sparse_mmap/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Memory-related abstractions.

// UNSAFETY: Manual pointer manipulation, dealing with mmap, and a signal handler.
#![expect(unsafe_code)]
#![allow(clippy::undocumented_unsafe_blocks)]

pub mod alloc;
mod trycopy_windows_arm64;
mod trycopy_windows_x64;
pub mod unix;
pub mod windows;

pub use sys::alloc_shared_memory;
pub use sys::new_mappable_from_file;
pub use sys::AsMappableRef;
pub use sys::Mappable;
pub use sys::MappableRef;
pub use sys::SparseMapping;

use std::mem::MaybeUninit;
use std::sync::atomic::AtomicU8;
use thiserror::Error;
#[cfg(unix)]
use unix as sys;
#[cfg(windows)]
use windows as sys;
use zerocopy::AsBytes;
use zerocopy::FromBytes;

/// Must be called before using try_copy on Unix platforms.
pub fn initialize_try_copy() {
    #[cfg(unix)]
    {
        static INIT: std::sync::Once = std::sync::Once::new();
        INIT.call_once(|| unsafe {
            let err = install_signal_handlers();
            if err != 0 {
                panic!(
                    "could not install signal handlers: {}",
                    std::io::Error::from_raw_os_error(err)
                )
            }
        });
    }
}

unsafe extern "C" {
    #[cfg(unix)]
    fn install_signal_handlers() -> i32;

    fn try_memmove(
        dest: *mut u8,
        src: *const u8,
        length: usize,
        failure: *mut AccessFailure,
    ) -> i32;
    fn try_memset(dest: *mut u8, c: i32, length: usize, failure: *mut AccessFailure) -> i32;
    fn try_cmpxchg8(
        dest: *mut u8,
        expected: &mut u8,
        desired: u8,
        failure: *mut AccessFailure,
    ) -> i32;
    fn try_cmpxchg16(
        dest: *mut u16,
        expected: &mut u16,
        desired: u16,
        failure: *mut AccessFailure,
    ) -> i32;
    fn try_cmpxchg32(
        dest: *mut u32,
        expected: &mut u32,
        desired: u32,
        failure: *mut AccessFailure,
    ) -> i32;
    fn try_cmpxchg64(
        dest: *mut u64,
        expected: &mut u64,
        desired: u64,
        failure: *mut AccessFailure,
    ) -> i32;
    fn try_read8(dest: *mut u8, src: *const u8, failure: *mut AccessFailure) -> i32;
    fn try_read16(dest: *mut u16, src: *const u16, failure: *mut AccessFailure) -> i32;
    fn try_read32(dest: *mut u32, src: *const u32, failure: *mut AccessFailure) -> i32;
    fn try_read64(dest: *mut u64, src: *const u64, failure: *mut AccessFailure) -> i32;
    fn try_write8(dest: *mut u8, value: u8, failure: *mut AccessFailure) -> i32;
    fn try_write16(dest: *mut u16, value: u16, failure: *mut AccessFailure) -> i32;
    fn try_write32(dest: *mut u32, value: u32, failure: *mut AccessFailure) -> i32;
    fn try_write64(dest: *mut u64, value: u64, failure: *mut AccessFailure) -> i32;
}

#[repr(C)]
struct AccessFailure {
    address: *mut u8,
    #[cfg(unix)]
    si_signo: i32,
    #[cfg(unix)]
    si_code: i32,
}

#[derive(Debug, Error)]
#[error("failed to {} memory", if self.is_write { "write" } else { "read" })]
pub struct MemoryError {
    offset: usize,
    is_write: bool,
    #[source]
    source: OsAccessError,
}

