serial_pl011/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Emulator for PL011 serial UART.
//!
//! This device does not fully implement the PL011 UART defined by ARM (e.g., it
//! is missing DMA support), and Linux interprets it as an SBSA-compatible UART
//! when it is enumerated by ACPI (even when we use ARM's PL011 ACPI CID). SBSA
//! only defines a subset of the UART registers, leaving the rest as vendor
//! specified.
//!
//! If you extend this emulator, do so only to make it closer to a real PL011;
//! if you want to add other vendor-specific behavior, do it in a separate
//! wrapping emulator.

#![forbid(unsafe_code)]

pub mod resolver;
mod spec;

use self::spec::ControlRegister;
use self::spec::DmaControlRegister;
use self::spec::FIFO_SIZE;
use self::spec::FifoLevelSelect;
use self::spec::FractionalBaudRateRegister;
use self::spec::InterruptFifoLevelSelectRegister;
use self::spec::InterruptRegister;
use self::spec::LineControlRegister;
use self::spec::REGISTERS_SIZE;
use self::spec::Register;
use self::spec::UARTPCELL_ID;
use self::spec::UARTPERIPH_ID;
use chipset_device::ChipsetDevice;
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::mmio::MmioIntercept;
use chipset_device::poll_device::PollDevice;
use futures::AsyncRead;
use futures::AsyncWrite;
use inspect::Inspect;
use inspect::InspectMut;
use inspect_counters::Counter;
use serial_core::SerialIo;
use std::collections::VecDeque;
use std::io::ErrorKind;
use std::ops::RangeInclusive;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;
use std::task::Waker;
use std::task::ready;
use thiserror::Error;
use vmcore::device_state::ChangeDeviceState;
use vmcore::line_interrupt::LineInterrupt;

/// A PL011 serial port emulator.
#[derive(InspectMut)]
pub struct SerialPl011 {
    // Fixed configuration
    #[inspect(skip)]
    debug_name: String,
    #[inspect(skip)]
    mmio_region: (&'static str, RangeInclusive<u64>),
    /// Don't transmit until the guest sets RTS. This exists here for symmetry
    /// with the 16550 emulator, but it's not useful because this device is
    /// enumerated as an SBSA UART, which does not support the RTS bit (a full
    /// PL011 would).
    wait_for_rts: bool,

    // Runtime glue
    interrupt: LineInterrupt,
    #[inspect(mut)]
    io: Box<dyn SerialIo>,

    // Runtime book-keeping
    state: State,
    #[inspect(skip)]
    rx_waker: Option<Waker>,
    #[inspect(skip)]
    tx_waker: Option<Waker>,
    stats: SerialStats,
}

#[derive(Inspect, Default)]
struct SerialStats {
    rx_bytes: Counter,
    tx_bytes: Counter,
    rx_dropped: Counter,
    tx_dropped: Counter,
}

#[derive(Inspect)]
struct State {
    #[inspect(with = "VecDeque::len")]
    tx_buffer: VecDeque<u8>,
    #[inspect(with = "VecDeque::len")]
    rx_buffer: VecDeque<u8>,
    rx_overrun: bool,
    connected: bool,
    ilpr: u8,                               // UARTILPR
    ibrd: u16,                              // UARTIBRD
    fbrd: FractionalBaudRateRegister,       // UARTFBRD
    lcr: LineControlRegister,               // UARTLCR_H: u8,
    cr: ControlRegister,                    // UARTCR: u16,
    ifls: InterruptFifoLevelSelectRegister, // UARTIFLS: u16
    imsc: InterruptRegister,                // UARTIMSC
    ris: InterruptRegister, // UARTRIS: 16 holds currently asserted interrupts, only to be updated by UpdateInterrupts and writes to UARTCIR
    dmacr: DmaControlRegister, // UARTDMACR

    // Updating UARTIBRD or UARTFBRD requires a write to UARTLCR_H.
    // Thus, we need to store if we've seen a different value incase we ever see a UARTLCR_H write.
    new_ibrd: u16,
    new_fbrd: FractionalBaudRateRegister,
}

// A normal FIFO has only 16 bytes, but we get greater batching with these values.
const TX_BUFFER_MAX: usize = 256;
const RX_BUFFER_MAX: usize = 256;

/// An error returned by [`SerialPl011::new`].
#[derive(Debug, Error)]
pub enum ConfigurationError {
    /// The provided base address was not aligned to the register bank width.
    #[error("unaligned base address: {0}")]
    UnalignedBaseAddress(u64),
    /// The specified register with was invalid.
    #[error("invalid register width: {0}")]
    InvalidRegisterWidth(u8),
}

impl SerialPl011 {
    /// Returns a new emulator instance.
    ///
    /// `debug_name` is used to improve tracing statements. `base` is the base
    /// IO port and will be used for an IO region spanning 8 bytes.
    pub fn new(
        debug_name: String,
        base: u64,
        interrupt: LineInterrupt,
        io: Box<dyn SerialIo>,
    ) -> Result<Self, ConfigurationError> {
        if base & (REGISTERS_SIZE - 1) != 0 {
            return Err(ConfigurationError::UnalignedBaseAddress(base));
        }

        let mut this = Self {
            debug_name,
            mmio_region: ("registers", base..=base + (REGISTERS_SIZE - 1)),
            wait_for_rts: false,
            state: State::new(),
            interrupt,
            io,
            rx_waker: None,
            tx_waker: None,
            stats: Default::default(),
        };
        if this.io.is_connected() {
            this.state.connect();
        }
        this.sync();
        Ok(this)
    }

