use openhcl_attestation_protocol::vmgs::AES_GCM_KEY_LENGTH;
use openhcl_attestation_protocol::vmgs::HMAC_SHA_256_KEY_LENGTH;
use openssl::pkey::Private;
use openssl::rsa::Rsa;
use openssl_kdf::kdf::Kbkdf;
use thiserror::Error;
#[derive(Debug, Error)]
pub(crate) enum KbkdfError {
#[error("KDF derivation failed")]
Derive(#[from] openssl_kdf::kdf::KdfError),
}
#[derive(Debug, Error)]
pub(crate) enum Pkcs11RsaAesKeyUnwrapError {
#[error("expected wrapped AES key blob to be {0} bytes, but found {1} bytes")]
UndersizedWrappedAesKey(usize, usize),
#[error("wrapped RSA key blob cannot be empty")]
EmptyWrappedRsaKey,
#[error("RSA unwrap failed")]
RsaUnwrap(#[from] RsaOaepError),
#[error("AES unwrap failed")]
AesUnwrap(#[from] AesKeyWrapWithPaddingError),
#[error("failed to convert PKCS #8 DER format to PKey")]
ConvertPkcs8DerToPkey(#[source] openssl::error::ErrorStack),
#[error("failed to get an RSA key from PKey")]
PkeyToRsa(#[from] openssl::error::ErrorStack),
}
#[derive(Debug, Error)]
pub(crate) enum RsaOaepError {
#[error("failed to convert an RSA key to PKey")]
RsaToPkey(#[source] openssl::error::ErrorStack),
#[error("Pkeyctx::new() failed")]
PkeyCtxNew(#[source] openssl::error::ErrorStack),
#[error("PkeyCtx encrypt_init() failed")]
PkeyCtxEncryptInit(#[source] openssl::error::ErrorStack),
#[error("PkeyCtx decrypt_init() failed")]
PkeyCtxDecryptInit(#[source] openssl::error::ErrorStack),
#[error("PkeyCtx set_rsa_padding() failed")]
PkeyCtxSetRsaPadding(#[source] openssl::error::ErrorStack),
#[error("PkeyCtx set_rsa_oaep_md() failed")]
PkeyCtxSetRsaOaepMd(#[source] openssl::error::ErrorStack),
#[error("Encryption failed, OAEP hash algorithm {1:?}")]
Encrypt(#[source] openssl::error::ErrorStack, RsaOaepHashAlgorithm),
#[error("Decryption failed, OAEP hash algorithm {1:?}")]
Decrypt(#[source] openssl::error::ErrorStack, RsaOaepHashAlgorithm),
}
#[derive(Debug, Error)]
pub(crate) enum AesKeyWrapWithPaddingError {
#[error("invalid wrapping key size {0}")]
InvalidWrappingKeySize(usize),
#[error("Invalid unwrapping key size {0}")]
InvalidUnwrappingKeySize(usize),
#[error("CipherCtx::new failed")]
CipherCtxNew(#[source] openssl::error::ErrorStack),
#[error("CipherCtx encrypt_init() failed")]
CipherCtxEncryptInit(#[source] openssl::error::ErrorStack),
#[error("CipherCtx decrypt_init() failed")]
CipherCtxDecryptInit(#[source] openssl::error::ErrorStack),
#[error("AES key wrap with padding update failed")]
WrapUpdate(#[source] openssl::error::ErrorStack),
#[error("AES key unwrap with padding update failed")]
UnwrapUpdate(#[source] openssl::error::ErrorStack),
}
#[derive(Debug, Error)]
pub(crate) enum Aes256CbcError {
#[error("CipherCtx::new failed")]
CipherCtxNew(#[source] openssl::error::ErrorStack),
