underhill_mem/
init.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

#![expect(missing_docs)]

use crate::HardwareIsolatedMemoryProtector;
use crate::MemoryAcceptor;
use crate::mapping::GuestMemoryMapping;
use anyhow::Context;
use futures::future::try_join_all;
use guestmem::GuestMemory;
use hcl::ioctl::MshvHvcall;
use hcl::ioctl::MshvVtlLow;
use hvdef::HypercallCode;
use hvdef::Vtl;
use hvdef::hypercall::HvInputVtl;
use inspect::Inspect;
use memory_range::AlignedSubranges;
use memory_range::MemoryRange;
use pal_async::task::Spawn;
use std::sync::Arc;
use tracing::Instrument;
use underhill_threadpool::AffinitizedThreadpool;
use virt::IsolationType;
use virt_mshv_vtl::ProtectIsolatedMemory;
use vm_topology::memory::MemoryLayout;
use vm_topology::memory::MemoryRangeWithNode;
use vm_topology::processor::ProcessorTopology;

#[derive(Inspect)]
pub struct MemoryMappings {
    vtl0: Arc<GuestMemoryMapping>,
    vtl1: Option<Arc<GuestMemoryMapping>>,
    #[inspect(skip)]
    vtl0_gm: GuestMemory,
    #[inspect(skip)]
    vtl1_gm: Option<GuestMemory>,
    #[inspect(flatten)]
    cvm_memory: Option<CvmMemory>,
}

#[derive(Inspect)]
/// Mappings, pools, and useful types for memory management that are only
/// available in confidential VMs.
pub struct CvmMemory {
    shared_mapping: Arc<GuestMemoryMapping>,
    #[inspect(skip)]
    pub shared_gm: GuestMemory,
    #[inspect(skip)]
    /// Includes only private VTL0 memory, not pages that have been made shared.
    pub private_vtl0_memory: GuestMemory,
    #[inspect(skip)]
    pub protector: Arc<dyn ProtectIsolatedMemory>,
}

impl MemoryMappings {
    /// Includes all VTL0-accessible memory (private and shared).
    pub fn vtl0(&self) -> &GuestMemory {
        &self.vtl0_gm
    }

    pub fn vtl1(&self) -> Option<&GuestMemory> {
        self.vtl1_gm.as_ref()
    }

    pub fn cvm_memory(&self) -> Option<&CvmMemory> {
        self.cvm_memory.as_ref()
    }
}

pub struct Init<'a> {
    pub processor_topology: &'a ProcessorTopology,
    pub isolation: IsolationType,
    pub vtl0_alias_map_bit: Option<u64>,
    pub vtom: Option<u64>,
    pub mem_layout: &'a MemoryLayout,
    pub complete_memory_layout: &'a MemoryLayout,
    pub boot_init: Option<BootInit<'a>>,
    pub shared_pool: &'a [MemoryRangeWithNode],
    pub maximum_vtl: Vtl,
}

pub struct BootInit<'a> {
    pub tp: &'a AffinitizedThreadpool,
    pub vtl2_memory: &'a [MemoryRangeWithNode],
    pub accepted_regions: &'a [MemoryRange],
}

pub async fn init(params: &Init<'_>) -> anyhow::Result<MemoryMappings> {
    let mut validated_ranges = Vec::new();

    let acceptor = if params.isolation.is_isolated() {
        Some(Arc::new(MemoryAcceptor::new(params.isolation)?))
    } else {
        None
    };

    let hardware_isolated = params.isolation.is_hardware_isolated();

    if let Some(boot_init) = &params.boot_init {
        if !params.isolation.is_isolated() {
            // TODO: VTL 2 protections are applied in the boot shim for isolated
            // VMs. Since non-isolated VMs can undergo servicing and this is an
            // expensive operation, continue to apply protections here for now. In
            // the future, the boot shim should be made aware of when it's booting
            // during a servicing operation and unify the application of vtl2
            // protections.

            // Temporarily move HCL into an Arc so that it can be used across
            // multiple processors.

            tracing::debug!("Applying VTL2 protections");
            apply_vtl2_protections(boot_init.tp, boot_init.vtl2_memory)
                .instrument(tracing::info_span!("apply_vtl2_protections"))
                .await?;
        } else {
            // Prepare VTL0 memory for mapping.
            let acceptor = acceptor.as_ref().unwrap();
            let ram = params.mem_layout.ram().iter().map(|r| r.range);
            let accepted_ranges = boot_init.accepted_regions.iter().copied();
            // On hardware isolated platforms, accepted memory was accepted with
            // VTL2 only permissions. Provide VTL0 access here.
            tracing::debug!("Applying VTL0 protections");
            if hardware_isolated {
                for range in memory_range::overlapping_ranges(ram.clone(), accepted_ranges.clone())
                {
                    acceptor.apply_initial_lower_vtl_protections(range)?;
                }
            }

