lower VTL memory and the page should be accepted");
}
}
}
// Allow accesses via the correct address.
let set_bitmap = if shared {
&inner.shared
} else {
&inner.encrypted
};
for &range in &ranges {
set_bitmap.update_bitmap(range, true);
}
if !shared {
// Apply vtl protections so that the guest can use them. The
// hypercall overlay should not be host visible, so just apply
// the default protections directly without handling of the
// hypercall overlay.
for &range in &ranges {
self.acceptor
.apply_protections_from_flags(
range,
GuestVtl::Vtl0,
inner.default_vtl_permissions.vtl0,
)
.expect("should be able to apply default protections");
if let Some(vtl1_protections) = inner.default_vtl_permissions.vtl1 {
self.acceptor
.apply_protections_from_flags(range, GuestVtl::Vtl1, vtl1_protections)
.expect(
"everything should be in a state where we can apply VTL protections",
);
}
}
}
Ok(())
}
fn query_host_visibility(
&self,
gpns: &[u64],
host_visibility: &mut [HostVisibilityType],
) -> Result<(), (HvError, usize)> {
// Validate the ranges are RAM.
for (i, &gpn) in gpns.iter().enumerate() {
if !self
.layout
.ram()
.iter()
.any(|r| r.range.contains_addr(gpn * HV_PAGE_SIZE))
{
return Err((HvError::OperationDenied, i));
}
}
let inner = self.inner.lock();
// Set GPN sharing status in output.
for (gpn, host_vis) in gpns.iter().zip(host_visibility.iter_mut()) {
*host_vis = if inner.shared.check_bitmap(*gpn) {
HostVisibilityType::SHARED
} else {
HostVisibilityType::PRIVATE
};
}
Ok(())
}
fn default_vtl0_protections(&self) -> HvMapGpaFlags {
self.inner.lock().default_vtl_permissions.vtl0
}
fn change_default_vtl_protections(
&self,
vtl: GuestVtl,
vtl_protections: HvMapGpaFlags,
tlb_access: &mut dyn TlbFlushLockAccess,
) -> Result<(), HvError> {
// Prevent visibility changes while VTL protections are being
// applied.
//
// TODO: This does not need to be synchronized against other
// threads performing VTL protection changes; whichever thread
// finishes last will control the outcome.
//
// TODO GUEST VSM: Changes to vtl protections will need to be
// synchronized with any checks for VTL protections (e.g. rmpquery)
let mut inner = self.inner.lock();
inner.default_vtl_permissions.set(vtl, vtl_protections);
let mut ranges = Vec::new();
for ram_range in self.layout.ram().iter() {
let mut protect_start = ram_range.range.start();
let mut page_count = 0;
for gpn in
ram_range.range.start() / PAGE_SIZE as u64..ram_range.range.end() / PAGE_SIZE as u64
{
// TODO GUEST_VSM: for now, use the encrypted mapping to
// find all accepted memory. When lazy acceptance exists,
// this should track all pages that have been accepted and
// should be used instead.
if !inner.encrypted.check_bitmap(gpn) {
if page_count > 0 {
let end_address = protect_start + (page_count * PAGE_SIZE as u64);
ranges.push(MemoryRange::new(protect_start..end_address));
}
protect_start = (gpn + 1) * PAGE_SIZE as u64;
page_count = 0;
} else {
page_count += 1;
}
}
if page_count > 0 {
let end_address = protect_start + (page_count * PAGE_SIZE as u64);
ranges.push(MemoryRange::new(protect_start..end_address));
}
}
self.apply_protections_with_overlay_handling(vtl, &ranges, vtl_protections)
.expect("applying vtl protections should succeed");
// Invalidate the entire VTL 0 TLB to ensure that the new permissions
// are observed.
tlb_access.flush(GuestVtl::Vtl0);
Ok(())
}
fn change_vtl_protections(
&self,
vtl: GuestVtl,
gpns: &[u64],
protections: HvMapGpaFlags,
tlb_access: &mut dyn TlbFlushLockAccess,
) -> Result<(), (HvError, usize)> {
// Validate the ranges are RAM.
for &gpn in gpns {
if !self
.layout
.ram()
.iter()
.any(|r| r.range.contains_addr(gpn * HV_PAGE_SIZE))
{
return Err((HvError::OperationDenied, 0));
}
}
// Prevent visibility changes while VTL protections are being
// applied. This does not need to be synchronized against other
// threads performing VTL protection changes; whichever thread
// finishes last will control the outcome.