#[derive(Debug, Error)]
enum OsAccessError {
    #[cfg(windows)]
    #[error("access violation")]
    AccessViolation,
    #[cfg(unix)]
    #[error("SIGSEGV (si_code = {0:x}")]
    Sigsegv(u32),
    #[cfg(unix)]
    #[error("SIGSEGV (si_code = {0:x}")]
    Sigbus(u32),
}

impl MemoryError {
    fn new(src: Option<*const u8>, dest: *mut u8, len: usize, failure: &AccessFailure) -> Self {
        let (offset, is_write) = if failure.address.is_null() {
            // In the case of a general protection fault (#GP) the provided address is zero.
            (0, src.is_none())
        } else if (dest..dest.wrapping_add(len)).contains(&failure.address) {
            (failure.address as usize - dest as usize, true)
        } else if let Some(src) = src {
            if (src..src.wrapping_add(len)).contains(&failure.address.cast_const()) {
                (failure.address as usize - src as usize, false)
            } else {
                panic!(
                    "invalid failure address: {:p} src: {:p} dest: {:p} len: {:#x}",
                    failure.address, src, dest, len
                );
            }
        } else {
            panic!(
                "invalid failure address: {:p} src: None dest: {:p} len: {:#x}",
                failure.address, dest, len
            );
        };
        #[cfg(windows)]
        let source = OsAccessError::AccessViolation;
        #[cfg(unix)]
        let source = match failure.si_signo {
            libc::SIGSEGV => OsAccessError::Sigsegv(failure.si_code as u32),
            libc::SIGBUS => OsAccessError::Sigbus(failure.si_code as u32),
            _ => {
                panic!(
                    "unexpected signal: {} src: {:?} dest: {:p} len: {:#x}",
                    failure.si_signo, src, dest, len
                );
            }
        };
        Self {
            offset,
            is_write,
            source,
        }
    }

    /// Returns the byte offset into the buffer at which the access violation
    /// occurred.
    pub fn offset(&self) -> usize {
        self.offset
    }
}

/// Copies `count` elements from `src` to `dest`. `src` and `dest` may overlap.
/// Fails on access violation/SIGSEGV. Note that on case of failure, some of the
/// bytes (even partial elements) may already have been copied.
///
/// This also fails if initialize_try_copy has not been called.
///
/// # Safety
///
/// This routine is safe to use if the memory pointed to by `src` or `dest` is
/// being concurrently mutated.
///
/// WARNING: This routine should only be used when you know that `src` and
/// `dest` are valid, reserved addresses but you do not know if they are mapped
/// with the appropriate protection. For example, this routine is useful if
/// `dest` is a sparse mapping where some pages are mapped with
/// PAGE_NOACCESS/PROT_NONE, and some are mapped with PAGE_READWRITE/PROT_WRITE.
pub unsafe fn try_copy<T>(src: *const T, dest: *mut T, count: usize) -> Result<(), MemoryError> {
    let mut failure = MaybeUninit::uninit();
    // SAFETY: guaranteed by caller.
    let ret = unsafe {
        try_memmove(
            dest.cast::<u8>(),
            src.cast::<u8>(),
            count * size_of::<T>(),
            failure.as_mut_ptr(),
        )
    };
    match ret {
        0 => Ok(()),
        _ => Err(MemoryError::new(
            Some(src.cast()),
            dest.cast(),
            count,
            // SAFETY: failure is initialized in the failure path.
            unsafe { failure.assume_init_ref() },
        )),
    }
}

/// Writes `count` bytes of the value `val` to `dest`. Fails on access
/// violation/SIGSEGV. Note that on case of failure, some of the bytes (even
/// partial elements) may already have been written.
///
/// This also fails if initialize_try_copy has not been called.
///
/// # Safety
///
/// This routine is safe to use if the memory pointed to by `dest` is being
/// concurrently mutated.
///
/// WARNING: This routine should only be used when you know that `dest` is
/// valid, reserved addresses but you do not know if they are mapped with the
/// appropriate protection. For example, this routine is useful if `dest` is a
/// sparse mapping where some pages are mapped with PAGE_NOACCESS/PROT_NONE, and
/// some are mapped with PAGE_READWRITE/PROT_WRITE.
pub unsafe fn try_write_bytes<T>(dest: *mut T, val: u8, count: usize) -> Result<(), MemoryError> {
    let mut failure = MaybeUninit::uninit();
    // SAFETY: guaranteed by caller.
    let ret = unsafe {
        try_memset(
            dest.cast::<u8>(),
            val.into(),
            count * size_of::<T>(),
            failure.as_mut_ptr(),
        )
    };
    match ret {
        0 => Ok(()),
        _ => Err(MemoryError::new(
            None,
            dest.cast(),
            count,
            // SAFETY: failure is initialized in the failure path.
            unsafe { failure.assume_init_ref() },
        )),
    }
}

