petri/vm/openvmm/
start.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Methods to start a [`PetriVmConfigOpenVmm`] and produce a running [`PetriVmOpenVmm`].

use super::PetriVmConfigOpenVmm;
use super::PetriVmOpenVmm;
use super::PetriVmResourcesOpenVmm;
use crate::Firmware;
use crate::PetriLogFile;
use crate::PetriLogSource;
use crate::worker::Worker;
use anyhow::Context;
use diag_client::DiagClient;
use disk_backend_resources::FileDiskHandle;
use framebuffer::FramebufferAccess;
use guid::Guid;
use hvlite_defs::config::DeviceVtl;
use image::ColorType;
use mesh_process::Mesh;
use mesh_process::ProcessConfig;
use mesh_worker::WorkerHost;
use pal_async::DefaultDriver;
use pal_async::pipe::PolledPipe;
use pal_async::task::Spawn;
use pal_async::task::Task;
use pal_async::timer::PolledTimer;
use petri_artifacts_common::tags::MachineArch;
use petri_artifacts_common::tags::OsFlavor;
use pipette_client::PipetteClient;
use scsidisk_resources::SimpleScsiDiskHandle;
use std::io::Write;
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Duration;
use storvsp_resources::ScsiControllerHandle;
use storvsp_resources::ScsiDeviceAndPath;
use storvsp_resources::ScsiPath;
use vm_resource::IntoResource;

impl PetriVmConfigOpenVmm {
    async fn run_core(self) -> anyhow::Result<PetriVmOpenVmm> {
        let Self {
            firmware,
            arch,
            mut config,

            mut resources,

            openvmm_log_file,

            ged,
            vtl2_settings,
            framebuffer_access,
        } = self;

        if firmware.is_openhcl() {
            // Add a pipette disk for VTL 2
            const UH_CIDATA_SCSI_INSTANCE: Guid =
                guid::guid!("766e96f8-2ceb-437e-afe3-a93169e48a7c");

            let uh_agent_disk = resources
                .openhcl_agent_image
                .as_ref()
                .unwrap()
                .build()
                .context("failed to build agent image")?;

            config.vmbus_devices.push((
                DeviceVtl::Vtl2,
                ScsiControllerHandle {
                    instance_id: UH_CIDATA_SCSI_INSTANCE,
                    max_sub_channel_count: 1,
                    io_queue_depth: None,
                    devices: vec![ScsiDeviceAndPath {
                        path: ScsiPath {
                            path: 0,
                            target: 0,
                            lun: 0,
                        },
                        device: SimpleScsiDiskHandle {
                            read_only: true,
                            parameters: Default::default(),
                            disk: FileDiskHandle(uh_agent_disk.into_file()).into_resource(),
                        }
                        .into_resource(),
                    }],
                    requests: None,
                }
                .into_resource(),
            ));
        }

        // Add the GED and VTL 2 settings.
        if let Some(mut ged) = ged {
            ged.vtl2_settings = Some(prost::Message::encode_to_vec(&vtl2_settings.unwrap()));
            config
                .vmbus_devices
                .push((DeviceVtl::Vtl2, ged.into_resource()));
        }

        let vtl2_vsock_path = config
            .vtl2_vmbus
            .as_ref()
            .and_then(|s| s.vsock_path.as_ref().map(|v| v.into()));

        tracing::debug!(?config, ?firmware, ?arch, "VM config");

        let mesh = Mesh::new("petri_mesh".to_string())?;

        let host = Self::openvmm_host(&mut resources, &mesh, openvmm_log_file)
            .await
            .context("failed to create host process")?;
        let (worker, halt_notif) = Worker::launch(&host, config)
            .await
            .context("failed to launch vm worker")?;

        let worker = Arc::new(worker);
        let watchdog_tasks = Self::start_watchdog_tasks(
            framebuffer_access,
            worker.clone(),
            vtl2_vsock_path,
            &resources.log_source,
            &resources.driver,
        )?;

        let mut vm = PetriVmOpenVmm::new(
            super::runtime::PetriVmInner {
                resources,
                mesh,
                worker,
                watchdog_tasks,
                quirks: firmware.quirks(),
            },
            halt_notif,
        );

        tracing::info!("Resuming VM");
        vm.resume().await?;

