underhill_attestation/
hardware_key_sealing.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implementation of key derivation using hardware secret and the VMGS data encryption key (DEK)
//! sealing using the derived key. The sealed DEK is written to the [FileId::HW_KEY_PROTECTOR`]
//! entry of the VMGS file, which can be unsealed later.

use crate::crypto;
use cvm_tracing::CVM_ALLOWED;
use openhcl_attestation_protocol::igvm_attest;
use openhcl_attestation_protocol::vmgs;
use openhcl_attestation_protocol::vmgs::HardwareKeyProtector;
use openssl_kdf::kdf::Kbkdf;
use thiserror::Error;
use zerocopy::IntoBytes;

#[derive(Debug, Error)]
pub(crate) enum HardwareDerivedKeysError {
    #[error("failed to initialize hardware secret")]
    InitializeHardwareSecret(#[source] tee_call::Error),
    #[error("KDF derivation with hardware secret failed")]
    KdfWithHardwareSecret(#[source] openssl_kdf::kdf::KdfError),
}

#[derive(Debug, Error)]
pub(crate) enum HardwareKeySealingError {
    #[error("failed to encrypt the egress key")]
    EncryptEgressKey(#[source] crypto::Aes256CbcError),
    #[error("invalid egress key encryption size {0}, expected {1}")]
    InvalidEgressKeyEncryptionSize(usize, usize),
    #[error("HMAC-SHA-256 after encryption failed")]
    HmacAfterEncrypt(#[source] crypto::HmacSha256Error),
    #[error("HMAC-SHA-256 before ecryption failed")]
    HmacBeforeDecrypt(#[source] crypto::HmacSha256Error),
    #[error("Hardware key protector HMAC verification failed")]
    HardwareKeyProtectorHmacVerificationFailed,
    #[error("failed to decrypt the ingress key")]
    DecryptIngressKey(#[source] crypto::Aes256CbcError),
    #[error("invalid ingress key decryption size {0}, expected {1}")]
    InvalidIngressKeyDecryptionSize(usize, usize),
}

/// Hold the hardware-derived keys.
pub struct HardwareDerivedKeys {
    tcb_version: u64,
    aes_key: [u8; vmgs::AES_CBC_KEY_LENGTH],
    hmac_key: [u8; vmgs::HMAC_SHA_256_KEY_LENGTH],
}

impl HardwareDerivedKeys {
    /// Derive an AES and HMAC keys based on the hardware secret for key sealing.
    pub fn derive_key(
        tee_call: &dyn tee_call::TeeCallGetDerivedKey,
        vm_config: &igvm_attest::get::runtime_claims::AttestationVmConfig,
        tcb_version: u64,
    ) -> Result<Self, HardwareDerivedKeysError> {
        let hardware_secret = tee_call
            .get_derived_key(tcb_version)
            .map_err(HardwareDerivedKeysError::InitializeHardwareSecret)?;
        let label = b"ISOHWKEY";

        let vm_config = serde_json::to_string(vm_config).expect("JSON serialization failed");

        let mut kdf = Kbkdf::new(
            openssl::hash::MessageDigest::sha256(),
            label.to_vec(),
            hardware_secret.to_vec(),
        );
        kdf.set_context(vm_config.as_bytes().to_vec());

        let mut output = [0u8; vmgs::AES_CBC_KEY_LENGTH + vmgs::HMAC_SHA_256_KEY_LENGTH];
        openssl_kdf::kdf::derive(kdf, &mut output)
            .map_err(HardwareDerivedKeysError::KdfWithHardwareSecret)?;

        let mut aes_key = [0u8; vmgs::AES_CBC_KEY_LENGTH];
        let mut hmac_key = [0u8; vmgs::HMAC_SHA_256_KEY_LENGTH];

        aes_key.copy_from_slice(&output[..vmgs::AES_CBC_KEY_LENGTH]);
        hmac_key.copy_from_slice(&output[vmgs::AES_CBC_KEY_LENGTH..]);