#[error("CipherCtx encrypt_init() failed")]
CipherCtxEncryptInit(#[source] openssl::error::ErrorStack),
#[error("CipherCtx decrypt_init() failed")]
CipherCtxDecryptInit(#[source] openssl::error::ErrorStack),
#[error("AES-256-CBC encrypt failed")]
Encrypt(#[source] openssl::error::ErrorStack),
#[error("AES-256-CBC decrypt failed")]
Decrypt(#[source] openssl::error::ErrorStack),
}
#[derive(Debug, Error)]
pub(crate) enum HmacSha256Error {
#[error("failed to convert an HMAC key to PKey")]
HmacKeyToPkey(#[source] openssl::error::ErrorStack),
#[error("MdCtx::new failed")]
MdCtxNew(#[source] openssl::error::ErrorStack),
#[error("HMAC init failed")]
HmacInit(#[source] openssl::error::ErrorStack),
#[error("HMAC update failed")]
HmacUpdate(#[source] openssl::error::ErrorStack),
#[error("HMAC final failed")]
HmacFinal(#[source] openssl::error::ErrorStack),
#[error("failed to get the required HMAC output size")]
GetHmacRequiredSize(#[source] openssl::error::ErrorStack),
#[error("HMAC SHA 256 failed")]
OpenSSL(#[from] openssl::error::ErrorStack),
#[error("invalid output size {0}, expected {1}")]
InvalidOutputSize(usize, usize),
}
pub fn derive_key(
key: &[u8],
context: &[u8],
label: &[u8],
) -> Result<[u8; AES_GCM_KEY_LENGTH], KbkdfError> {
let mut kdf = Kbkdf::new(
openssl::hash::MessageDigest::sha256(),
label.to_vec(),
key.to_vec(),
);
kdf.set_context(context.to_vec());
let mut output = [0; AES_GCM_KEY_LENGTH];
openssl_kdf::kdf::derive(kdf, &mut output)?;
Ok(output)
}
pub fn pkcs11_rsa_aes_key_unwrap(
unwrapping_rsa_key: &Rsa<Private>,
wrapped_key_blob: &[u8],
) -> Result<Rsa<Private>, Pkcs11RsaAesKeyUnwrapError> {
let modulus_size = unwrapping_rsa_key.size() as usize;
let (wrapped_aes_key, wrapped_rsa_key) = wrapped_key_blob
.split_at_checked(modulus_size)
.ok_or_else(|| {
Pkcs11RsaAesKeyUnwrapError::UndersizedWrappedAesKey(
modulus_size,
wrapped_key_blob.len(),
)
})?;
if wrapped_rsa_key.is_empty() {
return Err(Pkcs11RsaAesKeyUnwrapError::EmptyWrappedRsaKey);
}
let unwrapped_aes_key = rsa_oaep_decrypt(
unwrapping_rsa_key,
wrapped_aes_key,
RsaOaepHashAlgorithm::Sha1,
)
.map_err(Pkcs11RsaAesKeyUnwrapError::RsaUnwrap)?;
let unwrapped_rsa_key = aes_key_unwrap_with_padding(&unwrapped_aes_key, wrapped_rsa_key)
.map_err(Pkcs11RsaAesKeyUnwrapError::AesUnwrap)?;
let unwrapped_rsa_key = openssl::pkey::PKey::private_key_from_pkcs8(&unwrapped_rsa_key)
.map_err(Pkcs11RsaAesKeyUnwrapError::ConvertPkcs8DerToPkey)?;
let unwrapped_rsa_key = unwrapped_rsa_key
.rsa()
.map_err(Pkcs11RsaAesKeyUnwrapError::PkeyToRsa)?;
Ok(unwrapped_rsa_key)
}
#[derive(Debug)]
pub enum RsaOaepHashAlgorithm {
Sha1,
Sha256,
}
pub fn rsa_oaep_encrypt(
rsa: &Rsa<Private>,
input: &[u8],
hash_algorithm: RsaOaepHashAlgorithm,
