pci_bus/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Generic PCI Bus infrastructure.
//!
//! [`GenericPciBus`] is a [`ChipsetDevice`] that implements a chipset and
//! architecture agnostic PCI bus.
//!
//! [`GenericPciBus`] can be configured to support various spec-compliant PCI
//! configuration space access mechanisms, such as legacy port-io based
//! configuration space access, ECAM (Enhanced Configuration Access Mechanism),
//! etc...
//!
//! Incoming config space accesses are then routed to connected
//! [`GenericPciBusDevice`] devices.
#![warn(missing_docs)]
use bitfield_struct::bitfield;
use chipset_device::io::deferred::defer_read;
use chipset_device::io::deferred::defer_write;
use chipset_device::io::deferred::DeferredRead;
use chipset_device::io::deferred::DeferredToken;
use chipset_device::io::deferred::DeferredWrite;
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::pio::ControlPortIoIntercept;
use chipset_device::pio::PortIoIntercept;
use chipset_device::pio::RegisterPortIoIntercept;
use chipset_device::poll_device::PollDevice;
use chipset_device::ChipsetDevice;
use inspect::Inspect;
use inspect::InspectMut;
use std::collections::BTreeMap;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;
use vmcore::device_state::ChangeDeviceState;
use zerocopy::AsBytes;
use zerocopy::FromZeroes;
/// Standard x86 IO ports associated with PCI
#[expect(missing_docs)] // self explanatory constants
pub mod standard_x86_io_ports {
pub const ADDR_START: u16 = 0xCF8;
pub const ADDR_END: u16 = 0xCFB;
pub const DATA_START: u16 = 0xCFC;
pub const DATA_END: u16 = 0xCFF;
}
/// An abstract interface for a PCI device accessed via the [`GenericPciBus`].
///
/// This trait is nearly identical to [`chipset_device::pci::PciConfigSpace`],
/// except for the fact that the return values are wrapped in an `Option`, where
/// `None` indicates that the backing device is no longer responding to
/// accesses.
///
/// e.g: a GenericPciBusDevice backed by a `Weak` pointer to a device could get
/// invalidated, in which case, these APIs would return `None`.
///
/// This trait decouples the PCI bus implementation from any concrete
/// `ChipsetDevice` ownership model being employed by upper-level code (i.e:
/// Arc/Weak + Mutex vs. Channels, etc...).
///
/// This is also the reason why the read/write methods are fallible: the PCI bus
/// should be resilient to backing devices unexpectedly going offline.
pub trait GenericPciBusDevice: 'static + Send {
/// Dispatch a PCI config space read to the device with the given address.
fn pci_cfg_read(&mut self, offset: u16, value: &mut u32) -> Option<IoResult>;
/// Dispatch a PCI config space write to the device with the given address.
fn pci_cfg_write(&mut self, offset: u16, value: u32) -> Option<IoResult>;
}
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Inspect)]
#[inspect(display)]
struct PciAddr {
bus: u8,
device: u8,
function: u8,
}
impl std::fmt::Display for PciAddr {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// Use standard-ish BDF notation (bb:dd.f).
write!(
f,
"{:02x}:{:02x}.{:x}",
self.bus, self.device, self.function
)
}
}
#[derive(Inspect)]
struct GenericPciBusState {
pio_addr_reg: AddressRegister,
}
// This type is effectively two hand-rolled state machines combined into one, as
// only one action can be taking place at a time.
//
// When a read is issued and deferred that results in a `DeferredAction::Read`,
// which will then be processed asynchronously.
//
// When a write is issued, if the write is undersized, we must first read the
// existing value on alignment before combining that with the new value and
// writing it. That read could be deferred, which will result in a
// `DeferredAction::ReadForWrite`. If the write after this read is deferred
// it will result in a `DeferredAction::Write`.
//
// If a fully sized write is issued and gets deferred, that does not result in a
// `DeferredAction::Write`. Instead it is simply returned up the stack to let our
// caller handle it, as we don't need to perform any extra work after completion.