        // Run basic save/restore test that should run on every vm
        // TODO: OpenHCL needs virt_whp support
        // TODO: PCAT needs vga device support
        // TODO: arm64 is broken?
        if !firmware.is_openhcl()
            && !matches!(firmware, Firmware::Pcat { .. })
            && !matches!(arch, MachineArch::Aarch64)
        {
            tracing::info!("Testing save/restore");
            vm.verify_save_restore().await?;
        }

        tracing::info!("VM ready");
        Ok(vm)
    }

    /// Build and boot the requested VM. Does not configure and start pipette.
    /// Should only be used for testing platforms that pipette does not support.
    pub async fn run_without_agent(self) -> anyhow::Result<PetriVmOpenVmm> {
        self.run_core().await
    }

    /// Run the VM, launching pipette and returning a client to it.
    pub async fn run(self) -> anyhow::Result<(PetriVmOpenVmm, PipetteClient)> {
        let mut vm = self.run_with_lazy_pipette().await?;
        let client = vm.wait_for_agent().await?;
        Ok((vm, client))
    }

    /// Run the VM, configuring pipette to automatically start, but do not wait
    /// for it to connect. This is useful for tests where the first boot attempt
    /// is expected to not succeed, but pipette functionality is still desired.
    pub async fn run_with_lazy_pipette(mut self) -> anyhow::Result<PetriVmOpenVmm> {
        const CIDATA_SCSI_INSTANCE: Guid = guid::guid!("766e96f8-2ceb-437e-afe3-a93169e48a7b");

        // Construct the agent disk.
        let agent_disk = self
            .resources
            .agent_image
            .build()
            .context("failed to build agent image")?;

        // Add a SCSI controller to contain the agent disk. Don't reuse an
        // existing controller so that we can avoid interfering with
        // test-specific configuration.
        self.config.vmbus_devices.push((
            DeviceVtl::Vtl0,
            ScsiControllerHandle {
                instance_id: CIDATA_SCSI_INSTANCE,
                max_sub_channel_count: 1,
                io_queue_depth: None,
                devices: vec![ScsiDeviceAndPath {
                    path: ScsiPath {
                        path: 0,
                        target: 0,
                        lun: 0,
                    },
                    device: SimpleScsiDiskHandle {
                        read_only: true,
                        parameters: Default::default(),
                        disk: FileDiskHandle(agent_disk.into_file()).into_resource(),
                    }
                    .into_resource(),
                }],
                requests: None,
            }
            .into_resource(),
        ));

        if matches!(self.firmware.os_flavor(), OsFlavor::Windows) {
            // Make a file for the IMC hive. It's not guaranteed to be at a fixed
            // location at runtime.
            let mut imc_hive_file = tempfile::tempfile().context("failed to create temp file")?;
            imc_hive_file
                .write_all(include_bytes!("../../../guest-bootstrap/imc.hiv"))
                .context("failed to write imc hive")?;

            // Add the IMC device.
            self.config.vmbus_devices.push((
                DeviceVtl::Vtl0,
                vmbfs_resources::VmbfsImcDeviceHandle {
                    file: imc_hive_file,
                }
                .into_resource(),
            ));
        }

        let is_linux_direct = self.firmware.is_linux_direct();

        // Start the VM.
        let mut vm = self.run_core().await?;

        if is_linux_direct {
            vm.launch_linux_direct_pipette().await?;
        }

        Ok(vm)
    }

    fn start_watchdog_tasks(
        framebuffer_access: Option<FramebufferAccess>,
        worker: Arc<Worker>,
        vtl2_vsock_path: Option<PathBuf>,
        log_source: &PetriLogSource,
        driver: &DefaultDriver,
    ) -> anyhow::Result<Vec<Task<()>>> {
        // Our CI environment will kill tests after some time. We want to save
        // some information about the VM if it's still running at that point.
        const TIMEOUT_DURATION_MINUTES: u64 = 6;
        const TIMER_DURATION: Duration = Duration::from_secs(TIMEOUT_DURATION_MINUTES * 60 - 10);

        let mut tasks = Vec::new();

        let mut timer = PolledTimer::new(driver);
        tasks.push(driver.spawn("petri-watchdog-inspect", {
            let log_source = log_source.clone();
            async move {
                timer.sleep(TIMER_DURATION).await;
                tracing::warn!(
                    "Test has been running for almost {TIMEOUT_DURATION_MINUTES} minutes,
                     saving inspect details."
                );