) -> Result<Vec<u8>, RsaOaepError> {
let pkey = openssl::pkey::PKey::from_rsa(rsa.to_owned()).map_err(RsaOaepError::RsaToPkey)?;
let mut ctx = openssl::pkey_ctx::PkeyCtx::new(&pkey).map_err(RsaOaepError::PkeyCtxNew)?;
ctx.encrypt_init()
.map_err(RsaOaepError::PkeyCtxEncryptInit)?;
ctx.set_rsa_padding(openssl::rsa::Padding::PKCS1_OAEP)
.map_err(RsaOaepError::PkeyCtxSetRsaPadding)?;
match hash_algorithm {
RsaOaepHashAlgorithm::Sha1 => ctx.set_rsa_oaep_md(openssl::md::Md::sha1()),
RsaOaepHashAlgorithm::Sha256 => ctx.set_rsa_oaep_md(openssl::md::Md::sha256()),
}
.map_err(RsaOaepError::PkeyCtxSetRsaOaepMd)?;
let mut output = vec![];
ctx.encrypt_to_vec(input, &mut output)
.map_err(|e| RsaOaepError::Encrypt(e, hash_algorithm))?;
Ok(output)
}
pub fn rsa_oaep_decrypt(
rsa: &Rsa<Private>,
input: &[u8],
hash_algorithm: RsaOaepHashAlgorithm,
) -> Result<Vec<u8>, RsaOaepError> {
let pkey = openssl::pkey::PKey::from_rsa(rsa.to_owned()).map_err(RsaOaepError::RsaToPkey)?;
let mut ctx = openssl::pkey_ctx::PkeyCtx::new(&pkey).map_err(RsaOaepError::PkeyCtxNew)?;
ctx.decrypt_init()
.map_err(RsaOaepError::PkeyCtxDecryptInit)?;
ctx.set_rsa_padding(openssl::rsa::Padding::PKCS1_OAEP)
.map_err(RsaOaepError::PkeyCtxSetRsaPadding)?;
match hash_algorithm {
RsaOaepHashAlgorithm::Sha1 => ctx.set_rsa_oaep_md(openssl::md::Md::sha1()),
RsaOaepHashAlgorithm::Sha256 => ctx.set_rsa_oaep_md(openssl::md::Md::sha256()),
}
.map_err(RsaOaepError::PkeyCtxSetRsaOaepMd)?;
let mut output = vec![];
ctx.decrypt_to_vec(input, &mut output)
.map_err(|e| RsaOaepError::Decrypt(e, hash_algorithm))?;
Ok(output)
}
pub fn aes_key_wrap_with_padding(
wrapping_key: &[u8],
payload: &[u8],
) -> Result<Vec<u8>, AesKeyWrapWithPaddingError> {
let cipher = match wrapping_key.len() {
16 => openssl::cipher::Cipher::aes_128_wrap_pad(),
24 => openssl::cipher::Cipher::aes_192_wrap_pad(),
32 => openssl::cipher::Cipher::aes_256_wrap_pad(),
key_size => Err(AesKeyWrapWithPaddingError::InvalidWrappingKeySize(key_size))?,
};
let padding = 8 - payload.len() % 8;
let mut output = vec![0; payload.len() + padding + cipher.block_size()];
let mut ctx =
openssl::cipher_ctx::CipherCtx::new().map_err(AesKeyWrapWithPaddingError::CipherCtxNew)?;
ctx.set_flags(openssl::cipher_ctx::CipherCtxFlags::FLAG_WRAP_ALLOW);
ctx.encrypt_init(Some(cipher), Some(wrapping_key), None)
.map_err(AesKeyWrapWithPaddingError::CipherCtxEncryptInit)?;
let count = ctx
.cipher_update(payload, Some(&mut output))
.map_err(AesKeyWrapWithPaddingError::WrapUpdate)?;
output.truncate(count);
Ok(output)
}
pub fn aes_key_unwrap_with_padding(
unwrapping_key: &[u8],
wrapped_payload: &[u8],
) -> Result<Vec<u8>, AesKeyWrapWithPaddingError> {
let cipher = match unwrapping_key.len() {