/// Atomically swaps the value at `dest` with `new` when `*dest` is `current`,
/// using a sequentially-consistent memory ordering.
///
/// Returns `Ok(Ok(new))` if the swap was successful, `Ok(Err(*dest))` if the
/// swap failed, or `Err(MemoryError::AccessViolation)` if the swap could not be
/// attempted due to an access violation.
///
/// Panics if the size is not 1, 2, 4, or 8 bytes.
///
/// # Safety
///
/// This routine is safe to use if the memory pointed to by `dest` is being
/// concurrently mutated.
///
/// WARNING: This routine should only be used when you know that `dest` is
/// valid, reserved addresses but you do not know if they are mapped with the
/// appropriate protection. For example, this routine is useful if `dest` is a
/// sparse mapping where some pages are mapped with PAGE_NOACCESS/PROT_NONE, and
/// some are mapped with PAGE_READWRITE/PROT_WRITE.
pub unsafe fn try_compare_exchange<T: AsBytes + FromBytes>(
    dest: *mut T,
    mut current: T,
    new: T,
) -> Result<Result<T, T>, MemoryError> {
    let mut failure = MaybeUninit::uninit();
    // SAFETY: guaranteed by caller
    let ret = unsafe {
        match size_of::<T>() {
            1 => try_cmpxchg8(
                dest.cast(),
                std::mem::transmute::<&mut T, &mut u8>(&mut current),
                std::mem::transmute_copy::<T, u8>(&new),
                failure.as_mut_ptr(),
            ),
            2 => try_cmpxchg16(
                dest.cast(),
                std::mem::transmute::<&mut T, &mut u16>(&mut current),
                std::mem::transmute_copy::<T, u16>(&new),
                failure.as_mut_ptr(),
            ),
            4 => try_cmpxchg32(
                dest.cast(),
                std::mem::transmute::<&mut T, &mut u32>(&mut current),
                std::mem::transmute_copy::<T, u32>(&new),
                failure.as_mut_ptr(),
            ),
            8 => try_cmpxchg64(
                dest.cast(),
                std::mem::transmute::<&mut T, &mut u64>(&mut current),
                std::mem::transmute_copy::<T, u64>(&new),
                failure.as_mut_ptr(),
            ),
            _ => panic!("unsupported size"),
        }
    };
    match ret {
        n if n > 0 => Ok(Ok(new)),
        0 => Ok(Err(current)),
        _ => Err(MemoryError::new(
            None,
            dest.cast(),
            size_of::<T>(),
            // SAFETY: failure is initialized in the failure path.
            unsafe { failure.assume_init_ref() },
        )),
    }
}