    /// Synchronize interrupt and waker state with device state.
    fn sync(&mut self) {
        // Wake to poll if there are any bytes to write.
        if !self.state.tx_buffer.is_empty() {
            if let Some(waker) = self.tx_waker.take() {
                waker.wake();
            }
        }

        // Reduce wakeups by waking to poll if the rx buffer is at least half empty.
        if self.state.should_poll_rx(self.wait_for_rts)
            && self.state.rx_buffer.len() <= RX_BUFFER_MAX / 2
        {
            if let Some(waker) = self.rx_waker.take() {
                waker.wake();
            }
        }

        // Synchronize the receive timeout interrupt. In hardware, this would
        // only raise after 32 bits worth of clock have expired and there is
        // data in the RX FIFO. But that's too hard, so just treat the clock as
        // expiring constantly.
        //
        // This means the guest can't really clear this interrupt as long as
        // there is data in the FIFO.
        self.state.ris.set_rt(!self.state.rx_buffer.is_empty());

        // Synchronize the interrupt output.
        self.interrupt.set_level(self.state.pending_interrupt());
    }

    fn poll_tx(&mut self, cx: &mut Context<'_>) -> Poll<()> {
        while !self.state.tx_buffer.is_empty() {
            if !self.state.connected {
                // The backend is disconnected, so drop everything in the FIFO.
                self.stats.tx_dropped.add(self.state.tx_buffer.len() as u64);
                if self.state.tx_buffer.len() > self.state.tx_fifo_trigger() {
                    self.state.ris.set_tx(true);
                }
                self.state.tx_buffer.clear();
                break;
            }
            let (buf, _) = self.state.tx_buffer.as_slices();
            let old_len = self.state.tx_buffer.len();
            match ready!(Pin::new(&mut self.io).poll_write(cx, buf)) {
                Ok(n) => {
                    assert_ne!(n, 0);
                    self.state.tx_buffer.drain(..n);
                    self.stats.tx_bytes.add(n as u64);
                }
                Err(err) if err.kind() == ErrorKind::BrokenPipe => {
                    tracing::info!(
                        port = self.debug_name,
                        "serial output broken pipe, disconnecting"
                    );
                    self.state.disconnect();
                }
                Err(err) => {
                    tracelimit::error_ratelimited!(
                        port = self.debug_name,
                        len = buf.len(),
                        error = &err as &dyn std::error::Error,
                        "serial write failed, dropping data"
                    );
                    self.stats.tx_dropped.add(buf.len() as u64);
                    self.state.tx_buffer.drain(..buf.len());
                }
            }
            let tx_fifo_trigger = self.state.tx_fifo_trigger();
            if old_len > tx_fifo_trigger && self.state.tx_buffer.len() <= tx_fifo_trigger {
                self.state.ris.set_tx(true);
            }
        }
        // Wait for more bytes to write.
        self.tx_waker = Some(cx.waker().clone());
        Poll::Pending
    }

    fn poll_rx(&mut self, cx: &mut Context<'_>) -> Poll<()> {
        let mut buf = [0; RX_BUFFER_MAX];
        loop {
            if !self.state.connected {
                // Wait for reconnect.
                if let Err(err) = ready!(self.io.poll_connect(cx)) {
                    tracing::info!(
                        port = self.debug_name,
                        error = &err as &dyn std::error::Error,
                        "serial backend failure"
                    );
                    break Poll::Ready(());
                }
                tracing::trace!(port = self.debug_name, "serial connected");
                self.state.connect();
            }
            if !self.state.should_poll_rx(self.wait_for_rts) {
                // Wait for buffer space to read into, or to leave loopback mode.
                self.rx_waker = Some(cx.waker().clone());
                if let Err(err) = ready!(self.io.poll_disconnect(cx)) {
                    tracing::info!(
                        port = self.debug_name,
                        error = &err as &dyn std::error::Error,
                        "serial backend failure"
                    );
                    break Poll::Ready(());
                }
                tracing::trace!(port = self.debug_name, "serial disconnected");
                self.state.disconnect();
                continue;
            }
            let avail_space = RX_BUFFER_MAX - self.state.rx_buffer.len();
            let buf = &mut buf[..avail_space];
            match ready!(Pin::new(&mut self.io).poll_read(cx, buf)) {
                Ok(0) => {
                    tracing::trace!(port = self.debug_name, "serial disconnected");
                    self.state.disconnect();
                }
                Ok(n) => {
                    let rx_fifo_trigger = self.state.rx_fifo_trigger();
                    if self.state.rx_buffer.len() < rx_fifo_trigger
                        && self.state.rx_buffer.len() + n >= rx_fifo_trigger
                    {
                        self.state.ris.set_rx(true);
                    }
                    self.state.rx_buffer.extend(&buf[..n]);
                    self.stats.rx_bytes.add(n as u64);
                }
                Err(err) => {
                    tracing::error!(
                        port = self.debug_name,
                        error = &err as &dyn std::error::Error,
                        "failed to read serial input, disconnecting"
                    );
                    self.state.disconnect();
                    break Poll::Ready(());
                }
            }
        }
    }