16 => openssl::cipher::Cipher::aes_128_wrap_pad(),
24 => openssl::cipher::Cipher::aes_192_wrap_pad(),
32 => openssl::cipher::Cipher::aes_256_wrap_pad(),
key_size => Err(AesKeyWrapWithPaddingError::InvalidUnwrappingKeySize(
key_size,
))?,
};
let mut output = vec![0; wrapped_payload.len() + cipher.block_size()];
let mut ctx =
openssl::cipher_ctx::CipherCtx::new().map_err(AesKeyWrapWithPaddingError::CipherCtxNew)?;
ctx.set_flags(openssl::cipher_ctx::CipherCtxFlags::FLAG_WRAP_ALLOW);
ctx.decrypt_init(Some(cipher), Some(unwrapping_key), None)
.map_err(AesKeyWrapWithPaddingError::CipherCtxDecryptInit)?;
let count = ctx
.cipher_update(wrapped_payload, Some(&mut output))
.map_err(AesKeyWrapWithPaddingError::UnwrapUpdate)?;
output.truncate(count);
Ok(output)
}
pub fn aes_256_cbc_encrypt(key: &[u8], data: &[u8], iv: &[u8]) -> Result<Vec<u8>, Aes256CbcError> {
let cipher = openssl::cipher::Cipher::aes_256_cbc();
let mut output = vec![0u8; data.len() + cipher.block_size()];
let mut ctx = openssl::cipher_ctx::CipherCtx::new().map_err(Aes256CbcError::CipherCtxNew)?;
ctx.encrypt_init(Some(cipher), Some(key), Some(iv))
.map_err(Aes256CbcError::CipherCtxEncryptInit)?;
ctx.set_padding(false);
let count = ctx
.cipher_update(data, Some(&mut output))
.map_err(Aes256CbcError::Encrypt)?;
let rest = ctx
.cipher_final(&mut output[count..])
.map_err(Aes256CbcError::Encrypt)?;
output.truncate(count + rest);
Ok(output)
}
pub fn aes_256_cbc_decrypt(key: &[u8], data: &[u8], iv: &[u8]) -> Result<Vec<u8>, Aes256CbcError> {
let cipher = openssl::cipher::Cipher::aes_256_cbc();
let mut output = vec![0u8; data.len() + cipher.block_size()];
let mut ctx = openssl::cipher_ctx::CipherCtx::new().map_err(Aes256CbcError::CipherCtxNew)?;
ctx.decrypt_init(Some(cipher), Some(key), Some(iv))
.map_err(Aes256CbcError::CipherCtxDecryptInit)?;
ctx.set_padding(false);
let count = ctx
.cipher_update(data, Some(&mut output))
.map_err(Aes256CbcError::Decrypt)?;
let rest = ctx
.cipher_final(&mut output[count..])
.map_err(Aes256CbcError::Decrypt)?;
output.truncate(count + rest);
Ok(output)
}
pub fn hmac_sha_256(
key: &[u8],
data: &[u8],
) -> Result<[u8; HMAC_SHA_256_KEY_LENGTH], HmacSha256Error> {
let pkey = openssl::pkey::PKey::hmac(key).map_err(HmacSha256Error::HmacKeyToPkey)?;
let mut ctx = openssl::md_ctx::MdCtx::new().map_err(HmacSha256Error::MdCtxNew)?;
ctx.digest_sign_init(Some(openssl::md::Md::sha256()), &pkey)
.map_err(HmacSha256Error::HmacInit)?;
ctx.digest_sign_update(data)
.map_err(HmacSha256Error::HmacUpdate)?;
let size = ctx
.digest_sign_final(None)
.map_err(HmacSha256Error::GetHmacRequiredSize)?;
if size != HMAC_SHA_256_KEY_LENGTH {
Err(HmacSha256Error::InvalidOutputSize(
size,
HMAC_SHA_256_KEY_LENGTH,
))?