let inner = self.inner.lock();
// Protections cannot be applied to a host-visible page
if gpns.iter().any(|&gpn| inner.shared.check_bitmap(gpn)) {
return Err((HvError::OperationDenied, 0));
}
// TODO GUEST VSM: For hardware-isolated VMs, track vtl protections in a bitmap
let ranges = PagedRange::new(0, gpns.len() * PagedRange::PAGE_SIZE, gpns)
.unwrap()
.ranges()
.map(|r| r.map(|r| MemoryRange::new(r.start..r.end)))
.collect::<Result<Vec<_>, _>>()
.unwrap(); // Ok to unwrap, we've validated the gpns above.
self.apply_protections_with_overlay_handling(vtl, &ranges, protections)
.expect("applying vtl protections should succeed");
// Since page protections were modified, we must invalidate the entire
// VTL 0 TLB to ensure that the new permissions are observed, and wait for
// other CPUs to release all guest mappings before declaring that the VTL
// protection change has completed.
tlb_access.flush(GuestVtl::Vtl0);
tlb_access.set_wait_for_tlb_locks(vtl);
Ok(())
}
fn change_hypercall_overlay(
&self,
vtl: GuestVtl,
gpn: u64,
tlb_access: &mut dyn TlbFlushLockAccess,
) {
// Should already have written contents to the page via the guest
// memory object, confirming that this is a guest page
assert!(
self.layout
.ram()
.iter()
.any(|r| r.range.contains_addr(gpn * HV_PAGE_SIZE))
);
let inner = self.inner.lock();
let mut overlay = self.hypercall_overlay[vtl].lock();
// Restore permissions on the previous overlay
if let Some(overlay) = overlay.as_ref() {
self.restore_overlay_permissions(vtl, overlay)
.expect("applying vtl protections should succeed");
}
let current_permissions = match self.acceptor.isolation {
IsolationType::None | IsolationType::Vbs => unreachable!(),
IsolationType::Snp => {
if inner.vtl1_protections_enabled {
// Safe to assume that rmpquery is available because
// guest vsm is only allowed if rmpquery is
self.acceptor
.vtl_permissions(vtl.into(), gpn * HV_PAGE_SIZE)
.expect("able to query vtl protections")
} else {
// Since there's no VTL 1 and VTL 0 can't change its own
// permissions, the permissions should be the same as
// when VTL 2 initialized guest memory.
GpaVtlPermissions::new(IsolationType::Snp, vtl, HV_MAP_GPA_PERMISSIONS_ALL)
}
}
IsolationType::Tdx => {
// TODO TDX GUEST VSM: implement acceptor.vtl_permissions
// For now, since guest vsm isn't enabled (therefore no VTL
// 1), and VTL 0 can't change its own permissions, the
// permissions should be the same as when VTL 2 initialized
// guest memory.
GpaVtlPermissions::new(IsolationType::Tdx, vtl, HV_MAP_GPA_PERMISSIONS_ALL)
}
};
*overlay = Some(HypercallOverlay {
gpn,
permissions: current_permissions,
});
self.acceptor
.apply_protections_from_flags(
MemoryRange::new(gpn * HV_PAGE_SIZE..(gpn + 1) * HV_PAGE_SIZE),
vtl,
HV_MAP_GPA_PERMISSIONS_ALL.with_writable(false),
)
.expect("applying vtl protections should succeed");
// Flush the guest TLB to ensure that the new permissions are observed.
tlb_access.flush(vtl);
}
fn disable_hypercall_overlay(&self, vtl: GuestVtl, tlb_access: &mut dyn TlbFlushLockAccess) {
let _lock = self.inner.lock();
let mut overlay = self.hypercall_overlay[vtl].lock();
if let Some(overlay) = overlay.as_ref() {
self.restore_overlay_permissions(vtl, overlay)
.expect("applying vtl protections should succeed");
}
*overlay = None;
tlb_access.flush(vtl);
}
fn set_vtl1_protections_enabled(&self) {
self.inner.lock().vtl1_protections_enabled = true;
}
fn vtl1_protections_enabled(&self) -> bool {
self.inner.lock().vtl1_protections_enabled
}
}