pci_bus/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Generic PCI Bus infrastructure.
//!
//! [`GenericPciBus`] is a [`ChipsetDevice`] that implements a chipset and
//! architecture agnostic PCI bus.
//!
//! [`GenericPciBus`] can be configured to support various spec-compliant PCI
//! configuration space access mechanisms, such as legacy port-io based
//! configuration space access, ECAM (Enhanced Configuration Access Mechanism),
//! etc...
//!
//! Incoming config space accesses are then routed to connected
//! [`GenericPciBusDevice`] devices.

#![warn(missing_docs)]

use bitfield_struct::bitfield;
use chipset_device::io::deferred::defer_read;
use chipset_device::io::deferred::defer_write;
use chipset_device::io::deferred::DeferredRead;
use chipset_device::io::deferred::DeferredToken;
use chipset_device::io::deferred::DeferredWrite;
use chipset_device::io::IoError;
use chipset_device::io::IoResult;
use chipset_device::pio::ControlPortIoIntercept;
use chipset_device::pio::PortIoIntercept;
use chipset_device::pio::RegisterPortIoIntercept;
use chipset_device::poll_device::PollDevice;
use chipset_device::ChipsetDevice;
use inspect::Inspect;
use inspect::InspectMut;
use std::collections::BTreeMap;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;
use vmcore::device_state::ChangeDeviceState;
use zerocopy::AsBytes;
use zerocopy::FromZeroes;

/// Standard x86 IO ports associated with PCI
#[expect(missing_docs)] // self explanatory constants
pub mod standard_x86_io_ports {
    pub const ADDR_START: u16 = 0xCF8;
    pub const ADDR_END: u16 = 0xCFB;

    pub const DATA_START: u16 = 0xCFC;
    pub const DATA_END: u16 = 0xCFF;
}

/// An abstract interface for a PCI device accessed via the [`GenericPciBus`].
///
/// This trait is nearly identical to [`chipset_device::pci::PciConfigSpace`],
/// except for the fact that the return values are wrapped in an `Option`, where
/// `None` indicates that the backing device is no longer responding to
/// accesses.
///
/// e.g: a GenericPciBusDevice backed by a `Weak` pointer to a device could get
/// invalidated, in which case, these APIs would return `None`.
///
/// This trait decouples the PCI bus implementation from any concrete
/// `ChipsetDevice` ownership model being employed by upper-level code (i.e:
/// Arc/Weak + Mutex vs. Channels, etc...).
///
/// This is also the reason why the read/write methods are fallible: the PCI bus
/// should be resilient to backing devices unexpectedly going offline.
pub trait GenericPciBusDevice: 'static + Send {
    /// Dispatch a PCI config space read to the device with the given address.
    fn pci_cfg_read(&mut self, offset: u16, value: &mut u32) -> Option<IoResult>;

    /// Dispatch a PCI config space write to the device with the given address.
    fn pci_cfg_write(&mut self, offset: u16, value: u32) -> Option<IoResult>;
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Inspect)]
#[inspect(display)]
struct PciAddr {
    bus: u8,
    device: u8,
    function: u8,
}

impl std::fmt::Display for PciAddr {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // Use standard-ish BDF notation (bb:dd.f).
        write!(
            f,
            "{:02x}:{:02x}.{:x}",
            self.bus, self.device, self.function
        )
    }
}

#[derive(Inspect)]
struct GenericPciBusState {
    pio_addr_reg: AddressRegister,
}

