sparse_mmap/unix.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Linux implementation for memory mapping abstractions.
#![cfg(unix)]
use pal::unix::SyscallResult;
use std::ffi::c_void;
use std::fs::File;
use std::io;
use std::io::Error;
use std::os::unix::prelude::*;
use std::ptr::null_mut;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
pub(crate) fn page_size() -> usize {
static PAGE_SIZE: AtomicUsize = AtomicUsize::new(0);
let s = PAGE_SIZE.load(Ordering::Relaxed);
if s != 0 {
s
} else {
let s = unsafe { libc::sysconf(libc::_SC_PAGESIZE) as usize };
PAGE_SIZE.store(s, Ordering::Relaxed);
s
}
}
/// A reserved virtual address range that may be partially populated with memory
/// mappings.
#[derive(Debug)]
pub struct SparseMapping {
address: *mut c_void,
len: usize,
}
/// An owned handle to an OS object that can be mapped into a [`SparseMapping`].
///
/// On Windows, this is a section handle. On Linux, it is a file descriptor.
pub type Mappable = OwnedFd;
/// An object that can be mapped into a `SparseMapping`.
///
/// On Windows, this is a section handle. On Linux, it is a file descriptor.
pub use std::os::unix::io::AsFd as AsMappableRef;
/// A reference to an object that can be mapped into a [`SparseMapping`].
///
/// On Windows, this is a section handle. On Linux, it is a file descriptor.
pub type MappableRef<'a> = BorrowedFd<'a>;
/// Creates a new mappable from a file.
///
/// N.B. `writable` and `executable` have no effect on Linux.
pub fn new_mappable_from_file(
file: &File,
_writable: bool,
_executable: bool,
) -> io::Result<Mappable> {
file.as_fd().try_clone_to_owned()
}
// SAFETY: SparseMapping's internal pointer represents an owned virtual address
// range. There is no safety issue accessing this pointer across threads.
unsafe impl Send for SparseMapping {}
// SAFETY: See above comment
unsafe impl Sync for SparseMapping {}
unsafe fn mmap(
addr: *mut c_void,
len: usize,
prot: i32,
flags: i32,
fd: i32,
offset: i64,
) -> Result<*mut c_void, Error> {
let address = unsafe { libc::mmap(addr, len, prot, flags, fd, offset) };
if address == libc::MAP_FAILED {
return Err(Error::last_os_error());
}
Ok(address)
}
unsafe fn munmap(addr: *mut c_void, len: usize) -> Result<(), Error> {
if unsafe { libc::munmap(addr, len) } < 0 {
return Err(Error::last_os_error());
}
Ok(())
}
impl SparseMapping {
/// Reserves a sparse mapping range with the given size.
///
/// The range will be aligned to the largest system page size that's smaller
/// or equal to `len`.
pub fn new(len: usize) -> Result<Self, Error> {
super::initialize_try_copy();
// Length of 0 return an OS error, so we need to handle it explicitly.
if len == 0 {
return Err(Error::new(
io::ErrorKind::InvalidInput,
"length must be greater than 0",
));
}
let size_4k = 4096;
let size_2m = 0x200000;
let size_1g = 0x40000000;
let alignment = if len < size_2m {
size_4k
} else if len < size_1g {
size_2m
} else {
size_1g
};
let len = len
.checked_add(alignment - 1)
.map(|temp| temp & !(alignment - 1))
.ok_or_else(|| {
Error::new(
io::ErrorKind::InvalidInput,
"length and alignment combination causes overflow",
)
})?;
let alloc_len = len
.checked_add(alignment)
.map(|temp| temp - size_4k)
.ok_or_else(|| {
Error::new(
io::ErrorKind::InvalidInput,
"length and alignment combination causes overflow",
)
})?;
// SAFETY: calling mmap to allocate a new range.
let address = unsafe {
mmap(
null_mut(),
alloc_len,
libc::PROT_NONE,
libc::MAP_PRIVATE | libc::MAP_ANONYMOUS,
-1,
0,
)? as usize
};
let aligned_address = (address + alignment - 1) & !(alignment - 1);
let end = address + alloc_len;
let aligned_end = aligned_address + len;
assert!(aligned_end <= end);
if address != aligned_address {
// SAFETY: freeing VA just allocated above.
unsafe { munmap(address as *mut _, aligned_address - address).unwrap() };
}
if aligned_end != end {
// SAFETY: freeing VA just allocated above.
unsafe { munmap(aligned_end as *mut _, end - aligned_end).unwrap() };
}
Ok(Self {
address: aligned_address as *mut _,
len,
})
}
/// Returns true if the mapping is local to the current process.
pub fn is_local(&self) -> bool {
true
}
/// Returns the pointer to the beginning of the sparse mapping.
pub fn as_ptr(&self) -> *mut c_void {
self.address
}
/// Returns the length of the mapping, in bytes.
pub fn len(&self) -> usize {
self.len
}
fn validate_offset_len(&self, offset: usize, len: usize) -> io::Result<usize> {
let end = offset.checked_add(len).ok_or(io::ErrorKind::InvalidInput)?;
let page_size = page_size();
if offset % page_size != 0 || end % page_size != 0 || end > self.len {
return Err(io::ErrorKind::InvalidInput.into());
}
Ok(end)
}
/// Allocates private, writable memory at the given offset within the mapping.
