sparse_mmap/
unix.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Linux implementation for memory mapping abstractions.

#![cfg(unix)]

use pal::unix::SyscallResult;
use std::ffi::c_void;
use std::fs::File;
use std::io;
use std::io::Error;
use std::os::unix::prelude::*;
use std::ptr::null_mut;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;

pub(crate) fn page_size() -> usize {
    static PAGE_SIZE: AtomicUsize = AtomicUsize::new(0);
    let s = PAGE_SIZE.load(Ordering::Relaxed);
    if s != 0 {
        s
    } else {
        let s = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as usize };
        PAGE_SIZE.store(s, Ordering::Relaxed);
        s
    }
}

/// A reserved virtual address range that may be partially populated with memory
/// mappings.
#[derive(Debug)]
pub struct SparseMapping {
    address: *mut c_void,
    len: usize,
}

/// An owned handle to an OS object that can be mapped into a [`SparseMapping`].
///
/// On Windows, this is a section handle. On Linux, it is a file descriptor.
pub type Mappable = OwnedFd;

/// An object that can be mapped into a `SparseMapping`.
///
/// On Windows, this is a section handle. On Linux, it is a file descriptor.
pub use std::os::unix::io::AsFd as AsMappableRef;

/// A reference to an object that can be mapped into a [`SparseMapping`].
///
/// On Windows, this is a section handle. On Linux, it is a file descriptor.
pub type MappableRef<'a> = BorrowedFd<'a>;

/// Creates a new mappable from a file.
///
/// N.B. `writable` and `executable` have no effect on Linux.
pub fn new_mappable_from_file(
    file: &File,
    _writable: bool,
    _executable: bool,
) -> io::Result<Mappable> {
    file.as_fd().try_clone_to_owned()
}

// SAFETY: SparseMapping's internal pointer represents an owned virtual address
// range. There is no safety issue accessing this pointer across threads.
unsafe impl Send for SparseMapping {}
// SAFETY: See above comment
unsafe impl Sync for SparseMapping {}

unsafe fn mmap(
    addr: *mut c_void,
    len: usize,
    prot: i32,
    flags: i32,
    fd: i32,
    offset: i64,
) -> Result<*mut c_void, Error> {
    let address = unsafe { libc::mmap(addr, len, prot, flags, fd, offset) };
    if address == libc::MAP_FAILED {
        return Err(Error::last_os_error());
    }
    Ok(address)
}

unsafe fn munmap(addr: *mut c_void, len: usize) -> Result<(), Error> {
    if unsafe { libc::munmap(addr, len) } < 0 {
        return Err(Error::last_os_error());
    }
    Ok(())
}

impl SparseMapping {
    /// Reserves a sparse mapping range with the given size.
    ///
    /// The range will be aligned to the largest system page size that's smaller
    /// or equal to `len`.
    pub fn new(len: usize) -> Result<Self, Error> {
        super::initialize_try_copy();

        // Length of 0 return an OS error, so we need to handle it explicitly.
        if len == 0 {
            return Err(Error::new(
                io::ErrorKind::InvalidInput,
                "length must be greater than 0",
            ));
        }

        let size_4k = 4096;
        let size_2m = 0x200000;
        let size_1g = 0x40000000;
        let alignment = if len < size_2m {
            size_4k
        } else if len < size_1g {
            size_2m
        } else {
            size_1g
        };

        let len = len
            .checked_add(alignment - 1)
            .map(|temp| temp & !(alignment - 1))
            .ok_or_else(|| {
                Error::new(
                    io::ErrorKind::InvalidInput,
                    "length and alignment combination causes overflow",
                )
            })?;

        let alloc_len = len
            .checked_add(alignment)
            .map(|temp| temp - size_4k)
            .ok_or_else(|| {
                Error::new(
                    io::ErrorKind::InvalidInput,
                    "length and alignment combination causes overflow",
                )
            })?;

        // SAFETY: calling mmap to allocate a new range.
        let address = unsafe {
            mmap(
                null_mut(),
                alloc_len,
                libc::PROT_NONE,
                libc::MAP_PRIVATE | libc::MAP_ANONYMOUS,
                -1,
                0,
            )? as usize
        };
        let aligned_address = (address + alignment - 1) & !(alignment - 1);
        let end = address + alloc_len;
        let aligned_end = aligned_address + len;
        assert!(aligned_end <= end);

        if address != aligned_address {
            // SAFETY: freeing VA just allocated above.
            unsafe { munmap(address as *mut _, aligned_address - address).unwrap() };
        }
        if aligned_end != end {
            // SAFETY: freeing VA just allocated above.
            unsafe { munmap(aligned_end as *mut _, end - aligned_end).unwrap() };
        }
        Ok(Self {
            address: aligned_address as *mut _,
            len,
        })
    }

    /// Returns true if the mapping is local to the current process.
    pub fn is_local(&self) -> bool {
        true
    }

    /// Returns the pointer to the beginning of the sparse mapping.
    pub fn as_ptr(&self) -> *mut c_void {
        self.address
    }

    /// Returns the length of the mapping, in bytes.
    pub fn len(&self) -> usize {
        self.len
    }

    fn validate_offset_len(&self, offset: usize, len: usize) -> io::Result<usize> {
        let end = offset.checked_add(len).ok_or(io::ErrorKind::InvalidInput)?;
        let page_size = page_size();
        if offset % page_size != 0 || end % page_size != 0 || end > self.len {
            return Err(io::ErrorKind::InvalidInput.into());
        }
        Ok(end)
    }

    /// Allocates private, writable memory at the given offset within the mapping.
    pub fn alloc(&self, offset: usize, len: usize) -> Result<(), Error> {
        // SAFETY: The flags passed in are guaranteed to be valid
        unsafe {
            self.mmap_anonymous(
                offset,
                len,
                libc::PROT_READ | libc::PROT_WRITE,
                libc::MAP_PRIVATE,
            )
        }
    }