    fn register(&self, addr: u64) -> Result<Register, IoError> {
        // All registers are 32 bits wide, and the SBSA spec requires aligned access.
        if addr & 3 != 0 {
            return Err(IoError::UnalignedAccess);
        }
        Ok(Register((addr & (REGISTERS_SIZE - 1)) as u16))
    }

    fn read(&mut self, addr: u64, data: &mut [u8]) -> IoResult {
        let register = match self.register(addr) {
            Err(e) => return IoResult::Err(e),
            Ok(r) => r,
        };

        data.fill(0);
        let val: u16 = match register {
            Register::UARTDR => self.state.read_dr().into(),
            Register::UARTRSR => 0, // Status flags we don't care about, return zeros.
            Register::UARTFR => self.state.read_fr(),
            Register::UARTILPR => self.state.ilpr as u16,
            Register::UARTIBRD => self.state.ibrd,
            Register::UARTFBRD => u8::from(self.state.fbrd) as u16,
            Register::UARTLCR_H => u8::from(self.state.lcr) as u16,
            Register::UARTCR => u16::from(self.state.cr),
            Register::UARTIFLS => u16::from(self.state.ifls),
            Register::UARTIMSC => u16::from(self.state.imsc),
            Register::UARTRIS => u16::from(self.state.ris),
            Register::UARTMIS => u16::from(self.state.ris) & u16::from(self.state.imsc),
            Register::UARTDMACR => u16::from(self.state.dmacr),
            Register::UARTPERIPHID0 => UARTPERIPH_ID[0],
            Register::UARTPERIPHID1 => UARTPERIPH_ID[1],
            Register::UARTPERIPHID2 => UARTPERIPH_ID[2],
            Register::UARTPERIPHID3 => UARTPERIPH_ID[3],
            Register::UARTPCELLID0 => UARTPCELL_ID[0],
            Register::UARTPCELLID1 => UARTPCELL_ID[1],
            Register::UARTPCELLID2 => UARTPCELL_ID[2],
            Register::UARTPCELLID3 => UARTPCELL_ID[3],
            _ => return IoResult::Err(IoError::InvalidRegister),
        };

        // The SBSA spec only requires the device to support 8-bit reads on some
        // registers and leaves it implementation defined on others. Allow 8-bit
        // reads on all registers for simplicity.
        data[0] = val.to_le_bytes()[0];
        if data.len() > 1 {
            data[1] = val.to_le_bytes()[1];
        }

        self.sync();
        IoResult::Ok
    }

    fn write(&mut self, addr: u64, data: &[u8]) -> IoResult {
        let register = match self.register(addr) {
            Err(e) => return IoResult::Err(e),
            Ok(r) => r,
        };

        tracing::trace!(?register, ?data, "serial write");

        // Registers that allow 8-bit access.
        match register {
            Register::UARTDR => self.state.write_dr(&mut self.stats, data[0]),
            Register::UARTECR => {}
            Register::UARTILPR => self.state.ilpr = data[0],
            Register::UARTFBRD => self.state.write_fbrd(data[0]),
            Register::UARTLCR_H => self.state.write_lcrh(&mut self.stats, data[0]),
            _ => {
                // 16-bit registers.
                let Some(data) = data.get(..2) else {
                    return IoResult::Err(IoError::InvalidAccessSize);
                };
                let data16 = u16::from_le_bytes(data.try_into().unwrap());
                match register {
                    Register::UARTIBRD => self.state.new_ibrd = data16,
                    Register::UARTCR => self.state.write_cr(data16),
                    Register::UARTIFLS => self.state.write_ifls(data16),
                    Register::UARTIMSC => self.state.write_imsc(data16),
                    Register::UARTICR => self.state.write_icr(data16),
                    Register::UARTDMACR => self.state.write_dmacr(data16),
                    _ => return IoResult::Err(IoError::InvalidRegister),
                };
            }
        }
        self.sync();
        IoResult::Ok
    }
}

impl ChangeDeviceState for SerialPl011 {
    fn start(&mut self) {}

    async fn stop(&mut self) {}

    async fn reset(&mut self) {
        self.state = State::new();
        self.state.connect();
        self.sync();
    }
}

impl ChipsetDevice for SerialPl011 {
    fn supports_mmio(&mut self) -> Option<&mut dyn MmioIntercept> {
        Some(self)
    }

    fn supports_poll_device(&mut self) -> Option<&mut dyn PollDevice> {
        Some(self)
    }
}

impl PollDevice for SerialPl011 {
    fn poll_device(&mut self, cx: &mut Context<'_>) {
        let _ = self.poll_tx(cx);
        let _ = self.poll_rx(cx);
        self.sync();
    }
}

impl State {
    fn new() -> Self {
        // The initial state for this UART does not completely match the PL011
        // specification. This is because Linux loads its SBSA-compatible UART
        // driver instead of its PL011 driver, and the SBSA-compatible driver
        // expects the firmware to initialize the UART.
        //
        // We could look at enumerating this as a true PL011 instead, but
        // 1. It's unclear how to do this with ACPI (it's trivial with
        //    DeviceTree).
        // 2. There may be a compatibility concern with changing the
        //    enumeration.
        // 3. This is not really a full PL011 emulator anyway, since it does not
        //    support DMA.
        //
        // Instead, initialize the state as defined in the SBSA. Normally
        // firmware would do this, but we do it here.

