underhill_attestation/
crypto.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implementation of the required cryptographic functions for the crate.

use openhcl_attestation_protocol::vmgs::AES_GCM_KEY_LENGTH;
use openhcl_attestation_protocol::vmgs::HMAC_SHA_256_KEY_LENGTH;
use openssl::pkey::Private;
use openssl::rsa::Rsa;
use openssl_kdf::kdf::Kbkdf;
use thiserror::Error;

#[derive(Debug, Error)]
pub(crate) enum KbkdfError {
    #[error("KDF derivation failed")]
    Derive(#[from] openssl_kdf::kdf::KdfError),
}

#[derive(Debug, Error)]
pub(crate) enum Pkcs11RsaAesKeyUnwrapError {
    #[error("expected wrapped AES key blob to be {0} bytes, but found {1} bytes")]
    UndersizedWrappedAesKey(usize, usize),
    #[error("wrapped RSA key blob cannot be empty")]
    EmptyWrappedRsaKey,
    #[error("RSA unwrap failed")]
    RsaUnwrap(#[from] RsaOaepError),
    #[error("AES unwrap failed")]
    AesUnwrap(#[from] AesKeyWrapWithPaddingError),
    #[error("failed to convert PKCS #8 DER format to PKey")]
    ConvertPkcs8DerToPkey(#[source] openssl::error::ErrorStack),
    #[error("failed to get an RSA key from PKey")]
    PkeyToRsa(#[from] openssl::error::ErrorStack),
}

#[derive(Debug, Error)]
pub(crate) enum RsaOaepError {
    #[error("failed to convert an RSA key to PKey")]
    RsaToPkey(#[source] openssl::error::ErrorStack),
    #[error("Pkeyctx::new() failed")]
    PkeyCtxNew(#[source] openssl::error::ErrorStack),
    #[error("PkeyCtx encrypt_init() failed")]
    PkeyCtxEncryptInit(#[source] openssl::error::ErrorStack),
    #[error("PkeyCtx decrypt_init() failed")]
    PkeyCtxDecryptInit(#[source] openssl::error::ErrorStack),
    #[error("PkeyCtx set_rsa_padding() failed")]
    PkeyCtxSetRsaPadding(#[source] openssl::error::ErrorStack),
    #[error("PkeyCtx set_rsa_oaep_md() failed")]
    PkeyCtxSetRsaOaepMd(#[source] openssl::error::ErrorStack),
    #[error("Encryption failed, OAEP hash algorithm {1:?}")]
    Encrypt(#[source] openssl::error::ErrorStack, RsaOaepHashAlgorithm),
    #[error("Decryption failed, OAEP hash algorithm {1:?}")]
    Decrypt(#[source] openssl::error::ErrorStack, RsaOaepHashAlgorithm),
}

#[derive(Debug, Error)]
pub(crate) enum AesKeyWrapWithPaddingError {
    #[error("invalid wrapping key size {0}")]
    InvalidWrappingKeySize(usize),
    #[error("Invalid unwrapping key size {0}")]
    InvalidUnwrappingKeySize(usize),
    #[error("CipherCtx::new failed")]
    CipherCtxNew(#[source] openssl::error::ErrorStack),
    #[error("CipherCtx encrypt_init() failed")]
    CipherCtxEncryptInit(#[source] openssl::error::ErrorStack),
    #[error("CipherCtx decrypt_init() failed")]
    CipherCtxDecryptInit(#[source] openssl::error::ErrorStack),
    #[error("AES key wrap with padding update failed")]
    WrapUpdate(#[source] openssl::error::ErrorStack),
    #[error("AES key unwrap with padding update failed")]
    UnwrapUpdate(#[source] openssl::error::ErrorStack),
}

#[derive(Debug, Error)]
pub(crate) enum Aes256CbcError {
    #[error("CipherCtx::new failed")]
    CipherCtxNew(#[source] openssl::error::ErrorStack),
    #[error("CipherCtx encrypt_init() failed")]
    CipherCtxEncryptInit(#[source] openssl::error::ErrorStack),
    #[error("CipherCtx decrypt_init() failed")]
    CipherCtxDecryptInit(#[source] openssl::error::ErrorStack),
    #[error("AES-256-CBC encrypt failed")]
    Encrypt(#[source] openssl::error::ErrorStack),
    #[error("AES-256-CBC decrypt failed")]
    Decrypt(#[source] openssl::error::ErrorStack),
}