            // Accept the memory that was not accepted by the boot loader.
            // FUTURE: do this lazily.
            let vp_count = std::cmp::max(1, params.processor_topology.vp_count() - 1);
            let accept_subrange = move |subrange| {
                acceptor.accept_vtl0_pages(subrange).unwrap();
                if hardware_isolated {
                    // For VBS-isolated VMs, the VTL protections are set as
                    // part of the accept call.
                    acceptor
                        .apply_initial_lower_vtl_protections(subrange)
                        .unwrap();
                }
            };
            tracing::debug!("Accepting VTL0 memory");
            std::thread::scope(|scope| {
                for source_range in memory_range::subtract_ranges(ram, accepted_ranges) {
                    validated_ranges.push(source_range);

                    // Chunks must be 2mb aligned
                    let two_mb = 2 * 1024 * 1024;
                    let mut range = source_range.aligned_subrange(two_mb);
                    if !range.is_empty() {
                        let chunk_size = (range.page_count_2m().div_ceil(vp_count as u64)) * two_mb;
                        let chunk_count = range.len().div_ceil(chunk_size);

                        for _ in 0..chunk_count {
                            let subrange;
                            (subrange, range) = if range.len() >= chunk_size {
                                range.split_at_offset(chunk_size)
                            } else {
                                (range, MemoryRange::EMPTY)
                            };
                            scope.spawn(move || accept_subrange(subrange));
                        }
                        assert!(range.is_empty());
                    }

                    // Now accept whatever wasn't aligned on the edges
                    scope.spawn(move || {
                        for unaligned_subrange in memory_range::subtract_ranges(
                            [source_range],
                            [source_range.aligned_subrange(two_mb)],
                        ) {
                            accept_subrange(unaligned_subrange);
                        }
                    });
                }
            });
        }
    }

    // Tell the hypervisor we want to use the shared pool for shared memory.
    //
    // TODO: don't we possibly need to unaccept these pages for SNP? Or are
    // we assuming they were not in the boot loader's pre-accepted pages.
    if let Some(acceptor) = &acceptor {
        tracing::debug!("Making shared pool pages shared");
        for range in params.shared_pool {
            acceptor
                .modify_gpa_visibility(
                    hvdef::hypercall::HostVisibilityType::SHARED,
                    &Vec::from_iter(range.range.start_4k_gpn()..range.range.end_4k_gpn()),
                )
                .context("unable to make shared pool pages shared vis")?;
        }
    }

    // Map lower VTL memory.
    let gpa_fd = MshvVtlLow::new().context("failed to open /dev/mshv_vtl_low")?;

    let gm = if hardware_isolated {
        assert!(params.vtl0_alias_map_bit.is_none());
        let vtom = params.vtom.unwrap();

        // Create the encrypted mapping with just the lower VTL memory.
        //
        // Do not register this mapping with the kernel. It will not be safe for
        // use with syscalls that expect virtual addresses to be in
        // kernel-registered RAM.
        tracing::debug!("Building VTL0 memory map");
        let vtl0_mapping = Arc::new({
            let _span = tracing::info_span!("map_vtl0_memory").entered();
            GuestMemoryMapping::builder(0)
                .dma_base_address(None) // prohibit direct DMA attempts until TDISP is supported
                .use_bitmap(Some(true))
                .build(&gpa_fd, params.mem_layout)
                .context("failed to map vtl0 memory")?
        });

        // Create the shared mapping with the complete memory map, to include
        // the shared pool. This memory is not private to VTL2 and is expected
        // that devices will do DMA to them.
        let shared_offset = match params.isolation {
            IsolationType::Tdx => {
                // Register memory just once, as shared memory. This
                // registration will be used both to map pages as shared and as
                // encrypted. If the kernel remaps a page into a kernel address,
                // it will be marked as shared, which can cause a fault or,
                // worse, an information leak.
                //
                // This is done this way because in TDX, there is only one
                // mapping for each page. The distinguishing bit is a reserved
                // bit, from the kernel's perspective. (You can also just see it
                // as the high bit of the GPA, but the Linux kernel does not
                // treat it that way.)
                //
                // TODO CVM: figure out how to prevent passing encrypted pages
                // to syscalls. Idea: prohibit locking of `GuestMemory` pages
                // for encrypted memory, so that there's no way to get a virtual
                // address. Downside: vmbus ring buffers are currently accessed
                // by locking memory, and this would need to be changed to use
                // some kind of override, or to go through `GuestMemory`
                // accessors, or something.
                0
            }
            IsolationType::Snp => {
                // SNP has two mappings for each shared page: one below and one
                // above VTOM. So, unlike for TDX, for SNP we could choose to
                // register memory twice, allowing the kernel to operate on
                // either shared or encrypted memory. But, for consistency with
                // TDX, just register the shared mapping.
                //
                // Register the VTOM mapping instead of the low mapping. In
                // theory it shouldn't matter; we should be able to ignore VTOM.
                // However, the ioctls to issue pvalidate and rmpadjust
                // instructions operate on VAs, and they must either be VAs
                // mapping unregistered pages or pages that were registered as
                // encrypted. Since we want to avoid registering the pages as
                // encrypted, the lower alias must remain unregistered, and so
                // the shared registration must use the high mapping.
                vtom
            }
            _ => unreachable!(),
        };