        let cr = ControlRegister::new()
            .with_enabled(true)
            .with_rxe(true)
            .with_txe(true);

        let lcr = LineControlRegister::new().with_enable_fifos(true);

        Self {
            tx_buffer: VecDeque::new(),
            rx_buffer: VecDeque::new(),
            rx_overrun: false,
            connected: false,
            ilpr: 0,
            ibrd: 0,
            fbrd: FractionalBaudRateRegister::new(),
            lcr,
            cr,
            ifls: InterruptFifoLevelSelectRegister::new()
                .with_txiflsel(FifoLevelSelect::BYTES_16.0)
                .with_rxiflsel(FifoLevelSelect::BYTES_16.0),
            imsc: InterruptRegister::new(),
            ris: InterruptRegister::new(),
            dmacr: DmaControlRegister::new(),
            new_ibrd: 0,
            new_fbrd: FractionalBaudRateRegister::new(),
        }
    }

    /// Updates CR when the modem connects.
    fn connect(&mut self) {
        if !self.connected {
            self.connected = true;
            // CTS/DCD/DSR changed.
            self.ris.set_cts(true);
            self.ris.set_dcd(true);
            self.ris.set_dsr(true);
        }
    }

    /// Updates CR when the modem disconnects.
    fn disconnect(&mut self) {
        if self.connected {
            self.connected = false;
            // CTS/DCD/DSR changed.
            self.ris.set_cts(true);
            self.ris.set_dcd(true);
            self.ris.set_dsr(true);
        }
    }

    fn tx_fifo_trigger(&self) -> usize {
        if self.lcr.enable_fifos() {
            match FifoLevelSelect(self.ifls.txiflsel()) {
                FifoLevelSelect::BYTES_4 => 4,   // <= 1/8 full
                FifoLevelSelect::BYTES_8 => 8,   // <= 1/4 full
                FifoLevelSelect::BYTES_16 => 16, // <= 1/2 full
                FifoLevelSelect::BYTES_24 => 24, // <= 3/4 full
                FifoLevelSelect::BYTES_28 => 28, // <= 7/8 full
                _ => 16,                         // reserved
            }
        } else {
            0
        }
    }

    fn rx_fifo_trigger(&self) -> usize {
        if self.lcr.enable_fifos() {
            match FifoLevelSelect(self.ifls.rxiflsel()) {
                FifoLevelSelect::BYTES_4 => 4,   // <= 1/8 full
                FifoLevelSelect::BYTES_8 => 8,   // <= 1/4 full
                FifoLevelSelect::BYTES_16 => 16, // <= 1/2 full
                FifoLevelSelect::BYTES_24 => 24, // <= 3/4 full
                FifoLevelSelect::BYTES_28 => 28, // <= 7/8 full
                _ => 16,                         // reserved
            }
        } else {
            1
        }
    }

    fn fifo_size(&self) -> usize {
        if self.lcr.enable_fifos() {
            FIFO_SIZE
        } else {
            1
        }
    }

    /// Returns whether it is time to poll the backend device for more data.
    fn should_poll_rx(&self, wait_for_rts: bool) -> bool {
        // Only poll if not in loopback mode, since data comes from THR in that case.
        if self.cr.loopback() {
            return false;
        }

        // Only poll if the backend is connected.
        if !self.connected {
            return false;
        }

        // If requested, only poll if the OS is requesting data. Essentially
        // this means the backend device implements hardware flow control.
        //
        // Without this, any data buffered into the serial port will be lost
        // during boot when the FIFO is cleared.
        if wait_for_rts && (!self.cr.dtr() || !self.cr.rts()) {
            return false;
        }

        // Only poll if there is space in the buffer.
        self.rx_buffer.len() < RX_BUFFER_MAX
    }

    fn pending_interrupt(&mut self) -> bool {
        u16::from(self.ris) & u16::from(self.imsc) != 0
    }

    fn read_dr(&mut self) -> u8 {
        if self.rx_buffer.is_empty() {
            return 0;
        }

        let rx = self.rx_buffer.pop_front().unwrap_or(0);
        if self.rx_buffer.len() < self.rx_fifo_trigger() {
            self.ris.set_rx(false);
        }
        rx
    }

    fn write_dr(&mut self, stats: &mut SerialStats, data: u8) {
        if self.cr.loopback() {
            // Loopback mode wires UARTTXD to UARTRXD, so just add a byte
            // to the fifo along with updating tx state.
            if self.cr.enabled() && self.cr.txe() {
                if self.cr.rxe() {
                    if self.rx_buffer.len() >= TX_BUFFER_MAX {
                        stats
                            .rx_dropped
                            .add((self.rx_buffer.len() - TX_BUFFER_MAX) as u64);
                        self.rx_buffer.truncate(TX_BUFFER_MAX);
                        self.rx_overrun = true;
                        self.ris.set_oe(true);
                    }