#[derive(Debug, Error)]
pub(crate) enum HmacSha256Error {
    #[error("failed to convert an HMAC key to PKey")]
    HmacKeyToPkey(#[source] openssl::error::ErrorStack),
    #[error("MdCtx::new failed")]
    MdCtxNew(#[source] openssl::error::ErrorStack),
    #[error("HMAC init failed")]
    HmacInit(#[source] openssl::error::ErrorStack),
    #[error("HMAC update failed")]
    HmacUpdate(#[source] openssl::error::ErrorStack),
    #[error("HMAC final failed")]
    HmacFinal(#[source] openssl::error::ErrorStack),
    #[error("failed to get the required HMAC output size")]
    GetHmacRequiredSize(#[source] openssl::error::ErrorStack),
    #[error("HMAC SHA 256 failed")]
    OpenSSL(#[from] openssl::error::ErrorStack),
    #[error("invalid output size {0}, expected {1}")]
    InvalidOutputSize(usize, usize),
}

/// KBKDF from SP800-108, using EVP_KDF functionality of OpenSSL
pub fn derive_key(
    key: &[u8],
    context: &[u8],
    label: &[u8],
) -> Result<[u8; AES_GCM_KEY_LENGTH], KbkdfError> {
    // SP800-108's Label is called "Salt" in OpenSSL
    let mut kdf = Kbkdf::new(
        openssl::hash::MessageDigest::sha256(),
        label.to_vec(),
        key.to_vec(),
    );
    kdf.set_context(context.to_vec());
    let mut output = [0; AES_GCM_KEY_LENGTH];
    openssl_kdf::kdf::derive(kdf, &mut output)?;
    Ok(output)
}

/// PKCS#11 RSA AES key unwrap implementation
pub fn pkcs11_rsa_aes_key_unwrap(
    unwrapping_rsa_key: &Rsa<Private>,
    wrapped_key_blob: &[u8],
) -> Result<Rsa<Private>, Pkcs11RsaAesKeyUnwrapError> {
    let modulus_size = unwrapping_rsa_key.size() as usize;

    let (wrapped_aes_key, wrapped_rsa_key) = wrapped_key_blob
        .split_at_checked(modulus_size)
        .ok_or_else(|| {
            Pkcs11RsaAesKeyUnwrapError::UndersizedWrappedAesKey(
                modulus_size,
                wrapped_key_blob.len(),
            )
        })?;

    if wrapped_rsa_key.is_empty() {
        return Err(Pkcs11RsaAesKeyUnwrapError::EmptyWrappedRsaKey);
    }

    let unwrapped_aes_key = rsa_oaep_decrypt(
        unwrapping_rsa_key,
        wrapped_aes_key,
        RsaOaepHashAlgorithm::Sha1,
    )
    .map_err(Pkcs11RsaAesKeyUnwrapError::RsaUnwrap)?;
    let unwrapped_rsa_key = aes_key_unwrap_with_padding(&unwrapped_aes_key, wrapped_rsa_key)
        .map_err(Pkcs11RsaAesKeyUnwrapError::AesUnwrap)?;
    let unwrapped_rsa_key = openssl::pkey::PKey::private_key_from_pkcs8(&unwrapped_rsa_key)
        .map_err(Pkcs11RsaAesKeyUnwrapError::ConvertPkcs8DerToPkey)?;
    let unwrapped_rsa_key = unwrapped_rsa_key
        .rsa()
        .map_err(Pkcs11RsaAesKeyUnwrapError::PkeyToRsa)?;

    Ok(unwrapped_rsa_key)
}

/// Support RSA-OAEP with SHA-1 or SHA-256 from OpenSSL
#[derive(Debug)]
pub enum RsaOaepHashAlgorithm {
    /// SHA-1
    Sha1,
    /// SHA-256
    Sha256,
}