    /// Maps read-only zero pages at the given offset within the mapping.
    pub fn map_zero(&self, offset: usize, len: usize) -> Result<(), Error> {
        // SAFETY: The flags passed in are guaranteed to be valid
        unsafe { self.mmap_anonymous(offset, len, libc::PROT_READ, libc::MAP_PRIVATE) }
    }

    /// Maps a portion of a file mapping at `offset`.
    pub fn map_file(
        &self,
        offset: usize,
        len: usize,
        file_mapping: impl AsFd,
        file_offset: u64,
        writable: bool,
    ) -> Result<(), Error> {
        let prot = if writable {
            libc::PROT_READ | libc::PROT_WRITE
        } else {
            libc::PROT_READ
        };

        // SAFETY: The flags passed in are guaranteed to be valid. MAP_SHARED is required.
        unsafe {
            self.mmap(
                offset,
                len,
                prot,
                libc::MAP_SHARED,
                file_mapping.as_fd(),
                file_offset as i64,
            )
        }
    }

    /// Maps memory into the mapping, passing parameters through to the mmap
    /// syscall.
    ///
    /// # Safety
    ///
    /// This routine is safe to use as long as the caller ensures `map_flags` excludes
    /// any flags that render the memory region non-unmappable (e.g., `MAP_LOCKED`).
    /// Misuse may lead to system resource issues, such as falsely perceived out-of-memory
    /// conditions.
    pub unsafe fn mmap(
        &self,
        offset: usize,
        len: usize,
        prot: i32,
        map_flags: i32,
        fd: impl AsFd,
        file_offset: i64,
    ) -> Result<(), Error> {
        let _ = self.validate_offset_len(offset, len)?;

        // SAFETY: guaranteed by caller and offset + len checks above
        unsafe {
            let address = self.address.add(offset);
            let mapped_address = mmap(
                address,
                len,
                prot,
                map_flags | libc::MAP_FIXED,
                fd.as_fd().as_raw_fd(),
                file_offset,
            )?;
            assert_eq!(mapped_address, address);
        }
        Ok(())
    }

    /// Maps anonymous memory into the mapping, with parameters for the mmap syscall.
    ///
    /// # Safety
    ///
    /// This routine is safe to use as long as the caller ensures `map_flags` excludes
    /// any flags that render the memory region non-unmappable (e.g., `MAP_LOCKED`).
    /// Misuse may lead to system resource issues, such as falsely perceived out-of-memory
    /// conditions.
    pub unsafe fn mmap_anonymous(
        &self,
        offset: usize,
        len: usize,
        prot: i32,
        map_flags: i32,
    ) -> io::Result<()> {
        let _ = self.validate_offset_len(offset, len)?;

        // SAFETY: guaranteed by caller and offset + len checks above
        unsafe {
            let address = self.address.add(offset);
            let mapped_address = mmap(
                address,
                len,
                prot,
                map_flags | libc::MAP_ANONYMOUS | libc::MAP_FIXED,
                -1,
                0,
            )?;
            assert_eq!(mapped_address, address);
        }
        Ok(())
    }

    /// Unmaps memory from the mapping.
    pub fn unmap(&self, offset: usize, len: usize) -> io::Result<()> {
        let _ = self.validate_offset_len(offset, len)?;

        // Skipping this check would result in the "expect" below
        if len == 0 {
            return Err(io::ErrorKind::InvalidInput.into());
        }

        // Remap to PROT_NONE to preserve the reservation.
        // SAFETY: guaranteed by caller and offset + len checks above
        unsafe {
            let address = self.address.add(offset);
            let mapped_address = mmap(
                address,
                len,
                libc::PROT_NONE,
                libc::MAP_PRIVATE | libc::MAP_ANONYMOUS | libc::MAP_FIXED,
                -1,
                0,
            )
            .expect("remap to PROT_NONE should not fail (except for low resources)");
            assert_eq!(mapped_address, address);
        }
        Ok(())
    }
}

impl Drop for SparseMapping {
    fn drop(&mut self) {
        unsafe {
            libc::munmap(self.address, self.len)
                .syscall_result()
                .expect("unmap should not fail");
        }
    }
}
#[cfg(target_os = "linux")]
fn new_memfd() -> io::Result<File> {
    // SAFETY: creating and truncating a new file descriptor according to
    // the documented contract.
    unsafe {
        let fd = libc::memfd_create(c"mem".as_ptr(), libc::MFD_CLOEXEC).syscall_result()?;
        Ok(File::from_raw_fd(fd))
    }
}

#[cfg(not(target_os = "linux"))]
fn new_memfd() -> io::Result<File> {
    let mut name = [0; 16];
    getrandom::getrandom(&mut name).unwrap();
    let mut name = format!("{:x}", u128::from_ne_bytes(name));
    // macOS limits the name length to 31 bytes, which is sufficient to ensure uniqueness.
    name.truncate(31);
    let name = std::ffi::CString::new(name).unwrap();
    unsafe {
        // Create a new shared memory object.
        let fd = libc::shm_open(name.as_ptr(), libc::O_RDWR | libc::O_EXCL | libc::O_CREAT)
            .syscall_result()?;
        // Unlink it to make it anonymous.
        let _ = libc::shm_unlink(name.as_ptr());
        Ok(File::from_raw_fd(fd))
    }
}

/// Allocates a mappable shared memory object of `size` bytes.
pub fn alloc_shared_memory(size: usize) -> io::Result<OwnedFd> {
    let fd = new_memfd()?;
    fd.set_len(size as u64)?;
    Ok(fd.into())
}