// This type is effectively two hand-rolled state machines combined into one, as
// only one action can be taking place at a time.
//
// When a read is issued and deferred that results in a `DeferredAction::Read`,
// which will then be processed asynchronously.
//
// When a write is issued, if the write is undersized, we must first read the
// existing value on alignment before combining that with the  new value and
// writing it. That read could be deferred, which will result in a
// `DeferredAction::ReadForWrite`. If the write after this read is deferred
// it will result in a `DeferredAction::Write`.
//
// If a fully sized write is issued and gets deferred, that does not result in a
// `DeferredAction::Write`. Instead it is simply returned up the stack to let our
// caller handle it, as we don't need to perform any extra work after completion.
#[derive(Inspect)]
#[inspect(tag = "kind")]
enum DeferredAction {
    Read {
        #[inspect(skip)]
        deferred_device_read: DeferredToken,
        #[inspect(skip)]
        bus_read: DeferredRead,
        read_len: usize,
        io_port: u16,
        address: PciAddr,
    },
    ReadForWrite {
        #[inspect(skip)]
        deferred_device_read: DeferredToken,
        #[inspect(skip)]
        bus_write: DeferredWrite,
        write_len: usize,
        io_port: u16,
        new_value: u32,
        address: PciAddr,
    },
    Write {
        #[inspect(skip)]
        deferred_device_write: DeferredToken,
        #[inspect(skip)]
        bus_write: DeferredWrite,
        value: u32,
        address: PciAddr,
    },
}

/// A generic PCI bus.
#[derive(InspectMut)]
pub struct GenericPciBus {
    // Runtime glue
    pio_addr: Box<dyn ControlPortIoIntercept>,
    pio_data: Box<dyn ControlPortIoIntercept>,
    #[inspect(with = "|x| inspect::iter_by_key(x).map_value(|(name, _)| name)")]
    pci_devices: BTreeMap<PciAddr, (Arc<str>, Box<dyn GenericPciBusDevice>)>,

    // Async bookkeeping
    #[inspect(with = "|x| x.is_some()")]
    waker: Option<std::task::Waker>,
    deferred_action: Option<DeferredAction>,

    // Volatile state
    state: GenericPciBusState,
}

impl GenericPciBus {
    /// Create a new [`GenericPciBus`] with the specified (4-byte) IO ports.
    pub fn new(
        register_pio: &mut dyn RegisterPortIoIntercept,
        pio_addr: u16,
        pio_data: u16,
    ) -> GenericPciBus {
        let mut addr_control = register_pio.new_io_region("addr", 4);
        let mut data_control = register_pio.new_io_region("data", 4);
        addr_control.map(pio_addr);
        data_control.map(pio_data);
        GenericPciBus {
            pio_addr: addr_control,
            pio_data: data_control,
            pci_devices: BTreeMap::new(),

            waker: None,
            deferred_action: None,

            state: GenericPciBusState {
                pio_addr_reg: AddressRegister::new(),
            },
        }
    }

    /// Try to add a PCI device, returning (device, existing_device_name) if the
    /// slot is already occupied.
    pub fn add_pci_device<D: GenericPciBusDevice>(
        &mut self,
        bus: u8,
        device: u8,
        function: u8,
        name: impl AsRef<str>,
        dev: D,
    ) -> Result<(), (D, Arc<str>)> {
        let key = PciAddr {
            bus,
            device,
            function,
        };

        if let Some((name, _)) = self.pci_devices.get(&key) {
            return Err((dev, name.clone()));
        }

        self.pci_devices
            .insert(key, (name.as_ref().into(), Box::new(dev)));
        Ok(())
    }

    /// Handle a read from the ADDR register
    fn handle_addr_read(&self, value: &mut u32) -> IoResult {
        *value = self.state.pio_addr_reg.0;
        IoResult::Ok
    }

    /// Handle a write to the ADDR register
    fn handle_addr_write(&mut self, addr: u32) -> IoResult {
        let addr_fixup = {
            let mut addr = AddressRegister(addr);
            addr.fixup();
            addr
        };

        self.state.pio_addr_reg = addr_fixup;
        IoResult::Ok
    }

    /// Handle a read from the DATA register
    fn handle_data_read(&mut self, value: &mut u32) -> IoResult {
        tracing::trace!(%self.state.pio_addr_reg, "data read");

        if !self.state.pio_addr_reg.enabled() {
            tracelimit::warn_ratelimited!("addr enable bit is set to disabled");
            *value = !0;
            return IoResult::Ok;
        }

        let address = self.state.pio_addr_reg.address();

        match self.pci_devices.get_mut(&address) {
            Some((name, device)) => {
                let offset = self.state.pio_addr_reg.register().into();
                let res = device.pci_cfg_read(offset, value);
                if let Some(result) = res {
                    tracing::trace!(
                        device = &**name,
                        %address,
                        offset,
                        value,
                        "cfg space read"
                    );
                    result
                } else {
                    // TODO: should probably unregister from bus?
                    // but then again, shouldn't the device do that as part of
                    // its destructor?
                    tracelimit::warn_ratelimited!(
                        device = &**name,
                        %address,
                        offset,
                        "cfg space read failed, device went away"
                    );
                    *value = !0;
                    IoResult::Ok
                }
            }
            None => {
                tracing::trace!(%address, "no device found - returning F's");
                *value = !0;
                IoResult::Ok
            }
        }
    }