/// RSA-OAEP encrypt
pub fn rsa_oaep_encrypt(
    rsa: &Rsa<Private>,
    input: &[u8],
    hash_algorithm: RsaOaepHashAlgorithm,
) -> Result<Vec<u8>, RsaOaepError> {
    let pkey = openssl::pkey::PKey::from_rsa(rsa.to_owned()).map_err(RsaOaepError::RsaToPkey)?;
    let mut ctx = openssl::pkey_ctx::PkeyCtx::new(&pkey).map_err(RsaOaepError::PkeyCtxNew)?;

    ctx.encrypt_init()
        .map_err(RsaOaepError::PkeyCtxEncryptInit)?;
    ctx.set_rsa_padding(openssl::rsa::Padding::PKCS1_OAEP)
        .map_err(RsaOaepError::PkeyCtxSetRsaPadding)?;

    match hash_algorithm {
        RsaOaepHashAlgorithm::Sha1 => ctx.set_rsa_oaep_md(openssl::md::Md::sha1()),
        RsaOaepHashAlgorithm::Sha256 => ctx.set_rsa_oaep_md(openssl::md::Md::sha256()),
    }
    .map_err(RsaOaepError::PkeyCtxSetRsaOaepMd)?;

    let mut output = vec![];
    ctx.encrypt_to_vec(input, &mut output)
        .map_err(|e| RsaOaepError::Encrypt(e, hash_algorithm))?;

    Ok(output)
}

/// RSA-OAEP decrypt
pub fn rsa_oaep_decrypt(
    rsa: &Rsa<Private>,
    input: &[u8],
    hash_algorithm: RsaOaepHashAlgorithm,
) -> Result<Vec<u8>, RsaOaepError> {
    let pkey = openssl::pkey::PKey::from_rsa(rsa.to_owned()).map_err(RsaOaepError::RsaToPkey)?;
    let mut ctx = openssl::pkey_ctx::PkeyCtx::new(&pkey).map_err(RsaOaepError::PkeyCtxNew)?;

    ctx.decrypt_init()
        .map_err(RsaOaepError::PkeyCtxDecryptInit)?;
    ctx.set_rsa_padding(openssl::rsa::Padding::PKCS1_OAEP)
        .map_err(RsaOaepError::PkeyCtxSetRsaPadding)?;

    match hash_algorithm {
        RsaOaepHashAlgorithm::Sha1 => ctx.set_rsa_oaep_md(openssl::md::Md::sha1()),
        RsaOaepHashAlgorithm::Sha256 => ctx.set_rsa_oaep_md(openssl::md::Md::sha256()),
    }
    .map_err(RsaOaepError::PkeyCtxSetRsaOaepMd)?;

    let mut output = vec![];
    ctx.decrypt_to_vec(input, &mut output)
        .map_err(|e| RsaOaepError::Decrypt(e, hash_algorithm))?;

    Ok(output)
}

/// Key wrap with padding scheme (RFC 5649) implementation from OpenSSL
pub fn aes_key_wrap_with_padding(
    wrapping_key: &[u8],
    payload: &[u8],
) -> Result<Vec<u8>, AesKeyWrapWithPaddingError> {
    let cipher = match wrapping_key.len() {
        16 => openssl::cipher::Cipher::aes_128_wrap_pad(),
        24 => openssl::cipher::Cipher::aes_192_wrap_pad(),
        32 => openssl::cipher::Cipher::aes_256_wrap_pad(),
        key_size => Err(AesKeyWrapWithPaddingError::InvalidWrappingKeySize(key_size))?,
    };
    let padding = 8 - payload.len() % 8;
    let mut output = vec![0; payload.len() + padding + cipher.block_size()];
    let mut ctx =
        openssl::cipher_ctx::CipherCtx::new().map_err(AesKeyWrapWithPaddingError::CipherCtxNew)?;

    ctx.set_flags(openssl::cipher_ctx::CipherCtxFlags::FLAG_WRAP_ALLOW);
    ctx.encrypt_init(Some(cipher), Some(wrapping_key), None)
        .map_err(AesKeyWrapWithPaddingError::CipherCtxEncryptInit)?;

    let count = ctx
        .cipher_update(payload, Some(&mut output))
        .map_err(AesKeyWrapWithPaddingError::WrapUpdate)?;
    // DEVNOTE: Skip the `cipher_final()`, which is effectively a no-op for this operation
    // according to OpenSSL implementation.
    output.truncate(count);