/// Atomically swaps the value at `dest` with `new` when `*dest` is `current`,
/// using a sequentially-consistent memory ordering.
///
/// Returns `Ok(true)` if the swap was successful, `Ok(false)` if the swap
/// failed (after updating `current`), or `Err(MemoryError::AccessViolation)` if
/// the swap could not be attempted due to an access violation.
///
/// Panics if `current` and `new` are not the same size or that size is not
/// 1, 2, 4, or 8 bytes.
///
/// # Safety
///
/// This routine is safe to use if the memory pointed to by `dest` is being
/// concurrently mutated.
///
/// WARNING: This routine should only be used when you know that `dest` is
/// valid, reserved addresses but you do not know if they are mapped with the
/// appropriate protection. For example, this routine is useful if `dest` is a
/// sparse mapping where some pages are mapped with PAGE_NOACCESS/PROT_NONE, and
/// some are mapped with PAGE_READWRITE/PROT_WRITE.
pub unsafe fn try_compare_exchange_ref<T: AsBytes + FromBytes + ?Sized>(
    dest: *mut u8,
    current: &mut T,
    new: &T,
) -> Result<bool, MemoryError> {
    let mut failure = MaybeUninit::uninit();
    // SAFETY: guaranteed by caller
    let ret = unsafe {
        match (size_of_val(current), size_of_val(new)) {
            (1, 1) => try_cmpxchg8(
                dest,
                &mut *current.as_bytes_mut().as_mut_ptr(),
                new.as_bytes()[0],
                failure.as_mut_ptr(),
            ),
            (2, 2) => try_cmpxchg16(
                dest.cast(),
                &mut *current.as_bytes_mut().as_mut_ptr().cast(),
                u16::from_ne_bytes(new.as_bytes().try_into().unwrap()),
                failure.as_mut_ptr(),
            ),
            (4, 4) => try_cmpxchg32(
                dest.cast(),
                &mut *current.as_bytes_mut().as_mut_ptr().cast(),
                u32::from_ne_bytes(new.as_bytes().try_into().unwrap()),
                failure.as_mut_ptr(),
            ),
            (8, 8) => try_cmpxchg64(
                dest.cast(),
                &mut *current.as_bytes_mut().as_mut_ptr().cast(),
                u64::from_ne_bytes(new.as_bytes().try_into().unwrap()),
                failure.as_mut_ptr(),
            ),
            _ => panic!("unsupported or mismatched size"),
        }
    };
    if ret < 0 {
        return Err(MemoryError::new(
            None,
            dest.cast(),
            size_of_val(current),
            // SAFETY: failure is initialized in the failure path.
            unsafe { failure.assume_init_ref() },
        ));
    }
    Ok(ret > 0)
}

/// Reads the value at `src` treating the pointer as a volatile access.
///
/// Returns `Ok(T)` if the read was successful, or `Err(MemoryError)` if the
/// read was unsuccessful.
///
/// Panics if the size is not 1, 2, 4, or 8 bytes.
///
/// # Safety
///
/// This routine is safe to use if the memory pointed to by `src` is being
/// concurrently mutated.
///
/// WARNING: This routine should only be used when you know that `src` is
/// valid, reserved addresses but you do not know if they are mapped with the
/// appropriate protection. For example, this routine is useful if `src` is a
/// sparse mapping where some pages are mapped with PAGE_NOACCESS/PROT_NONE, and
/// some are mapped with PAGE_READWRITE/PROT_WRITE.
pub unsafe fn try_read_volatile<T: FromBytes>(src: *const T) -> Result<T, MemoryError> {
    let mut dest = MaybeUninit::<T>::uninit();
    let mut failure = MaybeUninit::uninit();
    // SAFETY: guaranteed by caller
    let ret = unsafe {
        match size_of::<T>() {
            1 => try_read8(dest.as_mut_ptr().cast(), src.cast(), failure.as_mut_ptr()),
            2 => try_read16(dest.as_mut_ptr().cast(), src.cast(), failure.as_mut_ptr()),
            4 => try_read32(dest.as_mut_ptr().cast(), src.cast(), failure.as_mut_ptr()),
            8 => try_read64(dest.as_mut_ptr().cast(), src.cast(), failure.as_mut_ptr()),
            _ => panic!("unsupported size"),
        }
    };
    match ret {
        0 => {
            // SAFETY: dest was fully initialized by try_read.
            Ok(unsafe { dest.assume_init() })
        }
        _ => Err(MemoryError::new(
            Some(src.cast()),
            dest.as_mut_ptr().cast(),
            size_of::<T>(),
            // SAFETY: failure is initialized in the failure path.
            unsafe { failure.assume_init_ref() },
        )),
    }
}