#[derive(Inspect)]
#[inspect(tag = "kind")]
enum DeferredAction {
Read {
#[inspect(skip)]
deferred_device_read: DeferredToken,
#[inspect(skip)]
bus_read: DeferredRead,
read_len: usize,
io_port: u16,
address: PciAddr,
},
ReadForWrite {
#[inspect(skip)]
deferred_device_read: DeferredToken,
#[inspect(skip)]
bus_write: DeferredWrite,
write_len: usize,
io_port: u16,
new_value: u32,
address: PciAddr,
},
Write {
#[inspect(skip)]
deferred_device_write: DeferredToken,
#[inspect(skip)]
bus_write: DeferredWrite,
value: u32,
address: PciAddr,
},
}
/// A generic PCI bus.
#[derive(InspectMut)]
pub struct GenericPciBus {
// Runtime glue
pio_addr: Box<dyn ControlPortIoIntercept>,
pio_data: Box<dyn ControlPortIoIntercept>,
#[inspect(with = "|x| inspect::iter_by_key(x).map_value(|(name, _)| name)")]
pci_devices: BTreeMap<PciAddr, (Arc<str>, Box<dyn GenericPciBusDevice>)>,
// Async bookkeeping
#[inspect(with = "|x| x.is_some()")]
waker: Option<std::task::Waker>,
deferred_action: Option<DeferredAction>,
// Volatile state
state: GenericPciBusState,
}
impl GenericPciBus {
/// Create a new [`GenericPciBus`] with the specified (4-byte) IO ports.
pub fn new(
register_pio: &mut dyn RegisterPortIoIntercept,
pio_addr: u16,
pio_data: u16,
) -> GenericPciBus {
let mut addr_control = register_pio.new_io_region("addr", 4);
let mut data_control = register_pio.new_io_region("data", 4);
addr_control.map(pio_addr);
data_control.map(pio_data);
GenericPciBus {
pio_addr: addr_control,
pio_data: data_control,
pci_devices: BTreeMap::new(),
waker: None,
deferred_action: None,
state: GenericPciBusState {
pio_addr_reg: AddressRegister::new(),
},
}
}
/// Try to add a PCI device, returning (device, existing_device_name) if the
/// slot is already occupied.
pub fn add_pci_device<D: GenericPciBusDevice>(
&mut self,
bus: u8,
device: u8,
function: u8,
name: impl AsRef<str>,
dev: D,
) -> Result<(), (D, Arc<str>)> {
let key = PciAddr {
bus,
device,
function,
};
if let Some((name, _)) = self.pci_devices.get(&key) {
return Err((dev, name.clone()));
}
self.pci_devices
.insert(key, (name.as_ref().into(), Box::new(dev)));
Ok(())
}
/// Handle a read from the ADDR register
fn handle_addr_read(&self, value: &mut u32) -> IoResult {
*value = self.state.pio_addr_reg.0;
IoResult::Ok
}
/// Handle a write to the ADDR register
fn handle_addr_write(&mut self, addr: u32) -> IoResult {
let addr_fixup = {
let mut addr = AddressRegister(addr);
addr.fixup();
addr
};
self.state.pio_addr_reg = addr_fixup;
IoResult::Ok
}
/// Handle a read from the DATA register
fn handle_data_read(&mut self, value: &mut u32) -> IoResult {
tracing::trace!(%self.state.pio_addr_reg, "data read");
if !self.state.pio_addr_reg.enabled() {
tracelimit::warn_ratelimited!("addr enable bit is set to disabled");
*value = !0;
return IoResult::Ok;
}
let address = self.state.pio_addr_reg.address();
match self.pci_devices.get_mut(&address) {
Some((name, device)) => {
let offset = self.state.pio_addr_reg.register().into();
let res = device.pci_cfg_read(offset, value);
if let Some(result) = res {
tracing::trace!(
device = &**name,
%address,
offset,
value,
"cfg space read"
);
result
} else {
// TODO: should probably unregister from bus?