    Ok(output)
}

/// Key unwrap with padding scheme (RFC 5649) implementation from OpenSSL
pub fn aes_key_unwrap_with_padding(
    unwrapping_key: &[u8],
    wrapped_payload: &[u8],
) -> Result<Vec<u8>, AesKeyWrapWithPaddingError> {
    let cipher = match unwrapping_key.len() {
        16 => openssl::cipher::Cipher::aes_128_wrap_pad(),
        24 => openssl::cipher::Cipher::aes_192_wrap_pad(),
        32 => openssl::cipher::Cipher::aes_256_wrap_pad(),
        key_size => Err(AesKeyWrapWithPaddingError::InvalidUnwrappingKeySize(
            key_size,
        ))?,
    };
    let mut output = vec![0; wrapped_payload.len() + cipher.block_size()];
    let mut ctx =
        openssl::cipher_ctx::CipherCtx::new().map_err(AesKeyWrapWithPaddingError::CipherCtxNew)?;

    ctx.set_flags(openssl::cipher_ctx::CipherCtxFlags::FLAG_WRAP_ALLOW);
    ctx.decrypt_init(Some(cipher), Some(unwrapping_key), None)
        .map_err(AesKeyWrapWithPaddingError::CipherCtxDecryptInit)?;

    let count = ctx
        .cipher_update(wrapped_payload, Some(&mut output))
        .map_err(AesKeyWrapWithPaddingError::UnwrapUpdate)?;
    // DEVNOTE: Skip the `cipher_final()`, which is effectively a no-op for this operation
    // according to OpenSSL implementation.
    output.truncate(count);

    Ok(output)
}

/// AES-256 CBC encrypt
pub fn aes_256_cbc_encrypt(key: &[u8], data: &[u8], iv: &[u8]) -> Result<Vec<u8>, Aes256CbcError> {
    let cipher = openssl::cipher::Cipher::aes_256_cbc();
    let mut output = vec![0u8; data.len() + cipher.block_size()];
    let mut ctx = openssl::cipher_ctx::CipherCtx::new().map_err(Aes256CbcError::CipherCtxNew)?;

    ctx.encrypt_init(Some(cipher), Some(key), Some(iv))
        .map_err(Aes256CbcError::CipherCtxEncryptInit)?;
    ctx.set_padding(false);

    let count = ctx
        .cipher_update(data, Some(&mut output))
        .map_err(Aes256CbcError::Encrypt)?;
    let rest = ctx
        .cipher_final(&mut output[count..])
        .map_err(Aes256CbcError::Encrypt)?;
    output.truncate(count + rest);

    Ok(output)
}

/// AES-256 CBC decrypt
pub fn aes_256_cbc_decrypt(key: &[u8], data: &[u8], iv: &[u8]) -> Result<Vec<u8>, Aes256CbcError> {
    let cipher = openssl::cipher::Cipher::aes_256_cbc();
    let mut output = vec![0u8; data.len() + cipher.block_size()];
    let mut ctx = openssl::cipher_ctx::CipherCtx::new().map_err(Aes256CbcError::CipherCtxNew)?;

    ctx.decrypt_init(Some(cipher), Some(key), Some(iv))
        .map_err(Aes256CbcError::CipherCtxDecryptInit)?;
    ctx.set_padding(false);

    let count = ctx
        .cipher_update(data, Some(&mut output))
        .map_err(Aes256CbcError::Decrypt)?;
    let rest = ctx
        .cipher_final(&mut output[count..])
        .map_err(Aes256CbcError::Decrypt)?;
    output.truncate(count + rest);

    Ok(output)
}

/// HMAC-SHA-256
pub fn hmac_sha_256(
    key: &[u8],
    data: &[u8],
) -> Result<[u8; HMAC_SHA_256_KEY_LENGTH], HmacSha256Error> {
    let pkey = openssl::pkey::PKey::hmac(key).map_err(HmacSha256Error::HmacKeyToPkey)?;
    let mut ctx = openssl::md_ctx::MdCtx::new().map_err(HmacSha256Error::MdCtxNew)?;

    ctx.digest_sign_init(Some(openssl::md::Md::sha256()), &pkey)
        .map_err(HmacSha256Error::HmacInit)?;
    ctx.digest_sign_update(data)
        .map_err(HmacSha256Error::HmacUpdate)?;

    let size = ctx
        .digest_sign_final(None)
        .map_err(HmacSha256Error::GetHmacRequiredSize)?;
    if size != HMAC_SHA_256_KEY_LENGTH {
        Err(HmacSha256Error::InvalidOutputSize(
            size,
            HMAC_SHA_256_KEY_LENGTH,
        ))?
    }

    let mut output = [0u8; HMAC_SHA_256_KEY_LENGTH];
    ctx.digest_sign_final(Some(&mut output))
        .map_err(HmacSha256Error::HmacFinal)?;

