underhill_mem/init.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
#![expect(missing_docs)]
use crate::HardwareIsolatedMemoryProtector;
use crate::MemoryAcceptor;
use crate::mapping::GuestMemoryMapping;
use anyhow::Context;
use futures::future::try_join_all;
use guestmem::GuestMemory;
use hcl::ioctl::MshvHvcall;
use hcl::ioctl::MshvVtlLow;
use hvdef::HypercallCode;
use hvdef::Vtl;
use hvdef::hypercall::HvInputVtl;
use inspect::Inspect;
use memory_range::AlignedSubranges;
use memory_range::MemoryRange;
use pal_async::task::Spawn;
use std::sync::Arc;
use tracing::Instrument;
use underhill_threadpool::AffinitizedThreadpool;
use virt::IsolationType;
use virt_mshv_vtl::ProtectIsolatedMemory;
use vm_topology::memory::MemoryLayout;
use vm_topology::memory::MemoryRangeWithNode;
use vm_topology::processor::ProcessorTopology;
#[derive(Inspect)]
pub struct MemoryMappings {
vtl0: Arc<GuestMemoryMapping>,
vtl1: Option<Arc<GuestMemoryMapping>>,
#[inspect(skip)]
vtl0_gm: GuestMemory,
#[inspect(skip)]
vtl1_gm: Option<GuestMemory>,
#[inspect(flatten)]
cvm_memory: Option<CvmMemory>,
}
#[derive(Inspect)]
/// Mappings, pools, and useful types for memory management that are only
/// available in confidential VMs.
pub struct CvmMemory {
shared_mapping: Arc<GuestMemoryMapping>,
#[inspect(skip)]
pub shared_gm: GuestMemory,
#[inspect(skip)]
/// Includes only private VTL0 memory, not pages that have been made shared.
pub private_vtl0_memory: GuestMemory,
#[inspect(skip)]
pub protector: Arc<dyn ProtectIsolatedMemory>,
}
impl MemoryMappings {
/// Includes all VTL0-accessible memory (private and shared).
pub fn vtl0(&self) -> &GuestMemory {
&self.vtl0_gm
}
pub fn vtl1(&self) -> Option<&GuestMemory> {
self.vtl1_gm.as_ref()
}
pub fn cvm_memory(&self) -> Option<&CvmMemory> {
self.cvm_memory.as_ref()
}
}
pub struct Init<'a> {
pub processor_topology: &'a ProcessorTopology,
pub isolation: IsolationType,
pub vtl0_alias_map_bit: Option<u64>,
pub vtom: Option<u64>,
pub mem_layout: &'a MemoryLayout,
pub complete_memory_layout: &'a MemoryLayout,
pub boot_init: Option<BootInit<'a>>,
pub shared_pool: &'a [MemoryRangeWithNode],
pub maximum_vtl: Vtl,
}
pub struct BootInit<'a> {
pub tp: &'a AffinitizedThreadpool,
pub vtl2_memory: &'a [MemoryRangeWithNode],
pub accepted_regions: &'a [MemoryRange],
}
pub async fn init(params: &Init<'_>) -> anyhow::Result<MemoryMappings> {
let mut validated_ranges = Vec::new();
let acceptor = if params.isolation.is_isolated() {
Some(Arc::new(MemoryAcceptor::new(params.isolation)?))
} else {
None
};
let hardware_isolated = params.isolation.is_hardware_isolated();
if let Some(boot_init) = ¶ms.boot_init {
if !params.isolation.is_isolated() {
// TODO: VTL 2 protections are applied in the boot shim for isolated
// VMs. Since non-isolated VMs can undergo servicing and this is an
// expensive operation, continue to apply protections here for now. In
// the future, the boot shim should be made aware of when it's booting
// during a servicing operation and unify the application of vtl2
// protections.
// Temporarily move HCL into an Arc so that it can be used across
// multiple processors.
tracing::debug!("Applying VTL2 protections");
apply_vtl2_protections(boot_init.tp, boot_init.vtl2_memory)
.instrument(tracing::info_span!("apply_vtl2_protections"))
.await?;
} else {
// Prepare VTL0 memory for mapping.
let acceptor = acceptor.as_ref().unwrap();
let ram = params.mem_layout.ram().iter().map(|r| r.range);
let accepted_ranges = boot_init.accepted_regions.iter().copied();
// On hardware isolated platforms, accepted memory was accepted with
// VTL2 only permissions. Provide VTL0 access here.
tracing::debug!("Applying VTL0 protections");
if hardware_isolated {
for range in memory_range::overlapping_ranges(ram.clone(), accepted_ranges.clone())
{
acceptor.apply_initial_lower_vtl_protections(range)?;
}
}
// Accept the memory that was not accepted by the boot loader.
