underhill_core/emuplat/i440bx_host_pci_bridge.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Implements Underhill's PAM register support for the i440bx host PCI bridge.
//!
//! The PAM registers specify the memory visibility for regions within the first
//! 1MB of guest memory. Each region can be mapped as read-write, read-only, or
//! unmapped (or write-only, but that's generally unused and is too hard to
//! support in virtualization platforms); accesses that do not match the mapping
//! state will be treated as MMIO.
//!
//! These registers are typically used to enable ROM shadowing, where a ROM
//! mapped at a low address (such as the VGA BIOS at 0xc0000) will be copied to
//! RAM at the same address. They are also used to ensure that the BIOS images
//! are not modified after POST, as a sort of memory protection.
//!
//! Underhill's implementation of these registers uses the GET protocol to
//! create/destroy GPA ranges to remap guest memory from different locations or
//! to map memory read-only. Instead of implementing the PAM registers as a
//! physical machine would (and as described above), it implements a subset of
//! operations that are known to work with our PCAT and SVGA BIOSes. This
//! matches what Hyper-V does. This has the advantage that it works with the
//! Hyper-V memory model, and it does not require additional guest RAM
//! allocations for ROMs (which need to be preserved since they may change on
//! disk after a VM boots, either due to a servicing operation or due to a
//! migration to a different host).
//!
//! In the future, we should implement PAM registers faithfully.
use chipset_legacy::i440bx_host_pci_bridge::AdjustGpaRange;
use chipset_legacy::i440bx_host_pci_bridge::GpaState;
use guest_emulation_transport::api::CreateRamGpaRangeFlags;
use guest_emulation_transport::api::RemoteRamGpaRangeHandle;
use memory_range::MemoryRange;
use vmcore::save_restore::RestoreError;
use vmcore::save_restore::SaveRestore;
#[derive(Debug, PartialEq, Eq)]
struct HandleMetadata {
range: MemoryRange,
gpa_offset: u64,
is_rom: bool,
}
#[derive(Debug)]
struct Handle {
remote_handle: RemoteRamGpaRangeHandle,
meta: HandleMetadata,
}
struct GetBackedAdjustGpaRangeState {
base_slot: u32,
handles: [Option<Handle>; BIOS_MEMORY_RANGE_BOUNDS.len()],
}
/// GET-backed implementation of AdjustGpaRange.
pub struct GetBackedAdjustGpaRange {
// Static config
rom_bios_offset: u64,
// Runtime glue
get: guest_emulation_transport::GuestEmulationTransportClient,
// Volatile state
state: GetBackedAdjustGpaRangeState,
}
impl GetBackedAdjustGpaRange {
pub fn new(
get: guest_emulation_transport::GuestEmulationTransportClient,
base_slot: u32,
rom_bios_offset: u64,
saved_state: Option<<Self as SaveRestore>::SavedState>,
) -> Result<Self, RestoreError> {
let mut this = Self {
rom_bios_offset,
get,
state: GetBackedAdjustGpaRangeState {
base_slot,
handles: [(); BIOS_MEMORY_RANGE_BOUNDS.len()].map(|_| None),
},
};
if let Some(saved_state) = saved_state {
this.restore(saved_state)?
}
Ok(this)
}
async fn adjust(&mut self, range: MemoryRange, state: GpaState) {
// The host already sets VGA to be MMIO, so ignore changes to VGA
// state.
if range == MemoryRange::new(0xa0000..0xc0000) {
assert_eq!(state, GpaState::Mmio);
return;
}
let (index, range_bound) = BIOS_MEMORY_RANGE_BOUNDS
.iter()
.enumerate()
.find(|(_, x)| x.range == range)
.expect("unknown pam range");
// workaround for missing WriteOnly support
let state = if matches!(state, GpaState::WriteOnly) {
tracing::warn!("Write-only RAM mapping not supported");
GpaState::Writable
} else {
state
};
// Allocate the new range. Note that it's not necessary to allocate
// a range if it's read/write RAM because the RAM range already covers
// this range. In other words, no override range is necessary.
let meta = match state {
GpaState::Mmio => {
match range_bound.kind {
BiosMemoryRangeKind::SystemBios => Some(HandleMetadata {
range: range_bound.range,
gpa_offset: range_bound.range.start() + self.rom_bios_offset,
is_rom: true,
}),
// Map everything else straight through, except the VGA BIOS TSR portion,
// which needs to be read/write at all times
BiosMemoryRangeKind::VgaBiosTsr => None,
_ => Some(HandleMetadata {
range: range_bound.range,
gpa_offset: range_bound.range.start(),
is_rom: true,
}),
}
}
GpaState::WriteProtected => {
// Map straight through read only, except for the top of system BIOS,
// which is always read/write.