pub fn alloc(&self, offset: usize, len: usize) -> Result<(), Error> {
// SAFETY: The flags passed in are guaranteed to be valid
unsafe {
self.mmap_anonymous(
offset,
len,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_PRIVATE,
)
}
}
/// Maps read-only zero pages at the given offset within the mapping.
pub fn map_zero(&self, offset: usize, len: usize) -> Result<(), Error> {
// SAFETY: The flags passed in are guaranteed to be valid
unsafe { self.mmap_anonymous(offset, len, libc::PROT_READ, libc::MAP_PRIVATE) }
}
/// Maps a portion of a file mapping at `offset`.
pub fn map_file(
&self,
offset: usize,
len: usize,
file_mapping: impl AsFd,
file_offset: u64,
writable: bool,
) -> Result<(), Error> {
let prot = if writable {
libc::PROT_READ | libc::PROT_WRITE
} else {
libc::PROT_READ
};
// SAFETY: The flags passed in are guaranteed to be valid. MAP_SHARED is required.
unsafe {
self.mmap(
offset,
len,
prot,
libc::MAP_SHARED,
file_mapping.as_fd(),
file_offset as i64,
)
}
}
/// Maps memory into the mapping, passing parameters through to the mmap
/// syscall.
///
/// # Safety
///
/// This routine is safe to use as long as the caller ensures `map_flags` excludes
/// any flags that render the memory region non-unmappable (e.g., `MAP_LOCKED`).
/// Misuse may lead to system resource issues, such as falsely perceived out-of-memory
/// conditions.
pub unsafe fn mmap(
&self,
offset: usize,
len: usize,
prot: i32,
map_flags: i32,
fd: impl AsFd,
file_offset: i64,
) -> Result<(), Error> {
let _ = self.validate_offset_len(offset, len)?;
// SAFETY: guaranteed by caller and offset + len checks above
unsafe {
let address = self.address.add(offset);
let mapped_address = mmap(
address,
len,
prot,
map_flags | libc::MAP_FIXED,
fd.as_fd().as_raw_fd(),
file_offset,
)?;
assert_eq!(mapped_address, address);
}
Ok(())
}
/// Maps anonymous memory into the mapping, with parameters for the mmap syscall.
///
/// # Safety
///
/// This routine is safe to use as long as the caller ensures `map_flags` excludes
/// any flags that render the memory region non-unmappable (e.g., `MAP_LOCKED`).
/// Misuse may lead to system resource issues, such as falsely perceived out-of-memory
/// conditions.
pub unsafe fn mmap_anonymous(
&self,
offset: usize,
len: usize,
prot: i32,
map_flags: i32,
) -> io::Result<()> {
let _ = self.validate_offset_len(offset, len)?;
// SAFETY: guaranteed by caller and offset + len checks above
unsafe {
let address = self.address.add(offset);
let mapped_address = mmap(
address,
len,
prot,
map_flags | libc::MAP_ANONYMOUS | libc::MAP_FIXED,
-1,
0,
)?;
assert_eq!(mapped_address, address);
}
Ok(())
}
/// Unmaps memory from the mapping.
pub fn unmap(&self, offset: usize, len: usize) -> io::Result<()> {
let _ = self.validate_offset_len(offset, len)?;
// Skipping this check would result in the "expect" below
if len == 0 {
return Err(io::ErrorKind::InvalidInput.into());
}
// Remap to PROT_NONE to preserve the reservation.
// SAFETY: guaranteed by caller and offset + len checks above
unsafe {
let address = self.address.add(offset);
let mapped_address = mmap(
address,
len,
libc::PROT_NONE,
libc::MAP_PRIVATE | libc::MAP_ANONYMOUS | libc::MAP_FIXED,
-1,
0,
)
.expect("remap to PROT_NONE should not fail (except for low resources)");
assert_eq!(mapped_address, address);
}
Ok(())
}
}
impl Drop for SparseMapping {
fn drop(&mut self) {
unsafe {
libc::munmap(self.address, self.len)
.syscall_result()
.expect("unmap should not fail");
}
}
}
#[cfg(target_os = "linux")]
fn new_memfd() -> io::Result<File> {
// SAFETY: creating and truncating a new file descriptor according to
// the documented contract.
unsafe {
let fd = libc::memfd_create(c"mem".as_ptr(), libc::MFD_CLOEXEC).syscall_result()?;
Ok(File::from_raw_fd(fd))
}
}
#[cfg(not(target_os = "linux"))]
fn new_memfd() -> io::Result<File> {
let mut name = [0; 16];
getrandom::getrandom(&mut name).unwrap();
let mut name = format!("{:x}", u128::from_ne_bytes(name));
// macOS limits the name length to 31 bytes, which is sufficient to ensure uniqueness.
name.truncate(31);
let name = std::ffi::CString::new(name).unwrap();
unsafe {
// Create a new shared memory object.
let fd = libc::shm_open(name.as_ptr(), libc::O_RDWR | libc::O_EXCL | libc::O_CREAT)
.syscall_result()?;
// Unlink it to make it anonymous.
let _ = libc::shm_unlink(name.as_ptr());
Ok(File::from_raw_fd(fd))
}
}
/// Allocates a mappable shared memory object of `size` bytes.
pub fn alloc_shared_memory(size: usize) -> io::Result<OwnedFd> {
let fd = new_memfd()?;
fd.set_len(size as u64)?;
Ok(fd.into())
}