}
let mut output = [0u8; HMAC_SHA_256_KEY_LENGTH];
ctx.digest_sign_final(Some(&mut output))
.map_err(HmacSha256Error::HmacFinal)?;
Ok(output)
}
pub fn sha_256(data: &[u8]) -> [u8; 32] {
let mut hasher = openssl::sha::Sha256::new();
hasher.update(data);
hasher.finish()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn kdf_kat_one() {
let key = [0; 32];
let context = [
0x28, 0x84, 0x18, 0x6c, 0xfe, 0xd2, 0x50, 0x41, 0x10, 0x69, 0x8b, 0x45, 0xd4, 0x80,
0x72, 0x88, 0xdf, 0x67, 0x4c, 0x48, 0x26, 0x19, 0x7a, 0x98, 0x69, 0x88, 0xaf, 0x96,
0x05, 0x62, 0xf5, 0x7f,
];
let expected_result = [
0x9d, 0xb5, 0x8b, 0xb7, 0x0c, 0xa6, 0xcb, 0x6f, 0xaa, 0xe3, 0x81, 0x74, 0x64, 0x21,
0x76, 0xfa, 0x0d, 0xed, 0x28, 0x67, 0x30, 0x76, 0x90, 0x83, 0x83, 0xa0, 0x1a, 0xd7,
0x2e, 0xc3, 0xe2, 0x3b,
];
let result = derive_key(&key, &context, crate::VMGS_KEY_DERIVE_LABEL).unwrap();
assert_eq!(result, expected_result);
}
#[test]
fn kdf_kat_two() {
let key = [0; 32];
let context = [
0xd6, 0x8a, 0x8d, 0x52, 0x7c, 0x5c, 0xa5, 0x9b, 0x19, 0x5a, 0xe7, 0x45, 0x6c, 0x3f,
0xef, 0x4d, 0x0e, 0xb0, 0xbe, 0x16, 0xc7, 0x8d, 0x77, 0xbd, 0x28, 0x5a, 0xa1, 0x45,
0x3e, 0x24, 0xeb, 0x3f,
];
let expected_result = [
0x0a, 0xda, 0x54, 0x91, 0xd6, 0x09, 0x92, 0x87, 0x2f, 0xd7, 0x1a, 0x15, 0x71, 0x24,
0x82, 0x36, 0x25, 0xb4, 0xb9, 0x54, 0xc2, 0xf4, 0xeb, 0x47, 0x02, 0x88, 0x42, 0x7b,
0x1f, 0x8e, 0xdf, 0x3d,
];
let result = derive_key(&key, &context, crate::VMGS_KEY_DERIVE_LABEL).unwrap();
assert_eq!(result, expected_result);
}
#[test]
fn test_aes_key_wrap_with_padding_kat() {
const KEK: [u8; 24] = [
0x58, 0x40, 0xdf, 0x6e, 0x29, 0xb0, 0x2a, 0xf1, 0xab, 0x49, 0x3b, 0x70, 0x5b, 0xf1,
0x6e, 0xa1, 0xae, 0x83, 0x38, 0xf4, 0xdc, 0xc1, 0x76, 0xa8,
];
const KEY20: [u8; 20] = [
0xc3, 0x7b, 0x7e, 0x64, 0x92, 0x58, 0x43, 0x40, 0xbe, 0xd1, 0x22, 0x07, 0x80, 0x89,
0x41, 0x15, 0x50, 0x68, 0xf7, 0x38,
];
const WRAP20: [u8; 32] = [
0x13, 0x8b, 0xde, 0xaa, 0x9b, 0x8f, 0xa7, 0xfc, 0x61, 0xf9, 0x77, 0x42, 0xe7, 0x22,
0x48, 0xee, 0x5a, 0xe6, 0xae, 0x53, 0x60, 0xd1, 0xae, 0x6a, 0x5f, 0x54, 0xf3, 0x73,
0xfa, 0x54, 0x3b, 0x6a,
];
const KEY7: [u8; 7] = [0x46, 0x6f, 0x72, 0x50, 0x61, 0x73, 0x69];
const WRAP7: [u8; 16] = [
0xaf, 0xbe, 0xb0, 0xf0, 0x7d, 0xfb, 0xf5, 0x41, 0x92, 0x00, 0xf2, 0xcc, 0xb5, 0x0b,