        Ok(Self {
            tcb_version,
            aes_key,
            hmac_key,
        })
    }
}

/// Extension trait of [`HardwareKeyProtector`].
pub trait HardwareKeyProtectorExt: Sized {
    /// Seal the `egress_key` with encrypt-then-mac.
    fn seal_key(
        hardware_derived_keys: &HardwareDerivedKeys,
        egress_key: &[u8],
    ) -> Result<Self, HardwareKeySealingError>;

    /// Unseal the `inress_key` with verify-mac-then-decrypt.
    fn unseal_key(
        &self,
        hardware_derived_keys: &HardwareDerivedKeys,
    ) -> Result<[u8; vmgs::AES_CBC_KEY_LENGTH], HardwareKeySealingError>;
}

impl HardwareKeyProtectorExt for HardwareKeyProtector {
    fn seal_key(
        hardware_derived_keys: &HardwareDerivedKeys,
        egress_key: &[u8],
    ) -> Result<Self, HardwareKeySealingError> {
        let header = vmgs::HardwareKeyProtectorHeader::new(
            vmgs::HW_KEY_VERSION,
            vmgs::HW_KEY_PROTECTOR_SIZE as u32,
            hardware_derived_keys.tcb_version,
        );

        let mut iv = [0u8; vmgs::AES_CBC_IV_LENGTH];
        getrandom::fill(&mut iv).expect("rng failure");

        let mut encrypted_egress_key = [0u8; vmgs::AES_GCM_KEY_LENGTH];
        let output = crypto::aes_256_cbc_encrypt(&hardware_derived_keys.aes_key, egress_key, &iv)
            .map_err(HardwareKeySealingError::EncryptEgressKey)?;
        if output.len() != vmgs::AES_GCM_KEY_LENGTH {
            Err(HardwareKeySealingError::InvalidEgressKeyEncryptionSize(
                output.len(),
                vmgs::AES_GCM_KEY_LENGTH,
            ))?
        }
        encrypted_egress_key.copy_from_slice(&output[..vmgs::AES_GCM_KEY_LENGTH]);

        let mut hardware_key_protector = Self {
            header,
            iv,
            ciphertext: encrypted_egress_key,
            hmac: [0u8; vmgs::HMAC_SHA_256_KEY_LENGTH],
        };
        let offset = std::mem::offset_of!(Self, hmac);
        hardware_key_protector.hmac = crypto::hmac_sha_256(
            &hardware_derived_keys.hmac_key,
            &hardware_key_protector.as_bytes()[..offset],
        )
        .map_err(HardwareKeySealingError::HmacAfterEncrypt)?;

        tracing::info!(CVM_ALLOWED, "encrypt egress_key using hardware derived key");

        Ok(hardware_key_protector)
    }

    fn unseal_key(
        &self,
        hardware_derived_keys: &HardwareDerivedKeys,
    ) -> Result<[u8; vmgs::AES_CBC_KEY_LENGTH], HardwareKeySealingError> {
        let offset = std::mem::offset_of!(HardwareKeyProtector, hmac);
        let hmac =
            crypto::hmac_sha_256(&hardware_derived_keys.hmac_key, &self.as_bytes()[..offset])
                .map_err(HardwareKeySealingError::HmacBeforeDecrypt)?;

        if hmac != self.hmac {
            Err(HardwareKeySealingError::HardwareKeyProtectorHmacVerificationFailed)?
        }

        let mut decrypted_ingress_key = [0u8; vmgs::AES_GCM_KEY_LENGTH];
        let output =
            crypto::aes_256_cbc_decrypt(&hardware_derived_keys.aes_key, &self.ciphertext, &self.iv)
                .map_err(HardwareKeySealingError::DecryptIngressKey)?;
        if output.len() != vmgs::AES_GCM_KEY_LENGTH {
            Err(HardwareKeySealingError::InvalidIngressKeyDecryptionSize(
                output.len(),
                vmgs::AES_GCM_KEY_LENGTH,
            ))?
        }
        decrypted_ingress_key.copy_from_slice(&output[..vmgs::AES_GCM_KEY_LENGTH]);

        tracing::info!(
            CVM_ALLOWED,
            "decrypt ingress_key using hardware derived key"
        );