/// Writes `value` at `dest` treating the pointer as a volatile access.
///
/// Returns `Ok(())` if the write was successful, or `Err(MemoryError)` if the
/// write was unsuccessful.
///
/// Panics if the size is not 1, 2, 4, or 8 bytes.
///
/// # Safety
///
/// This routine is safe to use if the memory pointed to by `dest` is being
/// concurrently mutated.
///
/// WARNING: This routine should only be used when you know that `dest` is
/// valid, reserved addresses but you do not know if they are mapped with the
/// appropriate protection. For example, this routine is useful if `dest` is a
/// sparse mapping where some pages are mapped with PAGE_NOACCESS/PROT_NONE, and
/// some are mapped with PAGE_READWRITE/PROT_WRITE.
pub unsafe fn try_write_volatile<T: AsBytes>(dest: *mut T, value: &T) -> Result<(), MemoryError> {
    let mut failure = MaybeUninit::uninit();
    // SAFETY: guaranteed by caller
    let ret = unsafe {
        match size_of::<T>() {
            1 => try_write8(
                dest.cast(),
                std::mem::transmute_copy(value),
                failure.as_mut_ptr(),
            ),
            2 => try_write16(
                dest.cast(),
                std::mem::transmute_copy(value),
                failure.as_mut_ptr(),
            ),
            4 => try_write32(
                dest.cast(),
                std::mem::transmute_copy(value),
                failure.as_mut_ptr(),
            ),
            8 => try_write64(
                dest.cast(),
                std::mem::transmute_copy(value),
                failure.as_mut_ptr(),
            ),
            _ => panic!("unsupported size"),
        }
    };
    match ret {
        0 => Ok(()),
        _ => Err(MemoryError::new(
            None,
            dest.cast(),
            size_of::<T>(),
            // SAFETY: failure is initialized in the failure path.
            unsafe { failure.assume_init_ref() },
        )),
    }
}

#[derive(Debug, Error)]
pub enum SparseMappingError {
    #[error("out of bounds")]
    OutOfBounds,
    #[error(transparent)]
    Memory(MemoryError),
}

impl SparseMapping {
    /// Gets the supported page size for sparse mappings.
    pub fn page_size() -> usize {
        sys::page_size()
    }

    /// Tries to write into the sparse mapping.
    pub fn write_at(&self, offset: usize, data: &[u8]) -> Result<(), SparseMappingError> {
        assert!(self.is_local(), "cannot write to remote mappings");

        if self.len() < offset || self.len() - offset < data.len() {
            return Err(SparseMappingError::OutOfBounds);
        }
        // SAFETY: the bounds have been checked above.
        unsafe {
            let dest = self.as_ptr().cast::<u8>().add(offset);
            try_copy(data.as_ptr(), dest, data.len()).map_err(SparseMappingError::Memory)
        }
    }

    /// Tries to read from the sparse mapping.
    pub fn read_at(&self, offset: usize, data: &mut [u8]) -> Result<(), SparseMappingError> {
        assert!(self.is_local(), "cannot read from remote mappings");

        if self.len() < offset || self.len() - offset < data.len() {
            return Err(SparseMappingError::OutOfBounds);
        }
        // SAFETY: the bounds have been checked above.
        unsafe {
            let src = (self.as_ptr() as *const u8).add(offset);
            try_copy(src, data.as_mut_ptr(), data.len()).map_err(SparseMappingError::Memory)
        }
    }

    /// Tries to read a type `T` from `offset`.
    pub fn read_plain<T: FromBytes>(&self, offset: usize) -> Result<T, SparseMappingError> {
        let mut obj = MaybeUninit::<T>::uninit();
        // SAFETY: `obj` is a valid target for writes.
        unsafe {
            self.read_at(
                offset,
                std::slice::from_raw_parts_mut(obj.as_mut_ptr().cast::<u8>(), size_of::<T>()),
            )?;
        }
        // SAFETY: `obj` was fully initialized by `read_at`.
        Ok(unsafe { obj.assume_init() })
    }