// FUTURE: do this lazily.
let vp_count = std::cmp::max(1, params.processor_topology.vp_count() - 1);
let accept_subrange = move |subrange| {
acceptor.accept_vtl0_pages(subrange).unwrap();
if hardware_isolated {
// For VBS-isolated VMs, the VTL protections are set as
// part of the accept call.
acceptor
.apply_initial_lower_vtl_protections(subrange)
.unwrap();
}
};
tracing::debug!("Accepting VTL0 memory");
std::thread::scope(|scope| {
for source_range in memory_range::subtract_ranges(ram, accepted_ranges) {
validated_ranges.push(source_range);
// Chunks must be 2mb aligned
let two_mb = 2 * 1024 * 1024;
let mut range = source_range.aligned_subrange(two_mb);
if !range.is_empty() {
let chunk_size = (range.page_count_2m().div_ceil(vp_count as u64)) * two_mb;
let chunk_count = range.len().div_ceil(chunk_size);
for _ in 0..chunk_count {
let subrange;
(subrange, range) = if range.len() >= chunk_size {
range.split_at_offset(chunk_size)
} else {
(range, MemoryRange::EMPTY)
};
scope.spawn(move || accept_subrange(subrange));
}
assert!(range.is_empty());
}
// Now accept whatever wasn't aligned on the edges
scope.spawn(move || {
for unaligned_subrange in memory_range::subtract_ranges(
[source_range],
[source_range.aligned_subrange(two_mb)],
) {
accept_subrange(unaligned_subrange);
}
});
}
});
}
}
// Tell the hypervisor we want to use the shared pool for shared memory.
//
// TODO: don't we possibly need to unaccept these pages for SNP? Or are
// we assuming they were not in the boot loader's pre-accepted pages.
if let Some(acceptor) = &acceptor {
tracing::debug!("Making shared pool pages shared");
for range in params.shared_pool {
acceptor
.modify_gpa_visibility(
hvdef::hypercall::HostVisibilityType::SHARED,
&Vec::from_iter(range.range.start_4k_gpn()..range.range.end_4k_gpn()),
)
.context("unable to make shared pool pages shared vis")?;
}
}
// Map lower VTL memory.
let gpa_fd = MshvVtlLow::new().context("failed to open /dev/mshv_vtl_low")?;
let gm = if hardware_isolated {
assert!(params.vtl0_alias_map_bit.is_none());
let vtom = params.vtom.unwrap();
// Create the encrypted mapping with just the lower VTL memory.
//
// Do not register this mapping with the kernel. It will not be safe for
// use with syscalls that expect virtual addresses to be in
// kernel-registered RAM.
tracing::debug!("Building VTL0 memory map");
let vtl0_mapping = Arc::new({
let _span = tracing::info_span!("map_vtl0_memory").entered();
GuestMemoryMapping::builder(0)
.dma_base_address(None) // prohibit direct DMA attempts until TDISP is supported
.use_bitmap(Some(true))
.build(&gpa_fd, params.mem_layout)
.context("failed to map vtl0 memory")?
});
// Create the shared mapping with the complete memory map, to include
// the shared pool. This memory is not private to VTL2 and is expected
// that devices will do DMA to them.
let shared_offset = match params.isolation {
IsolationType::Tdx => {
// Register memory just once, as shared memory. This
// registration will be used both to map pages as shared and as
// encrypted. If the kernel remaps a page into a kernel address,
// it will be marked as shared, which can cause a fault or,
// worse, an information leak.
//
// This is done this way because in TDX, there is only one
// mapping for each page. The distinguishing bit is a reserved
// bit, from the kernel's perspective. (You can also just see it
// as the high bit of the GPA, but the Linux kernel does not
// treat it that way.)
//
// TODO CVM: figure out how to prevent passing encrypted pages
// to syscalls. Idea: prohibit locking of `GuestMemory` pages
// for encrypted memory, so that there's no way to get a virtual
// address. Downside: vmbus ring buffers are currently accessed
// by locking memory, and this would need to be changed to use
// some kind of override, or to go through `GuestMemory`
// accessors, or something.