// but then again, shouldn't the device do that as part of
// its destructor?
tracelimit::warn_ratelimited!(
device = &**name,
%address,
offset,
"cfg space read failed, device went away"
);
*value = !0;
IoResult::Ok
}
}
None => {
tracing::trace!(%address, "no device found - returning F's");
*value = !0;
IoResult::Ok
}
}
}
/// Handler a write to the DATA register
fn handle_data_write(&mut self, data: u32) -> IoResult {
tracing::trace!(%self.state.pio_addr_reg, "data write");
if !self.state.pio_addr_reg.enabled() {
tracelimit::warn_ratelimited!("addr enable bit is set to disabled");
return IoResult::Ok;
}
let address = self.state.pio_addr_reg.address();
match self.pci_devices.get_mut(&address) {
Some((name, device)) => {
let offset = self.state.pio_addr_reg.register().into();
let res = device.pci_cfg_write(offset, data);
if let Some(result) = res {
tracing::trace!(
device = &**name,
%address,
offset,
data,
"cfg space write"
);
result
} else {
// TODO: should probably unregister from bus?
// but then again, shouldn't the device do that as part of
// its destructor?
tracelimit::warn_ratelimited!(
device = &**name,
%address,
offset,
"cfg space write failed, device went away"
);
IoResult::Ok
}
}
None => {
tracing::debug!(%address, "no device found");
IoResult::Ok
}
}
}
fn trace_error(&self, e: IoError, operation: &'static str) {
let error = match e {
IoError::InvalidRegister => "offset not supported",
IoError::InvalidAccessSize => "invalid access size",
IoError::UnalignedAccess => "unaligned access",
};
tracelimit::warn_ratelimited!(
address = %self.state.pio_addr_reg.address(),
"pci config space {} operation error: {}",
operation,
error
);
}
fn trace_recv_error(&self, e: mesh::RecvError, operation: &'static str) {
tracelimit::warn_ratelimited!(
address = %self.state.pio_addr_reg.address(),
"pci config space {} operation recv error: {:?}",
operation,
e,
);
}
}
impl ChangeDeviceState for GenericPciBus {
fn start(&mut self) {}
async fn stop(&mut self) {}
async fn reset(&mut self) {
self.state.pio_addr_reg = AddressRegister::new();
}
}
impl ChipsetDevice for GenericPciBus {
fn supports_pio(&mut self) -> Option<&mut dyn PortIoIntercept> {
Some(self)
}
fn supports_poll_device(&mut self) -> Option<&mut dyn PollDevice> {
Some(self)
}
}
fn shift_read_value(io_port: u16, len: usize, value: u32) -> u32 {
let shift = (io_port & 0x3) * 8;
match len {
4 => value,
2 => value >> shift & 0xFFFF,
1 => value >> shift & 0xFF,
_ => unreachable!(),
}
}
fn combine_old_new_values(io_port: u16, old_value: u32, new_value: u32, len: usize) -> u32 {
let shift = (io_port & 0x3) * 8;
let mask = (1 << (len * 8)) - 1;
(old_value & !(mask << shift)) | (new_value << shift)
}
impl PortIoIntercept for GenericPciBus {
fn io_read(&mut self, io_port: u16, data: &mut [u8]) -> IoResult {
if !matches!(data.len(), 1 | 2 | 4) {
return IoResult::Err(IoError::InvalidAccessSize);
}
if !(data.len() == 4 && io_port & 3 == 0
|| data.len() == 2 && io_port & 1 == 0
|| data.len() == 1)
{
return IoResult::Err(IoError::UnalignedAccess);
}
let mut value = 0;
let res = match io_port {
_ if self.pio_addr.offset_of(io_port).is_some() => self.handle_addr_read(&mut value),
_ if self.pio_data.offset_of(io_port).is_some() => self.handle_data_read(&mut value),
_ => {
return IoResult::Err(IoError::InvalidRegister);
}
};
tracing::trace!(?io_port, ?res, ?data, "io port read");
match res {
IoResult::Ok => {
let value = shift_read_value(io_port, data.len(), value);
data.copy_from_slice(&value.as_bytes()[..data.len()]);
IoResult::Ok
}
IoResult::Err(e) => {
self.trace_error(e, "read");
// Regardless of the pci error that occurred we return all zeros.