                    self.rx_buffer.push_back(data);
                    if self.rx_buffer.len() == self.rx_fifo_trigger() {
                        self.ris.set_rx(true);
                    }
                }
            }
        } else {
            if self.tx_buffer.len() >= TX_BUFFER_MAX {
                // The FIFO is full. Real hardware drops the newest byte in the
                // FIFO, not the oldest one.
                tracing::debug!("tx fifo overrun, dropping output data");
                stats
                    .tx_dropped
                    .add((self.tx_buffer.len() - (TX_BUFFER_MAX - 1)) as u64);
                self.tx_buffer.truncate(TX_BUFFER_MAX - 1);
            }
            self.tx_buffer.push_back(data);

            if self.tx_buffer.len() > self.tx_fifo_trigger() {
                self.ris.set_tx(false);
            }
        }
    }

    fn write_fbrd(&mut self, data: u8) {
        self.new_fbrd = FractionalBaudRateRegister::from(data).clear_reserved();
    }

    fn write_lcrh(&mut self, stats: &mut SerialStats, data: u8) {
        // This register should not be written to when the UART is enabled.
        if self.cr.enabled() {
            return;
        }

        if self.new_ibrd != self.ibrd || u8::from(self.new_fbrd) != u8::from(self.fbrd) {
            self.ibrd = self.new_ibrd;
            self.fbrd = self.new_fbrd;
        }

        let lcr = LineControlRegister::from(data);
        if self.lcr.enable_fifos() && !lcr.enable_fifos() {
            // Fifo went from enabled -> disabled, clear all fifos and update status regs.
            // Additionally, since this can only happen when the UART is disabled, there's no need to update interrupts.
            stats.rx_dropped.add(self.rx_buffer.len() as u64);
            self.rx_buffer.clear();

            stats.tx_dropped.add(self.tx_buffer.len() as u64);
            self.tx_buffer.clear();
        }

        self.lcr = lcr;
    }

    fn write_cr(&mut self, data: u16) {
        self.cr = ControlRegister::from(data).clear_reserved();
    }

    fn write_ifls(&mut self, data: u16) {
        self.ifls = InterruptFifoLevelSelectRegister::from(data).clear_reserved();
    }

    fn write_imsc(&mut self, data: u16) {
        self.imsc = InterruptRegister::from(data).clear_reserved();
    }

    fn write_icr(&mut self, data: u16) {
        self.ris = InterruptRegister::from(u16::from(self.ris) & !data);
    }

    fn write_dmacr(&mut self, data: u16) {
        self.dmacr = DmaControlRegister::from(data).clear_reserved()
    }

    fn read_fr(&self) -> u16 {
        let fifo_size = self.fifo_size();
        let fr = spec::FlagRegister::new()
            .with_cts(self.connected)
            .with_dcd(self.connected)
            .with_dsr(self.connected)
            .with_busy(!self.tx_buffer.is_empty())
            .with_rxfe(self.rx_buffer.is_empty())
            .with_txff(self.tx_buffer.len() >= fifo_size)
            .with_rxff(self.rx_buffer.len() >= fifo_size)
            .with_txfe(self.tx_buffer.is_empty());

        fr.into()
    }
}

impl MmioIntercept for SerialPl011 {
    fn mmio_read(&mut self, addr: u64, data: &mut [u8]) -> IoResult {
        self.read(addr, data)
    }

    fn mmio_write(&mut self, addr: u64, data: &[u8]) -> IoResult {
        self.write(addr, data)
    }

    fn get_static_regions(&mut self) -> &[(&str, RangeInclusive<u64>)] {
        std::slice::from_ref(&self.mmio_region)
    }
}

mod save_restore {
    use crate::SerialPl011;
    use crate::State;
    use vmcore::save_restore::RestoreError;
    use vmcore::save_restore::SaveError;
    use vmcore::save_restore::SaveRestore;

    mod state {
        use mesh::payload::Protobuf;
        use vmcore::save_restore::SavedStateRoot;

        #[derive(Protobuf, SavedStateRoot)]
        #[mesh(package = "serial.PL011")]
        pub struct SavedState {
            #[mesh(1)]
            pub(super) tx_buffer: Vec<u8>,
            #[mesh(2)]
            pub(super) rx_buffer: Vec<u8>,
            #[mesh(3)]
            pub(super) rx_overrun: bool,
            #[mesh(4)]
            pub(super) connected: bool,
            #[mesh(5)]
            pub(super) ilpr: u8,
            #[mesh(6)]
            pub(super) ibrd: u16,
            #[mesh(7)]
            pub(super) fbrd: u8,
            #[mesh(8)]
            pub(super) lcr: u8,
            #[mesh(9)]
            pub(super) cr: u16,
            #[mesh(10)]
            pub(super) ifls: u16,
            #[mesh(11)]
            pub(super) imsc: u16,
            #[mesh(12)]
            pub(super) ris: u16,
            #[mesh(13)]
            pub(super) dmacr: u16,
            #[mesh(14)]
            pub(super) new_ibrd: u16,
            #[mesh(15)]
            pub(super) new_fbrd: u8,
        }
    }

    impl SaveRestore for SerialPl011 {
        type SavedState = state::SavedState;