0
}
IsolationType::Snp => {
// SNP has two mappings for each shared page: one below and one
// above VTOM. So, unlike for TDX, for SNP we could choose to
// register memory twice, allowing the kernel to operate on
// either shared or encrypted memory. But, for consistency with
// TDX, just register the shared mapping.
//
// Register the VTOM mapping instead of the low mapping. In
// theory it shouldn't matter; we should be able to ignore VTOM.
// However, the ioctls to issue pvalidate and rmpadjust
// instructions operate on VAs, and they must either be VAs
// mapping unregistered pages or pages that were registered as
// encrypted. Since we want to avoid registering the pages as
// encrypted, the lower alias must remain unregistered, and so
// the shared registration must use the high mapping.
vtom
}
_ => unreachable!(),
};
// For TDX, the spec says that the IOMMU _may_ reject DMAs with the
// shared bit clear, so set it in the IOVAs returned for the shared
// mapping.
//
// For SNP, the hardware doesn't care; VTOM is not known by the IOMMU
// and the hypervisor includes the VTOM alias in the IOMMU's page
// tables. Use the VTOM alias for consistency with TDX.
let dma_base_address = vtom;
// Create the shared mapping with the complete memory map, to include
// the shared pool. This memory is not private to VTL2 and is expected
// that devices will access it via DMA.
//
// Don't allow kernel access here either--the kernel seems to get
// confused about shared memory, and our current use of kernel-mode
// guest memory access is limited to low-perf paths where we can use
// bounce buffering.
tracing::debug!("Building shared memory map");
let shared_mapping = Arc::new({
let _span = tracing::info_span!("map_shared_memory").entered();
GuestMemoryMapping::builder(shared_offset)
.shared(true)
.use_bitmap(Some(false))
.ignore_registration_failure(params.boot_init.is_none())
.dma_base_address(Some(dma_base_address))
.build(&gpa_fd, params.complete_memory_layout)
.context("failed to map shared memory")?
});
// Update the shared mapping bitmap for pages used by the shared
// visibility pool to be marked as shared, since by default pages are
// marked as no-access in the bitmap.
tracing::debug!("Updating shared mapping bitmaps");
for range in params.shared_pool {
shared_mapping.update_bitmap(range.range, true);
}
tracing::debug!("Creating VTL0 guest memory");
let vtl0_gm = GuestMemory::new_multi_region(
"vtl0",
vtom,
vec![Some(vtl0_mapping.clone()), Some(shared_mapping.clone())],
)
.context("failed to make vtl0 guest memory")?;
let vtl1_gm = if params.maximum_vtl >= Vtl::Vtl1 {
// TODO CVM GUEST VSM: This should not just use the vtl0_gm. This
// could also be further tightened -- whether or not VTL 1 is
// exposed to the guest is actually determined later, using
// additional information.
Some(vtl0_gm.clone())
} else {
None
};
if params.isolation == IsolationType::Snp {
// For SNP, zero any newly accepted private lower-vtl memory in case
// the hypervisor decided to remap VTL 2 memory into lower-VTL GPA
// space. This is safe to do after the vtl permissions have been
// applied because the lower VTLs are not running yet.
//
// TODO: perform lazily
let _span = tracing::info_span!("zeroing lower vtl memory for SNP").entered();
tracing::debug!("zeroing lower vtl memory for SNP");
for range in validated_ranges {
vtl0_gm
.fill_at(range.start(), 0, range.len() as usize)
.expect("private memory should be valid at this stage");
}
}
// Untrusted devices can only access shared memory, but they can do so
// from either alias (below and above vtom). This is consistent with
// what the IOMMU is programmed with.