// This is technically device-specific behavior, but it's what all
// hyper-v devices do and it's worked for us so far.
data.zero();
IoResult::Ok
}
IoResult::Defer(deferred_device_read) => {
let (bus_read, bus_token) = defer_read();
assert!(self.deferred_action.is_none());
self.deferred_action = Some(DeferredAction::Read {
deferred_device_read,
bus_read,
read_len: data.len(),
io_port,
address: self.state.pio_addr_reg.address(),
});
if let Some(waker) = self.waker.take() {
waker.wake();
}
IoResult::Defer(bus_token)
}
}
}
fn io_write(&mut self, io_port: u16, data: &[u8]) -> IoResult {
if !matches!(data.len(), 1 | 2 | 4) {
return IoResult::Err(IoError::InvalidAccessSize);
}
let new_value = {
let mut temp: u32 = 0;
temp.as_bytes_mut()[..data.len()].copy_from_slice(data);
temp
};
tracing::trace!(?io_port, data = ?new_value, "io port write");
match io_port {
_ if self.pio_addr.offset_of(io_port).is_some() => {
// In theory, only 4-byte accesses are valid here, but
// RedHat Linux modifies the bottom byte of the PCI
// configuration address by using a 1-byte access
let v = if data.len() == 4 {
new_value
} else {
let mut old_value = 0;
self.handle_addr_read(&mut old_value).unwrap();
match data.len() {
2 => (old_value & 0xFFFF0000) | (new_value & 0xFFFF),
1 => (old_value & 0xFFFFFF00) | (new_value & 0xFF),
_ => unreachable!(),
}
};
self.handle_addr_write(v)
}
_ if self.pio_data.offset_of(io_port).is_some() => {
let merged_value = if data.len() == 4 {
new_value
} else {
// If the access isn't a double word, read in the old data
// to form a full word.
//
// Note that this isn't *really* correct, because reading
// bits may have a side-effect. Also, writing to bits that
// weren't actually written to may have side-effects...
//
// However, this technique appears to work fine for
// everything we've encountered so far ¯\_(ツ)_/¯
let mut old_value = 0;
match self.handle_data_read(&mut old_value) {
IoResult::Ok => {
combine_old_new_values(io_port, old_value, new_value, data.len())
}
IoResult::Err(e) => {
self.trace_error(e, "read for undersized write");
// Regardless of the pci error that occurred, we return all zeros.
// This is technically device-specific behavior, but it's what all
// hyper-v devices do and it's worked for us so far.
0
}
IoResult::Defer(deferred_device_read) => {
let (bus_write, bus_token) = defer_write();
assert!(self.deferred_action.is_none());
self.deferred_action = Some(DeferredAction::ReadForWrite {
deferred_device_read,
bus_write,
write_len: data.len(),
io_port,
new_value,
address: self.state.pio_addr_reg.address(),
});
if let Some(waker) = self.waker.take() {
waker.wake();
}
return IoResult::Defer(bus_token);
}
}
};
let write_result = self.handle_data_write(merged_value);
match write_result {
IoResult::Err(e) => {
self.trace_error(e, "write");
IoResult::Ok
}
IoResult::Ok | IoResult::Defer(_) => {
// If the write was successful we're all set.
// If the write is deferred we have no extra work to do after
// it resolves, unlike with read, so we can just return it and
// let the motherboard poll.