    /// Tries to fill a region of the sparse mapping with `val`.
    pub fn fill_at(&self, offset: usize, val: u8, len: usize) -> Result<(), SparseMappingError> {
        assert!(self.is_local(), "cannot fill remote mappings");

        if self.len() < offset || self.len() - offset < len {
            return Err(SparseMappingError::OutOfBounds);
        }
        // SAFETY: the bounds have been checked above.
        unsafe {
            let dest = self.as_ptr().cast::<u8>().add(offset);
            try_write_bytes(dest, val, len).map_err(SparseMappingError::Memory)
        }
    }

    /// Gets a slice for accessing the mapped data directly.
    ///
    /// This is safe from a Rust memory model perspective, since the underlying
    /// VA is either mapped and is owned in a shared state by this object (in
    /// which case &[AtomicU8] access from multiple threads is fine), or the VA
    /// is not mapped but is reserved and so will not be mapped by another Rust
    /// object.
    ///
    /// In the latter case, actually accessing the data may cause a fault, which
    /// will likely lead to a process crash, so care must nonetheless be taken
    /// when using this method.
    pub fn atomic_slice(&self, start: usize, len: usize) -> &[AtomicU8] {
        assert!(self.len() >= start && self.len() - start >= len);
        // SAFETY: slice is within the mapped range
        unsafe { std::slice::from_raw_parts((self.as_ptr() as *const AtomicU8).add(start), len) }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[derive(Copy, Clone, Debug)]
    enum Primitive {
        Read,
        Write,
        CompareAndSwap,
    }

    #[repr(u32)]
    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
    enum Size {
        Bit8 = 8,
        Bit16 = 16,
        Bit32 = 32,
        Bit64 = 64,
    }

    fn test_unsafe_primitive(primitive: Primitive, size: Size) {
        // NOTE: this test provides a very basic validation of
        // the compare-and-swap operation, mostly to check that
        // the failures address in returned correctly. See other tests
        // for more.
        let mut dest = !0u64;
        let dest_addr = std::ptr::from_mut(&mut dest).cast::<()>();
        let src = 0x5555_5555_5555_5555u64;
        let src_addr = std::ptr::from_ref(&src).cast::<()>();
        let bad_addr_mut = 0x100 as *mut (); // Within 0..0x1000
        let bad_addr = bad_addr_mut.cast_const();
        let nonsense_addr = !0u64 as *mut ();
        let expected = if size != Size::Bit64 {
            dest.wrapping_shl(size as u32) | src.wrapping_shr(64 - (size as u32))
        } else {
            src
        };
        let mut af = AccessFailure {
            address: nonsense_addr.cast(),
            #[cfg(unix)]
            si_signo: 0,
            #[cfg(unix)]
            si_code: 0,
        };
        let af_addr = &mut af as *mut _;

        let res = unsafe {
            match size {
                Size::Bit8 => match primitive {
                    Primitive::Read => try_read8(dest_addr.cast(), src_addr.cast(), af_addr),
                    Primitive::Write => try_write8(dest_addr.cast(), src as u8, af_addr),
                    Primitive::CompareAndSwap => {
                        1 - try_cmpxchg8(dest_addr.cast(), &mut (dest as u8), src as u8, af_addr)
                    }
                },
                Size::Bit16 => match primitive {
                    Primitive::Read => try_read16(dest_addr.cast(), src_addr.cast(), af_addr),
                    Primitive::Write => try_write16(dest_addr.cast(), src as u16, af_addr),
                    Primitive::CompareAndSwap => {
                        1 - try_cmpxchg16(dest_addr.cast(), &mut (dest as u16), src as u16, af_addr)
                    }
                },
                Size::Bit32 => match primitive {
                    Primitive::Read => try_read32(dest_addr.cast(), src_addr.cast(), af_addr),
                    Primitive::Write => try_write32(dest_addr.cast(), src as u32, af_addr),
                    Primitive::CompareAndSwap => {
                        1 - try_cmpxchg32(dest_addr.cast(), &mut (dest as u32), src as u32, af_addr)
                    }
                },
                Size::Bit64 => match primitive {
                    Primitive::Read => try_read64(dest_addr.cast(), src_addr.cast(), af_addr),
                    Primitive::Write => try_write64(dest_addr.cast(), src, af_addr),
                    Primitive::CompareAndSwap => {
                        1 - try_cmpxchg64(dest_addr.cast(), &mut { dest }, src, af_addr)
                    }
                },
            }
        };
        assert_eq!(
            dest, expected,
            "Expected value must match the result for {primitive:?} and {size:?}"
        );
        assert_eq!(
            res, 0,
            "Success should be returned for {primitive:?} and {size:?}"
        );
        assert_eq!(
            af.address,
            nonsense_addr.cast(),
            "Fault address must not be set for {primitive:?} and {size:?}"
        );