                if let Err(e) =
                    log_source.write_attachment("timeout_inspect.log", worker.inspect_all().await)
                {
                    tracing::error!(?e, "Failed to save inspect log");
                    return;
                }
                tracing::info!("Watchdog inspect task finished.");
            }
        }));

        if let Some(fba) = framebuffer_access {
            let mut view = fba.view()?;
            let mut timer = PolledTimer::new(driver);
            let log_source = log_source.clone();
            tasks.push(driver.spawn("petri-watchdog-screenshot", async move {
                let mut count = 0;
                loop {
                    timer.sleep(Duration::from_secs(2)).await;
                    count += 1;
                    tracing::info!(count, "Taking screenshot.");

                    // Our framebuffer uses 4 bytes per pixel, approximating an
                    // BGRA image, however it only actually contains BGR data.
                    // The fourth byte is effectively noise. We can set the 'alpha'
                    // value to 0xFF to make the image opaque, while we also
                    // convert it to RGB to output it as a PNG.
                    const BYTES_PER_PIXEL: usize = 4;
                    let (width, height) = view.resolution();
                    let (widthsize, heightsize) = (width as usize, height as usize);
                    let len = widthsize * heightsize * BYTES_PER_PIXEL;

                    let mut image = vec![0; len];
                    for (i, line) in
                        (0..height).zip(image.chunks_exact_mut(widthsize * BYTES_PER_PIXEL))
                    {
                        view.read_line(i, line);
                        for pixel in line.chunks_exact_mut(BYTES_PER_PIXEL) {
                            pixel.swap(0, 2);
                            pixel[3] = 0xFF;
                        }
                    }

                    let r = log_source
                        .create_attachment("screenshot.png")
                        .and_then(|mut f| {
                            image::write_buffer_with_format(
                                &mut f,
                                &image,
                                width.into(),
                                height.into(),
                                ColorType::Rgba8,
                                image::ImageFormat::Png,
                            )
                            .map_err(Into::into)
                        });

                    if let Err(e) = r {
                        tracing::error!(?e, "Failed to save screenshot");
                    } else {
                        tracing::info!(count, "Screenshot saved.");
                    }
                }
            }));
        }

        if let Some(vtl2_vsock_path) = vtl2_vsock_path {
            let mut timer = PolledTimer::new(driver);
            let driver2 = driver.clone();
            let log_source = log_source.clone();
            tasks.push(driver.spawn("petri-watchdog-inspect-vtl2", async move {
                timer.sleep(TIMER_DURATION).await;
                tracing::warn!(
                    "Test has been running for almost {TIMEOUT_DURATION_MINUTES} minutes, saving openhcl inspect details."
                );

                let diag_client =
                     DiagClient::from_hybrid_vsock(driver2, &vtl2_vsock_path);

                let output = match diag_client.inspect("", None, None).await {
                    Err(e) => {
                        tracing::error!(?e, "Failed to inspect vtl2");
                        return;
                    }
                    Ok(output) => output,
                };

                let formatted_output = format!("{output:#}");
                if let Err(e) = log_source.write_attachment("timeout_openhcl_inspect.log", formatted_output) {
                    tracing::error!(?e, "Failed to save ohcldiag-dev inspect log");
                    return;
                }

                tracing::info!("Watchdog OpenHCL inspect task finished.");
            }));
        }

        Ok(tasks)
    }

    async fn openvmm_host(
        resources: &mut PetriVmResourcesOpenVmm,
        mesh: &Mesh,
        log_file: PetriLogFile,
    ) -> anyhow::Result<WorkerHost> {
        // Copy the child's stderr to this process's, since internally this is
        // wrapped by the test harness.
        let (stderr_read, stderr_write) = pal::pipe_pair()?;
        let task = resources.driver.spawn(
            "serial log",
            crate::log_stream(
                log_file,
                PolledPipe::new(&resources.driver, stderr_read)
                    .context("failed to create polled pipe")?,
            ),
        );
        resources.log_stream_tasks.push(task);

        let (host, runner) = mesh_worker::worker_host();
        mesh.launch_host(
            ProcessConfig::new("vmm")
                .process_name(&resources.openvmm_path)
                .stderr(Some(stderr_write)),
            hvlite_defs::entrypoint::MeshHostParams { runner },
        )
        .await?;
        Ok(host)
    }
}