        fn save(&mut self) -> Result<Self::SavedState, SaveError> {
            let State {
                ref tx_buffer,
                ref rx_buffer,
                rx_overrun,
                connected,
                ilpr,
                ibrd,
                fbrd,
                lcr,
                cr,
                ifls,
                imsc,
                ris,
                dmacr,
                new_ibrd,
                new_fbrd,
            } = self.state;
            Ok(state::SavedState {
                tx_buffer: tx_buffer.clone().into(),
                rx_buffer: rx_buffer.clone().into(),
                rx_overrun,
                connected,
                ilpr,
                ibrd,
                fbrd: fbrd.into(),
                lcr: lcr.into(),
                cr: cr.into(),
                ifls: ifls.into(),
                imsc: imsc.into(),
                ris: ris.into(),
                dmacr: dmacr.into(),
                new_ibrd,
                new_fbrd: new_fbrd.into(),
            })
        }

        fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
            let state::SavedState {
                tx_buffer,
                rx_buffer,
                rx_overrun,
                connected,
                ilpr,
                ibrd,
                fbrd,
                lcr,
                cr,
                ifls,
                imsc,
                ris,
                dmacr,
                new_ibrd,
                new_fbrd,
            } = state;
            self.state = State {
                tx_buffer: tx_buffer.into(),
                rx_buffer: rx_buffer.into(),
                rx_overrun,
                connected,
                ilpr,
                ibrd,
                fbrd: fbrd.into(),
                lcr: lcr.into(),
                cr: cr.into(),
                ifls: ifls.into(),
                imsc: imsc.into(),
                ris: ris.into(),
                dmacr: dmacr.into(),
                new_ibrd,
                new_fbrd: new_fbrd.into(),
            };
            if self.io.is_connected() {
                self.state.connect();
            } else {
                self.state.disconnect();
            }
            self.sync();
            Ok(())
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use chipset_device::io::IoError;
    use chipset_device::io::IoResult;
    use chipset_device::mmio::MmioIntercept;
    use futures::AsyncRead;
    use futures::AsyncWrite;
    use inspect::InspectMut;
    use pal_async::async_test;
    use serial_core::SerialIo;
    use std::future::poll_fn;
    use std::io;
    use std::pin::Pin;
    use std::task::Context;
    use std::task::Poll;
    use vmcore::line_interrupt::LineInterrupt;

    const PL011_SERIAL0_BASE: u64 = 0xEFFEC000;

    const UARTCR_TXE: u16 = 0x0100;
    const UARTCR_RXE: u16 = 0x0200;
    const UARTCR_UARTEN: u16 = 0x0001;

    const UARTLCR_H_FIFO_ENABLE: u16 = 0x0010;
    const UARTLCR_H_8BITS: u16 = 0x0060;

    // This is a "loopback" kind of io, where a write to the serial port will appear in the read queue
    #[derive(InspectMut)]
    pub struct SerialIoMock {
        data: Vec<u8>,
    }

    impl SerialIo for SerialIoMock {
        fn is_connected(&self) -> bool {
            true
        }

        fn poll_connect(&mut self, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
            Poll::Ready(Ok(()))
        }

        fn poll_disconnect(&mut self, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
            Poll::Ready(Ok(()))
        }
    }

    impl AsyncRead for SerialIoMock {
        fn poll_read(
            mut self: Pin<&mut Self>,
            _cx: &mut Context<'_>,
            buf: &mut [u8],
        ) -> Poll<io::Result<usize>> {
            if self.data.is_empty() {
                return Poll::Ready(Err(ErrorKind::ConnectionAborted.into()));
            }
            let n = buf.len().min(self.data.len());
            for (s, d) in self.data.drain(..n).zip(buf) {
                *d = s;
            }
            Poll::Ready(Ok(n))
        }
    }

    impl AsyncWrite for SerialIoMock {
        fn poll_write(
            mut self: Pin<&mut Self>,
            _cx: &mut Context<'_>,
            buf: &[u8],
        ) -> Poll<io::Result<usize>> {
            let buf = &buf[..buf.len().min(FIFO_SIZE)];
            self.data.extend_from_slice(buf);
            Poll::Ready(Ok(buf.len()))
        }

        fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
            Poll::Ready(Ok(()))
        }

        fn poll_close(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<io::Result<()>> {
            Poll::Ready(Ok(()))
        }
    }

    impl SerialIoMock {
        pub fn new() -> Self {
            Self { data: Vec::new() }
        }
    }

    #[test]
    fn test_read() {
        let serial_io = SerialIoMock::new();
        let mut serial = SerialPl011::new(
            "com1".to_string(),
            PL011_SERIAL0_BASE,
            LineInterrupt::detached(),
            Box::new(serial_io),
        )
        .unwrap();

        let mut data = vec![0; 1];
        serial.mmio_read(0, &mut data).unwrap();

        let mut data = vec![0; 2];
        serial.mmio_read(0, &mut data).unwrap();

        let mut data = vec![0; 4];
        serial.mmio_read(0, &mut data).unwrap();

        assert!(matches!(
            serial.mmio_read(1, &mut data),
            IoResult::Err(IoError::UnalignedAccess)
        ));
        assert!(matches!(
            serial.mmio_read(2, &mut data),
            IoResult::Err(IoError::UnalignedAccess)
        ));
        assert!(matches!(
            serial.mmio_read(3, &mut data),
            IoResult::Err(IoError::UnalignedAccess)
        ));