tracing::debug!("Creating untrusted shared DMA memory");
let shared_gm = GuestMemory::new_multi_region(
"shared",
vtom,
vec![Some(shared_mapping.clone()), Some(shared_mapping.clone())],
)
.context("failed to make shared guest memory")?;
let private_vtl0_memory = GuestMemory::new("trusted", vtl0_mapping.clone());
let protector = Arc::new(HardwareIsolatedMemoryProtector::new(
shared_mapping.clone(),
vtl0_mapping.clone(),
params.mem_layout.clone(),
acceptor.as_ref().unwrap().clone(),
)) as Arc<dyn ProtectIsolatedMemory>;
MemoryMappings {
vtl0: vtl0_mapping,
vtl1: None,
vtl0_gm,
vtl1_gm,
cvm_memory: Some(CvmMemory {
shared_gm,
private_vtl0_memory,
shared_mapping,
protector,
}),
}
} else {
tracing::debug!("Creating VTL0 guest memory");
let vtl0_mapping = {
let _span = tracing::info_span!("map_vtl0_memory").entered();
let base_address = params.vtl0_alias_map_bit.unwrap_or(0);
Arc::new(
GuestMemoryMapping::builder(base_address)
.for_kernel_access(true)
.dma_base_address(Some(base_address))
.ignore_registration_failure(params.boot_init.is_none())
.build(&gpa_fd, params.mem_layout)
.context("failed to map vtl0 memory")?,
)
};
let vtl0_gm = GuestMemory::new("vtl0", vtl0_mapping.clone());
let vtl1_mapping = if params.maximum_vtl >= Vtl::Vtl1 {
if params.vtl0_alias_map_bit.is_none() {
if cfg!(guest_arch = "x86_64") {
// Guest VSM cannot be exposed to the guest unless the
// alias map is available. Otherwise, Underhill cannot
// correctly check for VTL0 access protections. Ideally, UH
// would hide Guest VSM from the guest if the alias map is
// not available, but the guest secure kernel checks the
// access_vsm permission to determine if Guest VSM is
// supported, and there is no mechanism for UH to hide that
// from the guest. Thus, it is not safe to proceed.
anyhow::bail!("cannot safely support VTL 1 without using the alias map");
} else {
// On ARM, the alias map is not exposed: see
// underhill_core::init::vtl0_alias_map_bit.
tracing::warn!(
"cannot safely support VTL 1 without using the alias map; Guest VSM not supported"
);
None
}
} else {
tracing::debug!("Creating VTL 1 memory map");
let _span = tracing::info_span!("map_vtl1_memory").entered();
let vtl1_mapping = GuestMemoryMapping::builder(0)
.for_kernel_access(true)
.dma_base_address(Some(0))
.ignore_registration_failure(params.boot_init.is_none())
.build(&gpa_fd, params.mem_layout)
.context("failed to map vtl1 memory")?;
Some(Arc::new(vtl1_mapping))
}
} else {
None
};
let vtl1_gm = if let Some(vtl1_mapping) = &vtl1_mapping {
tracing::info!("VTL 1 memory map created");
Some(GuestMemory::new("vtl1", vtl1_mapping.clone()))
} else {
tracing::info!("Skipping VTL 1 memory map creation");
None
};
MemoryMappings {
vtl0: vtl0_mapping,
vtl1: vtl1_mapping,
vtl0_gm,
vtl1_gm,
cvm_memory: None,
}
};
Ok(gm)
}
/// Apply VTL2 protections to all VTL2 ram ranges. This marks all VTL2 pages as
/// no access by lower VTLs.
async fn apply_vtl2_protections(
threadpool: &AffinitizedThreadpool,
vtl2_memory: &[MemoryRangeWithNode],
) -> anyhow::Result<()> {
let mshv_hvcall = Arc::new(MshvHvcall::new().context("failed to open mshv_hvcall device")?);
mshv_hvcall.set_allowed_hypercalls(&[HypercallCode::HvCallModifyVtlProtectionMask]);
// Apply VTL2 protections in 2GB units. This is large enough to get large
// pages in the kernel, but small enough to allow parallelism across most of
// the VPs.
const MAX_RANGE_LEN: u64 = 2 << 30;
let ranges: Vec<_> = vtl2_memory
.iter()
.flat_map(|range| AlignedSubranges::new(range.range).with_max_range_len(MAX_RANGE_LEN))
.collect();
try_join_all(
ranges
.into_iter()
.zip(threadpool.active_drivers().cycle())
.map(|(range, driver)| {
let mshv_hvcall = mshv_hvcall.clone();
driver.spawn(
"apply-vtl2-protections",
async move {
tracing::debug!(
cpu = underhill_threadpool::Thread::current()
.unwrap()
.with_driver(|driver| driver.target_cpu()),
%range,
"applying protections"
);
mshv_hvcall
.modify_vtl_protection_mask(
range,
hvdef::HV_MAP_GPA_PERMISSIONS_NONE,
HvInputVtl::CURRENT_VTL,
)
.with_context(|| {
format!("failed to apply vtl2 protections for {range}")
})
}
.in_current_span(),
)
}),
)
.await?;
Ok(())
}