0xb2, 0x4f,
];
let result = aes_key_wrap_with_padding(&KEK, &KEY20);
assert!(result.is_ok());
let wrapped_key = result.unwrap();
assert_eq!(wrapped_key, WRAP20);
let result = aes_key_unwrap_with_padding(&KEK, &WRAP20);
assert!(result.is_ok());
let unwrapped_key = result.unwrap();
assert_eq!(unwrapped_key, KEY20);
let result = aes_key_wrap_with_padding(&KEK, &KEY7);
assert!(result.is_ok());
let wrapped_key = result.unwrap();
assert_eq!(wrapped_key, WRAP7);
let result = aes_key_unwrap_with_padding(&KEK, &WRAP7);
assert!(result.is_ok());
let unwrapped_key = result.unwrap();
assert_eq!(unwrapped_key, KEY7);
}
#[test]
fn test_aes_key_wrap_with_padding() {
const KEY: [u8; 32] = [
0x3f, 0xf4, 0xdb, 0xdb, 0x74, 0xd9, 0x3d, 0x22, 0x35, 0xc6, 0x7c, 0x9e, 0x17, 0x6a,
0x88, 0x7f, 0xf9, 0x11, 0xd6, 0x5b, 0x5a, 0x56, 0x06, 0xa7, 0xfb, 0x52, 0x58, 0xfc,
0x4e, 0x76, 0xce, 0x49,
];
const AES_WRAPPED_KEY: [u8; 40] = [
0x56, 0x53, 0xe9, 0x29, 0xa9, 0x35, 0x0c, 0x32, 0xd0, 0x24, 0x22, 0xb4, 0x98, 0xe1,
0x13, 0xe7, 0x4a, 0x81, 0xc1, 0xf3, 0xb2, 0xa6, 0x27, 0x70, 0x6e, 0x0d, 0x12, 0x97,
0xfd, 0xa5, 0x07, 0x0a, 0x5e, 0xb0, 0xd2, 0xde, 0xb2, 0x8a, 0x06, 0x72,
];
const WRAPPING_KEY: [u8; 32] = [
0x10, 0x84, 0xD2, 0x2F, 0x53, 0x5F, 0xD3, 0x10, 0xE2, 0xC6, 0x17, 0x31, 0x3D, 0xCA,
0xE7, 0xEF, 0x19, 0xDD, 0x45, 0x2A, 0xED, 0x1C, 0xE6, 0xB1, 0xBE, 0xF5, 0xB9, 0xD0,
0x1B, 0xF1, 0x5F, 0x44,
];
let result = aes_key_wrap_with_padding(&WRAPPING_KEY, &KEY);
assert!(result.is_ok());
let wrapped_key = result.unwrap();
assert_eq!(wrapped_key, AES_WRAPPED_KEY);
let result = aes_key_unwrap_with_padding(&WRAPPING_KEY, &AES_WRAPPED_KEY);
assert!(result.is_ok());
let unwrapped_key = result.unwrap();
assert_eq!(unwrapped_key, KEY);
}
#[test]
fn fail_to_unwrap_pkcs11_rsa_aep_with_undersized_wrapped_key_blob() {
let rsa = Rsa::generate(2048).unwrap();
let wrapped_key_blob = vec![0; 256 - 1];
let result = pkcs11_rsa_aes_key_unwrap(&rsa, &wrapped_key_blob);
assert!(result.is_err());
assert_eq!(
result.unwrap_err().to_string(),
"expected wrapped AES key blob to be 256 bytes, but found 255 bytes".to_string()
);
let wrapped_key_blob = vec![0; 256];
let result = pkcs11_rsa_aes_key_unwrap(&rsa, &wrapped_key_blob);
assert!(result.is_err());
assert_eq!(