        serial
            .mmio_read(Register::UARTDR.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTRSR.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTECR.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTFR.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTILPR.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTIBRD.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTFBRD.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTLCR_H.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTCR.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTIFLS.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTIMSC.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTRIS.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTMIS.0 as u64, &mut data)
            .unwrap();
        assert!(matches!(
            serial.mmio_read(Register::UARTICR.0 as u64, &mut data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        serial
            .mmio_read(Register::UARTDMACR.0 as u64, &mut data)
            .unwrap();

        serial
            .mmio_read(Register::UARTPERIPHID0.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTPERIPHID1.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTPERIPHID2.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTPERIPHID3.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTPCELLID0.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTPCELLID1.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTPCELLID2.0 as u64, &mut data)
            .unwrap();
        serial
            .mmio_read(Register::UARTPCELLID3.0 as u64, &mut data)
            .unwrap();
    }

    #[test]
    fn test_write() {
        let serial_io = SerialIoMock::new();
        let mut serial = SerialPl011::new(
            "com1".to_string(),
            PL011_SERIAL0_BASE,
            LineInterrupt::detached(),
            Box::new(serial_io),
        )
        .unwrap();

        let data = vec![0; 1];
        assert!(matches!(
            serial.mmio_write(Register::UARTIBRD.0.into(), &data),
            IoResult::Err(IoError::InvalidAccessSize)
        ));

        let data = vec![0; 2];
        serial.mmio_write(0, &data).unwrap();

        let data = vec![0; 3];
        serial.mmio_write(0, &data).unwrap();

        let data = vec![0; 4];
        serial.mmio_write(0, &data).unwrap();

        let data = vec![0; 5];
        serial.mmio_write(0, &data).unwrap();

        assert!(matches!(
            serial.mmio_write(1, &data),
            IoResult::Err(IoError::UnalignedAccess)
        ));
        assert!(matches!(
            serial.mmio_write(2, &data),
            IoResult::Err(IoError::UnalignedAccess)
        ));
        assert!(matches!(
            serial.mmio_write(3, &data),
            IoResult::Err(IoError::UnalignedAccess)
        ));

        serial.mmio_write(Register::UARTDR.0 as u64, &data).unwrap();
        serial
            .mmio_write(Register::UARTRSR.0 as u64, &data)
            .unwrap();
        serial
            .mmio_write(Register::UARTECR.0 as u64, &data)
            .unwrap();
        assert!(matches!(
            serial.mmio_write(Register::UARTFR.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        serial
            .mmio_write(Register::UARTILPR.0 as u64, &data)
            .unwrap();
        serial
            .mmio_write(Register::UARTIBRD.0 as u64, &data)
            .unwrap();
        serial
            .mmio_write(Register::UARTFBRD.0 as u64, &data)
            .unwrap();
        serial
            .mmio_write(Register::UARTLCR_H.0 as u64, &data)
            .unwrap();
        serial.mmio_write(Register::UARTCR.0 as u64, &data).unwrap();
        serial
            .mmio_write(Register::UARTIFLS.0 as u64, &data)
            .unwrap();
        serial
            .mmio_write(Register::UARTIMSC.0 as u64, &data)
            .unwrap();
        assert!(matches!(
            serial.mmio_write(Register::UARTRIS.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTMIS.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        serial
            .mmio_write(Register::UARTICR.0 as u64, &data)
            .unwrap();
        serial
            .mmio_write(Register::UARTDMACR.0 as u64, &data)
            .unwrap();

        assert!(matches!(
            serial.mmio_write(Register::UARTPERIPHID0.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTPERIPHID1.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTPERIPHID2.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTPERIPHID3.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTPCELLID0.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTPCELLID1.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTPCELLID2.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
        assert!(matches!(
            serial.mmio_write(Register::UARTPCELLID3.0 as u64, &data),
            IoResult::Err(IoError::InvalidRegister)
        ));
    }

    fn read(serial: &mut SerialPl011, r: Register) -> u16 {
        let mut data = vec![0; 2];
        serial.mmio_read(r.0 as u64, &mut data).unwrap();
        u16::from_ne_bytes(data[..2].try_into().unwrap())
    }

    fn write(serial: &mut SerialPl011, r: Register, val: u16) {
        let mut data = vec![0; 2];
        data[..2].copy_from_slice(&val.to_ne_bytes());
        serial.mmio_write(r.0 as u64, &data).unwrap();
    }

    #[test]
    fn test_init() {
        let serial_io = SerialIoMock::new();
        let mut serial = SerialPl011::new(
            "com1".to_string(),
            PL011_SERIAL0_BASE,
            LineInterrupt::detached(),
            Box::new(serial_io),
        )
        .unwrap();

        assert_eq!(read(&mut serial, Register::UARTPERIPHID0), UARTPERIPH_ID[0]);
        assert_eq!(read(&mut serial, Register::UARTPERIPHID1), UARTPERIPH_ID[1]);
        assert_eq!(read(&mut serial, Register::UARTPERIPHID2), UARTPERIPH_ID[2]);
        assert_eq!(read(&mut serial, Register::UARTPERIPHID3), UARTPERIPH_ID[3]);
        assert_eq!(read(&mut serial, Register::UARTPCELLID0), UARTPCELL_ID[0]);
        assert_eq!(read(&mut serial, Register::UARTPCELLID1), UARTPCELL_ID[1]);
        assert_eq!(read(&mut serial, Register::UARTPCELLID2), UARTPCELL_ID[2]);
        assert_eq!(read(&mut serial, Register::UARTPCELLID3), UARTPCELL_ID[3]);