        // For TDX, the spec says that the IOMMU _may_ reject DMAs with the
        // shared bit clear, so set it in the IOVAs returned for the shared
        // mapping.
        //
        // For SNP, the hardware doesn't care; VTOM is not known by the IOMMU
        // and the hypervisor includes the VTOM alias in the IOMMU's page
        // tables. Use the VTOM alias for consistency with TDX.
        let dma_base_address = vtom;

        // Create the shared mapping with the complete memory map, to include
        // the shared pool. This memory is not private to VTL2 and is expected
        // that devices will access it via DMA.
        //
        // Don't allow kernel access here either--the kernel seems to get
        // confused about shared memory, and our current use of kernel-mode
        // guest memory access is limited to low-perf paths where we can use
        // bounce buffering.
        tracing::debug!("Building shared memory map");
        let shared_mapping = Arc::new({
            let _span = tracing::info_span!("map_shared_memory").entered();
            GuestMemoryMapping::builder(shared_offset)
                .shared(true)
                .use_bitmap(Some(false))
                .ignore_registration_failure(params.boot_init.is_none())
                .dma_base_address(Some(dma_base_address))
                .build(&gpa_fd, params.complete_memory_layout)
                .context("failed to map shared memory")?
        });

        // Update the shared mapping bitmap for pages used by the shared
        // visibility pool to be marked as shared, since by default pages are
        // marked as no-access in the bitmap.
        tracing::debug!("Updating shared mapping bitmaps");
        for range in params.shared_pool {
            shared_mapping.update_bitmap(range.range, true);
        }

        tracing::debug!("Creating VTL0 guest memory");
        let vtl0_gm = GuestMemory::new_multi_region(
            "vtl0",
            vtom,
            vec![Some(vtl0_mapping.clone()), Some(shared_mapping.clone())],
        )
        .context("failed to make vtl0 guest memory")?;

        let vtl1_gm = if params.maximum_vtl >= Vtl::Vtl1 {
            // TODO CVM GUEST VSM: This should not just use the vtl0_gm. This
            // could also be further tightened -- whether or not VTL 1 is
            // exposed to the guest is actually determined later, using
            // additional information.
            Some(vtl0_gm.clone())
        } else {
            None
        };

        if params.isolation == IsolationType::Snp {
            // For SNP, zero any newly accepted private lower-vtl memory in case
            // the hypervisor decided to remap VTL 2 memory into lower-VTL GPA
            // space. This is safe to do after the vtl permissions have been
            // applied because the lower VTLs are not running yet.
            //
            // TODO: perform lazily
            let _span = tracing::info_span!("zeroing lower vtl memory for SNP").entered();

            tracing::debug!("zeroing lower vtl memory for SNP");
            for range in validated_ranges {
                vtl0_gm
                    .fill_at(range.start(), 0, range.len() as usize)
                    .expect("private memory should be valid at this stage");
            }
        }

        // Untrusted devices can only access shared memory, but they can do so
        // from either alias (below and above vtom). This is consistent with
        // what the IOMMU is programmed with.
        tracing::debug!("Creating untrusted shared DMA memory");
        let shared_gm = GuestMemory::new_multi_region(
            "shared",
            vtom,
            vec![Some(shared_mapping.clone()), Some(shared_mapping.clone())],
        )
        .context("failed to make shared guest memory")?;

        let private_vtl0_memory = GuestMemory::new("trusted", vtl0_mapping.clone());

        let protector = Arc::new(HardwareIsolatedMemoryProtector::new(
            shared_mapping.clone(),
            vtl0_mapping.clone(),
            params.mem_layout.clone(),
            acceptor.as_ref().unwrap().clone(),
        )) as Arc<dyn ProtectIsolatedMemory>;