result.unwrap_err().to_string(),
"wrapped RSA key blob cannot be empty".to_string()
);
}
#[test]
fn test_pkcs11_rsa_aes_key_unwrap() {
let target_key = Rsa::generate(2048).unwrap();
let pkcs8_target_key = openssl::pkey::PKey::from_rsa(target_key.clone())
.unwrap()
.private_key_to_pkcs8()
.unwrap();
let mut wrapping_aes_key = [0u8; 32];
openssl::rand::rand_bytes(&mut wrapping_aes_key[..]).unwrap();
let wrapping_rsa_key = Rsa::generate(2048).unwrap();
let wrapped_aes_key = rsa_oaep_encrypt(
&wrapping_rsa_key,
&wrapping_aes_key,
RsaOaepHashAlgorithm::Sha1,
)
.unwrap();
let wrapped_target_key =
aes_key_wrap_with_padding(&wrapping_aes_key, &pkcs8_target_key).unwrap();
let wrapped_key_blob = [wrapped_aes_key, wrapped_target_key].concat();
let unwrapped_target_key =
pkcs11_rsa_aes_key_unwrap(&wrapping_rsa_key, wrapped_key_blob.as_slice()).unwrap();
assert_eq!(
unwrapped_target_key.private_key_to_der().unwrap(),
target_key.private_key_to_der().unwrap()
);
}
#[test]
fn test_hmac_sha_256() {
let key: Vec<u8> = (0..32).collect();
const EMPTY_HMAC: [u8; 32] = [
0xd3, 0x8b, 0x42, 0x09, 0x6d, 0x80, 0xf4, 0x5f, 0x82, 0x6b, 0x44, 0xa9, 0xd5, 0x60,
0x7d, 0xe7, 0x24, 0x96, 0xa4, 0x15, 0xd3, 0xf4, 0xa1, 0xa8, 0xc8, 0x8e, 0x3b, 0xb9,
0xda, 0x8d, 0xc1, 0xcb,
];
let hmac = hmac_sha_256(key.as_slice(), &[]).unwrap();
assert_eq!(hmac, EMPTY_HMAC);
const PANGRAM: [u8; 32] = [
0xf8, 0x7a, 0xd2, 0x56, 0x15, 0x1f, 0xc7, 0xb4, 0xc5, 0xdf, 0xfa, 0x4a, 0xdb, 0x3e,
0xbe, 0x91, 0x1a, 0x8e, 0xeb, 0x8a, 0x8e, 0xbd, 0xee, 0x3c, 0x2a, 0x4a, 0x8e, 0x5f,
0x5e, 0xc0, 0x2c, 0x32,
];
let hmac = hmac_sha_256(
key.as_slice(),
b"The quick brown fox jumps over the lazy dog",
)
.unwrap();
assert_eq!(hmac, PANGRAM);
}
#[test]
fn test_sha256() {
const EMPTY_HASH: [u8; 32] = [
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f,
0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b,
0x78, 0x52, 0xb8, 0x55,
];
let hash = sha_256(&[]);
assert_eq!(hash, EMPTY_HASH);
const PANGRAM: [u8; 32] = [
0xd7, 0xa8, 0xfb, 0xb3, 0x07, 0xd7, 0x80, 0x94, 0x69, 0xca, 0x9a, 0xbc, 0xb0, 0x08,
0x2e, 0x4f, 0x8d, 0x56, 0x51, 0xe4, 0x6d, 0x3c, 0xdb, 0x76, 0x2d, 0x02, 0xd0, 0xbf,
0x37, 0xc9, 0xe5, 0x92,
];
let hash = sha_256(b"The quick brown fox jumps over the lazy dog");
assert_eq!(hash, PANGRAM);
}
}