Some(HandleMetadata {
range: MemoryRange::new(
range_bound.range.start()
..range_bound.range.end() - range_bound.space_to_leave_writable,
),
gpa_offset: range_bound.range.start(),
is_rom: true,
})
}
GpaState::Writable => {
// For most ranges in this state, we have nothing to do because
// there is already a "catch all" range in place for mapping the
// entire RAM range. However, for VGA, we need to use a gross kludge.
//
// The problem with VGA is that the BIOS needs to act more like a
// writable area of RAM as opposed to a write-protected Rom. This is
// because the VGA BIOS (at least the portion from C8000-CC000) used
// to be a DOS TSR (terminate & stay resident program), and it wasn't
// written to be Rom-able.
//
// Unfortunately, the BIOS writes over the top of this range during the POST.
// But it puts the memory range into this state first. So, we add a kludge
// to remap the area to high RAM instead. That way, the BIOS can write to it
// without overwriting the video BIOS contents.
if matches!(
range_bound.kind,
BiosMemoryRangeKind::VgaBios | BiosMemoryRangeKind::VgaBiosTsr
) {
Some(HandleMetadata {
range: range_bound.range,
gpa_offset: range_bound.range.start() + self.rom_bios_offset,
is_rom: false,
})
} else {
None
}
}
GpaState::WriteOnly => unreachable!("stubbed out above"),
};
// skip re-creating range if nothing has changed
//
// this is particularly relevant during servicing, as devices will issue
// `adjust` calls as part of their restore path
if self.state.handles[index].as_ref().map(|h| &h.meta) == meta.as_ref() {
tracing::debug!("skipping GET calls - nothing has changed");
return;
}
// make sure we reset existing mappings prior to creating new ones
if let Some(handle) = self.state.handles[index].take() {
self.get.reset_ram_gpa_range(handle.remote_handle).await
}
// if there's no meta - we're done. no need to create anything.
let meta = match meta {
Some(meta) => meta,
None => return,
};
match self
.get
.create_ram_gpa_range(
self.state.base_slot + index as u32,
meta.range.start(),
meta.range.len(),
meta.gpa_offset,
CreateRamGpaRangeFlags::new().with_rom_mb(meta.is_rom),
)
.await
{
Ok(remote_handle) => {
self.state.handles[index] = Some(Handle {
remote_handle,
meta,
});
}
Err(err) => {
tracing::warn!(
index,
?meta,
error = &err as &dyn std::error::Error,
"error invoking get.create_ram_gpa_range"
);
}
}
}
}
impl AdjustGpaRange for GetBackedAdjustGpaRange {
fn adjust_gpa_range(&mut self, range: MemoryRange, state: GpaState) {
// Note that this synchronously blocks on the GET. This is OK because
// the GET runs on a separate thread from the VP threads and has no
// dependencies on tasks on the VP threads, and this will never be
// called from the GET thread.