    Ok(output)
}

/// SHA-256
pub fn sha_256(data: &[u8]) -> [u8; 32] {
    let mut hasher = openssl::sha::Sha256::new();
    hasher.update(data);
    hasher.finish()
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn kdf_kat_one() {
        let key = [0; 32];
        let context = [
            0x28, 0x84, 0x18, 0x6c, 0xfe, 0xd2, 0x50, 0x41, 0x10, 0x69, 0x8b, 0x45, 0xd4, 0x80,
            0x72, 0x88, 0xdf, 0x67, 0x4c, 0x48, 0x26, 0x19, 0x7a, 0x98, 0x69, 0x88, 0xaf, 0x96,
            0x05, 0x62, 0xf5, 0x7f,
        ];
        let expected_result = [
            0x9d, 0xb5, 0x8b, 0xb7, 0x0c, 0xa6, 0xcb, 0x6f, 0xaa, 0xe3, 0x81, 0x74, 0x64, 0x21,
            0x76, 0xfa, 0x0d, 0xed, 0x28, 0x67, 0x30, 0x76, 0x90, 0x83, 0x83, 0xa0, 0x1a, 0xd7,
            0x2e, 0xc3, 0xe2, 0x3b,
        ];

        let result = derive_key(&key, &context, crate::VMGS_KEY_DERIVE_LABEL).unwrap();

        assert_eq!(result, expected_result);
    }

    #[test]
    fn kdf_kat_two() {
        let key = [0; 32];
        let context = [
            0xd6, 0x8a, 0x8d, 0x52, 0x7c, 0x5c, 0xa5, 0x9b, 0x19, 0x5a, 0xe7, 0x45, 0x6c, 0x3f,
            0xef, 0x4d, 0x0e, 0xb0, 0xbe, 0x16, 0xc7, 0x8d, 0x77, 0xbd, 0x28, 0x5a, 0xa1, 0x45,
            0x3e, 0x24, 0xeb, 0x3f,
        ];
        let expected_result = [
            0x0a, 0xda, 0x54, 0x91, 0xd6, 0x09, 0x92, 0x87, 0x2f, 0xd7, 0x1a, 0x15, 0x71, 0x24,
            0x82, 0x36, 0x25, 0xb4, 0xb9, 0x54, 0xc2, 0xf4, 0xeb, 0x47, 0x02, 0x88, 0x42, 0x7b,
            0x1f, 0x8e, 0xdf, 0x3d,
        ];

        let result = derive_key(&key, &context, crate::VMGS_KEY_DERIVE_LABEL).unwrap();

        assert_eq!(result, expected_result);
    }

    #[test]
    fn test_aes_key_wrap_with_padding_kat() {
        const KEK: [u8; 24] = [
            0x58, 0x40, 0xdf, 0x6e, 0x29, 0xb0, 0x2a, 0xf1, 0xab, 0x49, 0x3b, 0x70, 0x5b, 0xf1,
            0x6e, 0xa1, 0xae, 0x83, 0x38, 0xf4, 0xdc, 0xc1, 0x76, 0xa8,
        ];
        const KEY20: [u8; 20] = [
            0xc3, 0x7b, 0x7e, 0x64, 0x92, 0x58, 0x43, 0x40, 0xbe, 0xd1, 0x22, 0x07, 0x80, 0x89,
            0x41, 0x15, 0x50, 0x68, 0xf7, 0x38,
        ];
        const WRAP20: [u8; 32] = [
            0x13, 0x8b, 0xde, 0xaa, 0x9b, 0x8f, 0xa7, 0xfc, 0x61, 0xf9, 0x77, 0x42, 0xe7, 0x22,
            0x48, 0xee, 0x5a, 0xe6, 0xae, 0x53, 0x60, 0xd1, 0xae, 0x6a, 0x5f, 0x54, 0xf3, 0x73,
            0xfa, 0x54, 0x3b, 0x6a,
        ];
        const KEY7: [u8; 7] = [0x46, 0x6f, 0x72, 0x50, 0x61, 0x73, 0x69];
        const WRAP7: [u8; 16] = [
            0xaf, 0xbe, 0xb0, 0xf0, 0x7d, 0xfb, 0xf5, 0x41, 0x92, 0x00, 0xf2, 0xcc, 0xb5, 0x0b,
            0xb2, 0x4f,
        ];