        let res = unsafe {
            match size {
                Size::Bit8 => match primitive {
                    Primitive::Read => try_read8(dest_addr.cast(), bad_addr.cast(), af_addr),
                    Primitive::Write => try_write8(bad_addr_mut.cast(), src as u8, af_addr),
                    Primitive::CompareAndSwap => {
                        try_cmpxchg8(bad_addr_mut.cast(), &mut (dest as u8), src as u8, af_addr)
                    }
                },
                Size::Bit16 => match primitive {
                    Primitive::Read => try_read16(dest_addr.cast(), bad_addr.cast(), af_addr),
                    Primitive::Write => try_write16(bad_addr_mut.cast(), src as u16, af_addr),
                    Primitive::CompareAndSwap => {
                        try_cmpxchg16(bad_addr_mut.cast(), &mut (dest as u16), src as u16, af_addr)
                    }
                },
                Size::Bit32 => match primitive {
                    Primitive::Read => try_read32(dest_addr.cast(), bad_addr.cast(), af_addr),
                    Primitive::Write => try_write32(bad_addr_mut.cast(), src as u32, af_addr),
                    Primitive::CompareAndSwap => {
                        try_cmpxchg32(bad_addr_mut.cast(), &mut (dest as u32), src as u32, af_addr)
                    }
                },
                Size::Bit64 => match primitive {
                    Primitive::Read => try_read64(dest_addr.cast(), bad_addr.cast(), af_addr),
                    Primitive::Write => try_write64(bad_addr_mut.cast(), src, af_addr),
                    Primitive::CompareAndSwap => {
                        try_cmpxchg64(bad_addr_mut.cast(), &mut { dest }, src, af_addr)
                    }
                },
            }
        };
        assert_eq!(
            dest, expected,
            "Fault preserved source and destination for {primitive:?} and {size:?}"
        );
        assert_eq!(
            res, -1,
            "Error code must be returned for {primitive:?} and {size:?}"
        );
        assert_eq!(
            af.address,
            bad_addr_mut.cast(),
            "Fault address must be set for {primitive:?} and {size:?}"
        );
    }

    #[test]
    fn test_unsafe_primitives() {
        initialize_try_copy();

        for primitive in [Primitive::Read, Primitive::Write, Primitive::CompareAndSwap] {
            for size in [Size::Bit8, Size::Bit16, Size::Bit32, Size::Bit64] {
                test_unsafe_primitive(primitive, size);
            }
        }
    }

    static BUF: [u8; 65536] = [0xcc; 65536];

    fn test_with(range_size: usize) {
        let page_size = SparseMapping::page_size();

        let mapping = SparseMapping::new(range_size).unwrap();
        mapping.alloc(page_size, page_size).unwrap();
        let slice = unsafe {
            std::slice::from_raw_parts_mut(mapping.as_ptr().add(page_size).cast::<u8>(), page_size)
        };
        slice.copy_from_slice(&BUF[..page_size]);
        mapping.unmap(page_size, page_size).unwrap();

        mapping.alloc(range_size - page_size, page_size).unwrap();
        let slice = unsafe {
            std::slice::from_raw_parts_mut(
                mapping.as_ptr().add(range_size - page_size).cast::<u8>(),
                page_size,
            )
        };
        slice.copy_from_slice(&BUF[..page_size]);
        mapping.unmap(range_size - page_size, page_size).unwrap();
        drop(mapping);
    }