pal_async::local::block_on(self.adjust(range, state))
}
}
pub struct ArcMutexGetBackedAdjustGpaRange(
pub std::sync::Arc<parking_lot::Mutex<GetBackedAdjustGpaRange>>,
);
// required for emuplat servicing optimization
impl AdjustGpaRange for ArcMutexGetBackedAdjustGpaRange {
fn adjust_gpa_range(&mut self, range: MemoryRange, state: GpaState) {
self.0.lock().adjust_gpa_range(range, state)
}
}
enum BiosMemoryRangeKind {
None,
SystemBios,
VgaBios,
VgaBiosTsr,
}
struct BiosMemoryRangeBounds {
range: MemoryRange,
// Space at end of range to not write protect
space_to_leave_writable: u64,
kind: BiosMemoryRangeKind,
}
impl BiosMemoryRangeBounds {
const fn new(
start: u64,
len: u64,
space_to_leave_writable: u64,
kind: BiosMemoryRangeKind,
) -> Self {
Self {
range: MemoryRange::new(start..start + len),
space_to_leave_writable,
kind,
}
}
}
const BIOS_MEMORY_RANGE_BOUNDS: &[BiosMemoryRangeBounds] = &[
// The top 8K of this range are backed by RAM, not Rom
BiosMemoryRangeBounds::new(0x0F0000, 0x010000, 0x2000, BiosMemoryRangeKind::SystemBios),
//
// C0000-C4000
BiosMemoryRangeBounds::new(0x0C0000, 0x004000, 0x0000, BiosMemoryRangeKind::VgaBios),
// C4000-C8000
BiosMemoryRangeBounds::new(0x0C4000, 0x004000, 0x0000, BiosMemoryRangeKind::VgaBios),
// C8000-CC000: Our VGA BIOS assumes it's writable
BiosMemoryRangeBounds::new(0x0C8000, 0x004000, 0x0000, BiosMemoryRangeKind::VgaBiosTsr),
BiosMemoryRangeBounds::new(0x0CC000, 0x004000, 0x0000, BiosMemoryRangeKind::None),
//
BiosMemoryRangeBounds::new(0x0D0000, 0x004000, 0x0000, BiosMemoryRangeKind::None),
BiosMemoryRangeBounds::new(0x0D4000, 0x004000, 0x0000, BiosMemoryRangeKind::None),
BiosMemoryRangeBounds::new(0x0D8000, 0x004000, 0x0000, BiosMemoryRangeKind::None),
BiosMemoryRangeBounds::new(0x0DC000, 0x004000, 0x0000, BiosMemoryRangeKind::None),
//
BiosMemoryRangeBounds::new(0x0E0000, 0x004000, 0x0000, BiosMemoryRangeKind::SystemBios),
BiosMemoryRangeBounds::new(0x0E4000, 0x004000, 0x0000, BiosMemoryRangeKind::SystemBios),
BiosMemoryRangeBounds::new(0x0E8000, 0x004000, 0x0000, BiosMemoryRangeKind::SystemBios),
BiosMemoryRangeBounds::new(0x0EC000, 0x004000, 0x0000, BiosMemoryRangeKind::SystemBios),
];
mod save_restore {
use super::*;
use vmcore::save_restore::RestoreError;
use vmcore::save_restore::SaveError;
use vmcore::save_restore::SaveRestore;
mod state {
use memory_range::MemoryRange;
use mesh::payload::Protobuf;
use vmcore::save_restore::SavedStateRoot;
#[derive(Protobuf)]
#[mesh(package = "underhill.emuplat.i440bx.host_pci_bridge")]
pub struct SavedHandle {
#[mesh(1)]
pub remote_handle: u32,
#[mesh(2)]
pub range: MemoryRange,
#[mesh(3)]
pub gpa_offset: u64,
#[mesh(4)]
pub is_rom: bool,
}
#[derive(Protobuf, SavedStateRoot)]
#[mesh(package = "underhill.emuplat.i440bx.host_pci_bridge")]
pub struct SavedState {
#[mesh(1)]
pub base_slot: u32,
#[mesh(2)]
pub handles: [Option<SavedHandle>; 13],
}
}
impl SaveRestore for GetBackedAdjustGpaRange {
type SavedState = state::SavedState;
fn save(&mut self) -> Result<Self::SavedState, SaveError> {
let GetBackedAdjustGpaRangeState { base_slot, handles } = &self.state;
Ok(state::SavedState {
base_slot: *base_slot,
handles: {
let mut saved_handles: [Option<state::SavedHandle>; 13] = Default::default();
for (dst, src) in saved_handles.iter_mut().zip(handles.iter()) {
*dst = src.as_ref().map(|h| {
let Handle {
remote_handle,
meta:
HandleMetadata {
range,
gpa_offset,
is_rom,
},
} = h;
state::SavedHandle {
remote_handle: remote_handle.as_raw(),
range: *range,
gpa_offset: *gpa_offset,
is_rom: *is_rom,
}
})
}
saved_handles
},
})
}
fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
let state::SavedState { base_slot, handles } = state;
self.state = GetBackedAdjustGpaRangeState {
base_slot,
handles: handles.map(|h| {
let state::SavedHandle {
remote_handle,
range,
gpa_offset,
is_rom,
} = h?;
Some(Handle {
remote_handle: RemoteRamGpaRangeHandle::from_raw(remote_handle),
meta: HandleMetadata {
range,
gpa_offset,
is_rom,
},
})
}),
};
Ok(())
}
}
}