        Ok(decrypted_ingress_key)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use zerocopy::FromBytes;

    struct MockTeeCall;

    impl tee_call::TeeCall for MockTeeCall {
        fn get_attestation_report(
            &self,
            _report_data: &[u8; 64],
        ) -> Result<tee_call::GetAttestationReportResult, tee_call::Error> {
            Ok(tee_call::GetAttestationReportResult {
                report: vec![],
                tcb_version: None,
            })
        }

        fn supports_get_derived_key(&self) -> Option<&dyn tee_call::TeeCallGetDerivedKey> {
            Some(self)
        }

        fn tee_type(&self) -> tee_call::TeeType {
            tee_call::TeeType::Snp
        }
    }

    impl tee_call::TeeCallGetDerivedKey for MockTeeCall {
        fn get_derived_key(&self, _tcb_version: u64) -> Result<[u8; 32], tee_call::Error> {
            const TEST_HW_DERIVED_KEY: [u8; tee_call::HW_DERIVED_KEY_LENGTH] = [
                0xe0, 0xd8, 0x29, 0x04, 0xd6, 0x19, 0xd8, 0xdb, 0xd5, 0xd3, 0xba, 0x1c, 0x3c, 0x07,
                0x2f, 0xaa, 0x56, 0x90, 0xa8, 0x95, 0x3e, 0x66, 0x69, 0x2e, 0xb9, 0xe7, 0xb4, 0xca,
                0xaa, 0x3a, 0x92, 0x47,
            ];

            Ok(TEST_HW_DERIVED_KEY)
        }
    }

    #[test]
    fn hardware_derived_keys() {
        const PLAINTEXT: [u8; 32] = [
            0x5e, 0xd7, 0xf3, 0xd4, 0x9e, 0xcf, 0xb5, 0x6c, 0x05, 0x54, 0x7c, 0x87, 0xe7, 0x30,
            0x59, 0xb1, 0x91, 0xcb, 0xa6, 0xc4, 0x0e, 0x4e, 0x30, 0x77, 0x65, 0x19, 0x71, 0xf5,
            0x20, 0x83, 0x2a, 0xc0,
        ];

        let vm_config = igvm_attest::get::runtime_claims::AttestationVmConfig {
            current_time: None,
            root_cert_thumbprint: "".to_string(),
            console_enabled: false,
            secure_boot: false,
            tpm_enabled: false,
            tpm_persisted: false,
            vm_unique_id: "".to_string(),
        };
        let mock_call = Box::new(MockTeeCall {}) as Box<dyn tee_call::TeeCall>;
        let mock_get_derived_key_call = mock_call.supports_get_derived_key().unwrap();
        let result = HardwareDerivedKeys::derive_key(
            mock_get_derived_key_call,
            &vm_config,
            0x7308000000000003,
        );
        assert!(result.is_ok());
        let hardware_derived_keys = result.unwrap();

        let result = HardwareKeyProtector::seal_key(&hardware_derived_keys, &PLAINTEXT);
        assert!(result.is_ok());
        let output = result.unwrap();

        let result = HardwareKeyProtector::read_from_prefix(output.as_bytes());
        assert!(result.is_ok());
        let hardware_key_protector = result.unwrap().0;

        let result = hardware_key_protector.unseal_key(&hardware_derived_keys);
        assert!(result.is_ok());
        let plaintext = result.unwrap();
        assert_eq!(plaintext, PLAINTEXT);
    }
}