    #[test]
    fn test_sparse_mapping() {
        test_with(0x100000);
        test_with(0x200000);
        test_with(0x200000 + SparseMapping::page_size());
        test_with(0x40000000);
        test_with(0x40000000 + SparseMapping::page_size());
    }

    #[test]
    fn test_try_copy() {
        initialize_try_copy();

        let mapping = SparseMapping::new(2 * 1024 * 1024).unwrap();
        let page_size = SparseMapping::page_size();
        mapping.alloc(page_size, page_size).unwrap();
        let base = mapping.as_ptr().cast::<u8>();
        unsafe {
            try_copy(BUF.as_ptr(), base, 100).unwrap_err();
            try_copy(BUF.as_ptr(), base.add(page_size), 100).unwrap();
            try_copy(BUF.as_ptr(), base.add(page_size), page_size + 1).unwrap_err();
        }
    }

    #[test]
    fn test_cmpxchg() {
        initialize_try_copy();

        let page_size = SparseMapping::page_size();
        let mapping = SparseMapping::new(page_size * 2).unwrap();
        mapping.alloc(0, page_size).unwrap();
        let base = mapping.as_ptr().cast::<u8>();
        unsafe {
            assert_eq!(try_compare_exchange(base.add(8), 0, 1).unwrap().unwrap(), 1);
            assert_eq!(
                try_compare_exchange(base.add(8), 0, 2)
                    .unwrap()
                    .unwrap_err(),
                1
            );
            assert_eq!(
                try_compare_exchange(base.cast::<u64>().add(1), 1, 2)
                    .unwrap()
                    .unwrap(),
                2
            );
            assert!(try_compare_exchange_ref(base.add(8), &mut [2u8, 0], &[3, 0]).unwrap());
            try_compare_exchange(base.add(page_size), 0, 2).unwrap_err();
        }
    }

    #[test]
    fn test_overlapping_mappings() {
        #![allow(clippy::identity_op)]

        let page_size = SparseMapping::page_size();
        let mapping = SparseMapping::new(0x10 * page_size).unwrap();
        mapping.alloc(0x1 * page_size, 0x4 * page_size).unwrap();
        mapping.alloc(0x1 * page_size, 0x2 * page_size).unwrap();
        mapping.alloc(0x2 * page_size, 0x3 * page_size).unwrap();
        mapping.alloc(0, 0x10 * page_size).unwrap();
        mapping.alloc(0x8 * page_size, 0x8 * page_size).unwrap();
        mapping.unmap(0xc * page_size, 0x2 * page_size).unwrap();
        mapping.alloc(0x9 * page_size, 0x4 * page_size).unwrap();
        mapping.unmap(0x3 * page_size, 0xb * page_size).unwrap();

        mapping.alloc(0x5 * page_size, 0x4 * page_size).unwrap();
        mapping.alloc(0x6 * page_size, 0x2 * page_size).unwrap();
        mapping.alloc(0x6 * page_size, 0x1 * page_size).unwrap();
        mapping.alloc(0x4 * page_size, 0x3 * page_size).unwrap();

        let shmem = alloc_shared_memory(0x4 * page_size).unwrap();
        mapping
            .map_file(0x5 * page_size, 0x4 * page_size, &shmem, 0, true)
            .unwrap();
        mapping
            .map_file(0x6 * page_size, 0x2 * page_size, &shmem, 0, true)
            .unwrap();
        mapping
            .map_file(0x6 * page_size, 0x1 * page_size, &shmem, 0, true)
            .unwrap();
        mapping
            .map_file(0x4 * page_size, 0x3 * page_size, &shmem, 0, true)
            .unwrap();

        drop(mapping);
    }
}