        let result = aes_key_wrap_with_padding(&KEK, &KEY20);
        assert!(result.is_ok());
        let wrapped_key = result.unwrap();
        assert_eq!(wrapped_key, WRAP20);

        let result = aes_key_unwrap_with_padding(&KEK, &WRAP20);
        assert!(result.is_ok());
        let unwrapped_key = result.unwrap();
        assert_eq!(unwrapped_key, KEY20);

        let result = aes_key_wrap_with_padding(&KEK, &KEY7);
        assert!(result.is_ok());
        let wrapped_key = result.unwrap();
        assert_eq!(wrapped_key, WRAP7);

        let result = aes_key_unwrap_with_padding(&KEK, &WRAP7);
        assert!(result.is_ok());
        let unwrapped_key = result.unwrap();
        assert_eq!(unwrapped_key, KEY7);
    }

    #[test]
    fn test_aes_key_wrap_with_padding() {
        const KEY: [u8; 32] = [
            0x3f, 0xf4, 0xdb, 0xdb, 0x74, 0xd9, 0x3d, 0x22, 0x35, 0xc6, 0x7c, 0x9e, 0x17, 0x6a,
            0x88, 0x7f, 0xf9, 0x11, 0xd6, 0x5b, 0x5a, 0x56, 0x06, 0xa7, 0xfb, 0x52, 0x58, 0xfc,
            0x4e, 0x76, 0xce, 0x49,
        ];

        const AES_WRAPPED_KEY: [u8; 40] = [
            0x56, 0x53, 0xe9, 0x29, 0xa9, 0x35, 0x0c, 0x32, 0xd0, 0x24, 0x22, 0xb4, 0x98, 0xe1,
            0x13, 0xe7, 0x4a, 0x81, 0xc1, 0xf3, 0xb2, 0xa6, 0x27, 0x70, 0x6e, 0x0d, 0x12, 0x97,
            0xfd, 0xa5, 0x07, 0x0a, 0x5e, 0xb0, 0xd2, 0xde, 0xb2, 0x8a, 0x06, 0x72,
        ];

        const WRAPPING_KEY: [u8; 32] = [
            0x10, 0x84, 0xD2, 0x2F, 0x53, 0x5F, 0xD3, 0x10, 0xE2, 0xC6, 0x17, 0x31, 0x3D, 0xCA,
            0xE7, 0xEF, 0x19, 0xDD, 0x45, 0x2A, 0xED, 0x1C, 0xE6, 0xB1, 0xBE, 0xF5, 0xB9, 0xD0,
            0x1B, 0xF1, 0x5F, 0x44,
        ];

        let result = aes_key_wrap_with_padding(&WRAPPING_KEY, &KEY);
        assert!(result.is_ok());
        let wrapped_key = result.unwrap();
        assert_eq!(wrapped_key, AES_WRAPPED_KEY);

        let result = aes_key_unwrap_with_padding(&WRAPPING_KEY, &AES_WRAPPED_KEY);
        assert!(result.is_ok());
        let unwrapped_key = result.unwrap();
        assert_eq!(unwrapped_key, KEY);
    }

    #[test]
    fn fail_to_unwrap_pkcs11_rsa_aep_with_undersized_wrapped_key_blob() {
        let rsa = Rsa::generate(2048).unwrap();

        // undersized aes key blob
        let wrapped_key_blob = vec![0; 256 - 1];
        let result = pkcs11_rsa_aes_key_unwrap(&rsa, &wrapped_key_blob);
        assert!(result.is_err());
        assert_eq!(
            result.unwrap_err().to_string(),
            "expected wrapped AES key blob to be 256 bytes, but found 255 bytes".to_string()
        );