        MemoryMappings {
            vtl0: vtl0_mapping,
            vtl1: None,
            vtl0_gm,
            vtl1_gm,
            cvm_memory: Some(CvmMemory {
                shared_gm,
                private_vtl0_memory,
                shared_mapping,
                protector,
            }),
        }
    } else {
        tracing::debug!("Creating VTL0 guest memory");
        let vtl0_mapping = {
            let _span = tracing::info_span!("map_vtl0_memory").entered();
            let base_address = params.vtl0_alias_map_bit.unwrap_or(0);
            Arc::new(
                GuestMemoryMapping::builder(base_address)
                    .for_kernel_access(true)
                    .dma_base_address(Some(base_address))
                    .ignore_registration_failure(params.boot_init.is_none())
                    .build(&gpa_fd, params.mem_layout)
                    .context("failed to map vtl0 memory")?,
            )
        };
        let vtl0_gm = GuestMemory::new("vtl0", vtl0_mapping.clone());

        let vtl1_mapping = if params.maximum_vtl >= Vtl::Vtl1 {
            if params.vtl0_alias_map_bit.is_none() {
                if cfg!(guest_arch = "x86_64") {
                    // Guest VSM cannot be exposed to the guest unless the
                    // alias map is available. Otherwise, Underhill cannot
                    // correctly check for VTL0 access protections. Ideally, UH
                    // would hide Guest VSM from the guest if the alias map is
                    // not available, but the guest secure kernel checks the
                    // access_vsm permission to determine if Guest VSM is
                    // supported, and there is no mechanism for UH to hide that
                    // from the guest. Thus, it is not safe to proceed.
                    anyhow::bail!("cannot safely support VTL 1 without using the alias map");
                } else {
                    // On ARM, the alias map is not exposed: see
                    // underhill_core::init::vtl0_alias_map_bit.
                    tracing::warn!(
                        "cannot safely support VTL 1 without using the alias map; Guest VSM not supported"
                    );
                    None
                }
            } else {
                tracing::debug!("Creating VTL 1 memory map");

                let _span = tracing::info_span!("map_vtl1_memory").entered();
                let vtl1_mapping = GuestMemoryMapping::builder(0)
                    .for_kernel_access(true)
                    .dma_base_address(Some(0))
                    .ignore_registration_failure(params.boot_init.is_none())
                    .build(&gpa_fd, params.mem_layout)
                    .context("failed to map vtl1 memory")?;
                Some(Arc::new(vtl1_mapping))
            }
        } else {
            None
        };

        let vtl1_gm = if let Some(vtl1_mapping) = &vtl1_mapping {
            tracing::info!("VTL 1 memory map created");
            Some(GuestMemory::new("vtl1", vtl1_mapping.clone()))
        } else {
            tracing::info!("Skipping VTL 1 memory map creation");
            None
        };

        MemoryMappings {
            vtl0: vtl0_mapping,
            vtl1: vtl1_mapping,
            vtl0_gm,
            vtl1_gm,
            cvm_memory: None,
        }
    };
    Ok(gm)
}

/// Apply VTL2 protections to all VTL2 ram ranges. This marks all VTL2 pages as
/// no access by lower VTLs.
async fn apply_vtl2_protections(
    threadpool: &AffinitizedThreadpool,
    vtl2_memory: &[MemoryRangeWithNode],
) -> anyhow::Result<()> {
    let mshv_hvcall = Arc::new(MshvHvcall::new().context("failed to open mshv_hvcall device")?);
    mshv_hvcall.set_allowed_hypercalls(&[HypercallCode::HvCallModifyVtlProtectionMask]);

    // Apply VTL2 protections in 2GB units. This is large enough to get large
    // pages in the kernel, but small enough to allow parallelism across most of
    // the VPs.
    const MAX_RANGE_LEN: u64 = 2 << 30;

    let ranges: Vec<_> = vtl2_memory
        .iter()
        .flat_map(|range| AlignedSubranges::new(range.range).with_max_range_len(MAX_RANGE_LEN))
        .collect();

    try_join_all(
        ranges
            .into_iter()
            .zip(threadpool.active_drivers().cycle())
            .map(|(range, driver)| {
                let mshv_hvcall = mshv_hvcall.clone();
                driver.spawn(
                    "apply-vtl2-protections",
                    async move {
                        tracing::debug!(
                            cpu = underhill_threadpool::Thread::current()
                                .unwrap()
                                .with_driver(|driver| driver.target_cpu()),
                            %range,
                            "applying protections"
                        );
                        mshv_hvcall
                            .modify_vtl_protection_mask(
                                range,
                                hvdef::HV_MAP_GPA_PERMISSIONS_NONE,
                                HvInputVtl::CURRENT_VTL,
                            )
                            .with_context(|| {
                                format!("failed to apply vtl2 protections for {range}")
                            })
                    }
                    .in_current_span(),
                )
            }),
    )
    .await?;

    Ok(())
}