write_result
}
}
}
_ => IoResult::Err(IoError::InvalidRegister),
}
}
}
impl PollDevice for GenericPciBus {
fn poll_device(&mut self, cx: &mut Context<'_>) {
self.waker = Some(cx.waker().clone());
if let Some(action) = self.deferred_action.take() {
match action {
DeferredAction::Read {
mut deferred_device_read,
bus_read,
read_len,
io_port,
address,
} => {
let mut buf = 0;
if let Poll::Ready(res) = deferred_device_read.poll_read(cx, buf.as_bytes_mut())
{
let value = match res {
Ok(()) => buf,
Err(e) => {
self.trace_recv_error(e, "deferred read");
0
}
};
let value = shift_read_value(io_port, read_len, value);
bus_read.complete(&value.as_bytes()[..read_len]);
} else {
self.deferred_action = Some(DeferredAction::Read {
deferred_device_read,
bus_read,
read_len,
io_port,
address,
});
}
}
DeferredAction::ReadForWrite {
mut deferred_device_read,
bus_write,
write_len,
io_port,
new_value,
address,
} => {
let mut buf = 0;
if let Poll::Ready(res) = deferred_device_read.poll_read(cx, buf.as_bytes_mut())
{
let old_value = match res {
Ok(()) => buf,
Err(e) => {
self.trace_recv_error(e, "deferred read for write");
0
}
};
let merged_value =
combine_old_new_values(io_port, old_value, new_value, write_len);
match self.handle_data_write(merged_value) {
IoResult::Ok => {
bus_write.complete();
}
IoResult::Err(e) => {
self.trace_error(e, "write");
bus_write.complete();
}
IoResult::Defer(deferred_device_write) => {
self.deferred_action = Some(DeferredAction::Write {
deferred_device_write,
bus_write,
value: merged_value,
address,
});
cx.waker().wake_by_ref();
}
}
} else {
self.deferred_action = Some(DeferredAction::ReadForWrite {
deferred_device_read,
bus_write,
write_len,
io_port,
new_value,
address,
});
}
}
DeferredAction::Write {
mut deferred_device_write,
bus_write,
value,
address,
} => {
if let Poll::Ready(res) = deferred_device_write.poll_write(cx) {
match res {
Ok(()) => {}
Err(e) => {
self.trace_recv_error(e, "deferred write");
}
}
bus_write.complete();
} else {
self.deferred_action = Some(DeferredAction::Write {
deferred_device_write,
bus_write,
value,
address,
});
}
}
}
}
}
}
#[rustfmt::skip]
#[derive(Inspect)]
#[bitfield(u32)]
struct AddressRegister {
#[bits(8)] register: u8,
#[bits(3)] function: u8,
#[bits(5)] device: u8,
#[bits(8)] bus: u8,
#[bits(7)] reserved: u8,
#[bits(1)] enabled: bool,
}
impl AddressRegister {
fn address(&self) -> PciAddr {
PciAddr {
bus: self.bus(),
device: self.device(),
function: self.function(),
}
}
/// Set all reserved / zero bits to zero
fn fixup(&mut self) {
// the register accessed is always DWORD aligned
// (the low two bits are hard-coded to 0)
self.set_register(self.register() & !0b11);
self.set_reserved(0);
}
}
impl core::fmt::Display for AddressRegister {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "{}@{:04x}", self.address(), self.register())
}
}
mod save_restore {
use super::*;
use thiserror::Error;
use vmcore::save_restore::RestoreError;
use vmcore::save_restore::SaveError;
use vmcore::save_restore::SaveRestore;
mod state {
use mesh::payload::Protobuf;
use vmcore::save_restore::SavedStateRoot;
#[derive(Protobuf, SavedStateRoot)]
#[mesh(package = "pci.bus")]
pub struct SavedState {
#[mesh(1)]
pub pio_addr_reg: u32,
}
}
#[derive(Debug, Error)]
enum GenericPciBusRestoreError {
#[error("saved address contained non-zero reserved bits")]
AddressNonZeroReserved,
#[error("saved address contained non-dword aligned register bits")]
AddressNotDwordAligned,
}
impl SaveRestore for GenericPciBus {
type SavedState = state::SavedState;
fn save(&mut self) -> Result<Self::SavedState, SaveError> {
let GenericPciBusState { pio_addr_reg } = self.state;
let saved_state = state::SavedState {
pio_addr_reg: pio_addr_reg.into(),
};
Ok(saved_state)
}
fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
let state::SavedState { pio_addr_reg } = state;
self.state = GenericPciBusState {
pio_addr_reg: pio_addr_reg.into(),
};
// saved state sanity checks
{
if self.state.pio_addr_reg.reserved() != 0 {
return Err(RestoreError::InvalidSavedState(
GenericPciBusRestoreError::AddressNonZeroReserved.into(),
));
}
if self.state.pio_addr_reg.register() & 0b11 != 0 {
return Err(RestoreError::InvalidSavedState(
GenericPciBusRestoreError::AddressNotDwordAligned.into(),
));
}
}
Ok(())
}
}
}