        // empty rsa key blob
        let wrapped_key_blob = vec![0; 256];
        let result = pkcs11_rsa_aes_key_unwrap(&rsa, &wrapped_key_blob);
        assert!(result.is_err());
        assert_eq!(
            result.unwrap_err().to_string(),
            "wrapped RSA key blob cannot be empty".to_string()
        );
    }

    #[test]
    fn test_pkcs11_rsa_aes_key_unwrap() {
        let target_key = Rsa::generate(2048).unwrap();
        let pkcs8_target_key = openssl::pkey::PKey::from_rsa(target_key.clone())
            .unwrap()
            .private_key_to_pkcs8()
            .unwrap();

        let mut wrapping_aes_key = [0u8; 32];
        openssl::rand::rand_bytes(&mut wrapping_aes_key[..]).unwrap();

        let wrapping_rsa_key = Rsa::generate(2048).unwrap();
        let wrapped_aes_key = rsa_oaep_encrypt(
            &wrapping_rsa_key,
            &wrapping_aes_key,
            RsaOaepHashAlgorithm::Sha1,
        )
        .unwrap();
        let wrapped_target_key =
            aes_key_wrap_with_padding(&wrapping_aes_key, &pkcs8_target_key).unwrap();
        let wrapped_key_blob = [wrapped_aes_key, wrapped_target_key].concat();
        let unwrapped_target_key =
            pkcs11_rsa_aes_key_unwrap(&wrapping_rsa_key, wrapped_key_blob.as_slice()).unwrap();
        assert_eq!(
            unwrapped_target_key.private_key_to_der().unwrap(),
            target_key.private_key_to_der().unwrap()
        );
    }

    #[test]
    fn test_hmac_sha_256() {
        let key: Vec<u8> = (0..32).collect();

        const EMPTY_HMAC: [u8; 32] = [
            0xd3, 0x8b, 0x42, 0x09, 0x6d, 0x80, 0xf4, 0x5f, 0x82, 0x6b, 0x44, 0xa9, 0xd5, 0x60,
            0x7d, 0xe7, 0x24, 0x96, 0xa4, 0x15, 0xd3, 0xf4, 0xa1, 0xa8, 0xc8, 0x8e, 0x3b, 0xb9,
            0xda, 0x8d, 0xc1, 0xcb,
        ];

        let hmac = hmac_sha_256(key.as_slice(), &[]).unwrap();
        assert_eq!(hmac, EMPTY_HMAC);

        const PANGRAM: [u8; 32] = [
            0xf8, 0x7a, 0xd2, 0x56, 0x15, 0x1f, 0xc7, 0xb4, 0xc5, 0xdf, 0xfa, 0x4a, 0xdb, 0x3e,
            0xbe, 0x91, 0x1a, 0x8e, 0xeb, 0x8a, 0x8e, 0xbd, 0xee, 0x3c, 0x2a, 0x4a, 0x8e, 0x5f,
            0x5e, 0xc0, 0x2c, 0x32,
        ];

        let hmac = hmac_sha_256(
            key.as_slice(),
            b"The quick brown fox jumps over the lazy dog",
        )
        .unwrap();
        assert_eq!(hmac, PANGRAM);
    }

    #[test]
    fn test_sha256() {
        const EMPTY_HASH: [u8; 32] = [
            0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f,
            0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b,
            0x78, 0x52, 0xb8, 0x55,
        ];

        let hash = sha_256(&[]);
        assert_eq!(hash, EMPTY_HASH);

        const PANGRAM: [u8; 32] = [
            0xd7, 0xa8, 0xfb, 0xb3, 0x07, 0xd7, 0x80, 0x94, 0x69, 0xca, 0x9a, 0xbc, 0xb0, 0x08,
            0x2e, 0x4f, 0x8d, 0x56, 0x51, 0xe4, 0x6d, 0x3c, 0xdb, 0x76, 0x2d, 0x02, 0xd0, 0xbf,
            0x37, 0xc9, 0xe5, 0x92,
        ];

        let hash = sha_256(b"The quick brown fox jumps over the lazy dog");
        assert_eq!(hash, PANGRAM);
    }
}