        // Mask interrupts
        write(&mut serial, Register::UARTIMSC, 0);
        // Disable interrupts (lower 11 bits)
        write(&mut serial, Register::UARTICR, 0x7ff);
        // Disable DMA on Rx and Tx
        write(&mut serial, Register::UARTDMACR, 0x0);

        // Leave Rx and Tx enabled to drain FIFOs, wait a bit,
        // and then disable Rx, Tx, and UART.
        write(&mut serial, Register::UARTCR, UARTCR_RXE | UARTCR_TXE);
        read(&mut serial, Register::UARTCR);
        read(&mut serial, Register::UARTCR);
        write(&mut serial, Register::UARTCR, 0x0000);

        // Set integer and fractinal parts of the baud rate,
        // hardcoded for now
        write(&mut serial, Register::UARTFBRD, 0x0004);
        write(&mut serial, Register::UARTIBRD, 0x0027);
        // The UARTLCR_H, UARTIBRD, and UARTFBRD registers form the single 30-bit
        // wide UARTLCR Register that is updated on a single write strobe generated by a
        // UARTLCR_H write
        write(
            &mut serial,
            Register::UARTLCR_H,
            UARTLCR_H_FIFO_ENABLE | UARTLCR_H_8BITS,
        );

        // Enable Tx and Rx, wait a bit, and then enable UART
        write(&mut serial, Register::UARTCR, UARTCR_RXE | UARTCR_TXE);
        read(&mut serial, Register::UARTCR);
        read(&mut serial, Register::UARTCR);
        write(
            &mut serial,
            Register::UARTCR,
            UARTCR_RXE | UARTCR_TXE | UARTCR_UARTEN,
        );
    }

    #[async_test]
    async fn test_writeread_data() {
        let serial_io = SerialIoMock::new();
        let mut serial = SerialPl011::new(
            "com1".to_string(),
            PL011_SERIAL0_BASE,
            LineInterrupt::detached(),
            Box::new(serial_io),
        )
        .unwrap();

        write(&mut serial, Register::UARTCR, 0x400 | 0x800); // UARTCR_DTR | UARTCR_RTS

        for n in 1..FIFO_SIZE as u16 {
            write(&mut serial, Register::UARTDR, n);
        }

        poll_fn(|cx| {
            serial.poll_device(cx);
            std::task::Poll::Ready(())
        })
        .await;

        for n in FIFO_SIZE as u16..1 {
            assert_eq!(read(&mut serial, Register::UARTDR), n);
        }
    }

    #[test]
    fn test_write_ifls() {
        let serial_io = SerialIoMock::new();
        let mut serial = SerialPl011::new(
            "com1".to_string(),
            PL011_SERIAL0_BASE,
            LineInterrupt::detached(),
            Box::new(serial_io),
        )
        .unwrap();

        write(&mut serial, Register::UARTIFLS, 0b000000);
        assert_eq!(u16::from(serial.state.ifls), 0b000000);

        write(&mut serial, Register::UARTIFLS, 0b001001);
        assert_eq!(u16::from(serial.state.ifls), 0b001001);

        write(&mut serial, Register::UARTIFLS, 0b100100);
        assert_eq!(u16::from(serial.state.ifls), 0b100100);

        write(&mut serial, Register::UARTIFLS, 0b11001001);
        assert_eq!(u16::from(serial.state.ifls), 0b001001); // Drop extra bits
    }

    #[test]
    fn test_write_icr() {
        let serial_io = SerialIoMock::new();
        let mut serial = SerialPl011::new(
            "com1".to_string(),
            PL011_SERIAL0_BASE,
            LineInterrupt::detached(),
            Box::new(serial_io),
        )
        .unwrap();

        serial.state.ris = InterruptRegister::from(0b11111111111).clear_reserved();
        write(&mut serial, Register::UARTICR, 0b00000000000);
        assert_eq!(u16::from(serial.state.ris), 0b11110111111);

        serial.state.ris = InterruptRegister::from(0b11111111111).clear_reserved();
        write(&mut serial, Register::UARTICR, 0b100000000000); // extra bit
        assert_eq!(u16::from(serial.state.ris), 0b11110111111);

        serial.state.ris = InterruptRegister::from(0b11111111111).clear_reserved();
        write(&mut serial, Register::UARTICR, 0b11111111111);
        assert_eq!(u16::from(serial.state.ris), 0b00000000000);

        serial.state.ris = InterruptRegister::from(0b11111111111).clear_reserved();
        write(&mut serial, Register::UARTICR, 0b111111111111); // extra bit
        assert_eq!(u16::from(serial.state.ris), 0b00000000000);

        serial.state.ris = InterruptRegister::from(0b11111111111).clear_reserved();
        write(&mut serial, Register::UARTICR, 0b01111011110);
        assert_eq!(u16::from(serial.state.ris), 0b10000100001);
    }
}