    /// Handler a write to the DATA register
    fn handle_data_write(&mut self, data: u32) -> IoResult {
        tracing::trace!(%self.state.pio_addr_reg, "data write");

        if !self.state.pio_addr_reg.enabled() {
            tracelimit::warn_ratelimited!("addr enable bit is set to disabled");
            return IoResult::Ok;
        }

        let address = self.state.pio_addr_reg.address();
        match self.pci_devices.get_mut(&address) {
            Some((name, device)) => {
                let offset = self.state.pio_addr_reg.register().into();
                let res = device.pci_cfg_write(offset, data);
                if let Some(result) = res {
                    tracing::trace!(
                        device = &**name,
                        %address,
                        offset,
                        data,
                        "cfg space write"
                    );
                    result
                } else {
                    // TODO: should probably unregister from bus?
                    // but then again, shouldn't the device do that as part of
                    // its destructor?
                    tracelimit::warn_ratelimited!(
                        device = &**name,
                        %address,
                        offset,
                        "cfg space write failed, device went away"
                    );
                    IoResult::Ok
                }
            }
            None => {
                tracing::debug!(%address, "no device found");
                IoResult::Ok
            }
        }
    }

    fn trace_error(&self, e: IoError, operation: &'static str) {
        let error = match e {
            IoError::InvalidRegister => "offset not supported",
            IoError::InvalidAccessSize => "invalid access size",
            IoError::UnalignedAccess => "unaligned access",
        };
        tracelimit::warn_ratelimited!(
            address = %self.state.pio_addr_reg.address(),
            "pci config space {} operation error: {}",
            operation,
            error
        );
    }

    fn trace_recv_error(&self, e: mesh::RecvError, operation: &'static str) {
        tracelimit::warn_ratelimited!(
            address = %self.state.pio_addr_reg.address(),
            "pci config space {} operation recv error: {:?}",
            operation,
            e,
        );
    }
}

impl ChangeDeviceState for GenericPciBus {
    fn start(&mut self) {}

    async fn stop(&mut self) {}

    async fn reset(&mut self) {
        self.state.pio_addr_reg = AddressRegister::new();
    }
}

impl ChipsetDevice for GenericPciBus {
    fn supports_pio(&mut self) -> Option<&mut dyn PortIoIntercept> {
        Some(self)
    }

    fn supports_poll_device(&mut self) -> Option<&mut dyn PollDevice> {
        Some(self)
    }
}

fn shift_read_value(io_port: u16, len: usize, value: u32) -> u32 {
    let shift = (io_port & 0x3) * 8;
    match len {
        4 => value,
        2 => value >> shift & 0xFFFF,
        1 => value >> shift & 0xFF,
        _ => unreachable!(),
    }
}

fn combine_old_new_values(io_port: u16, old_value: u32, new_value: u32, len: usize) -> u32 {
    let shift = (io_port & 0x3) * 8;
    let mask = (1 << (len * 8)) - 1;
    (old_value & !(mask << shift)) | (new_value << shift)
}

impl PortIoIntercept for GenericPciBus {
    fn io_read(&mut self, io_port: u16, data: &mut [u8]) -> IoResult {
        if !matches!(data.len(), 1 | 2 | 4) {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        if !(data.len() == 4 && io_port & 3 == 0
            || data.len() == 2 && io_port & 1 == 0
            || data.len() == 1)
        {
            return IoResult::Err(IoError::UnalignedAccess);
        }

        let mut value = 0;
        let res = match io_port {
            _ if self.pio_addr.offset_of(io_port).is_some() => self.handle_addr_read(&mut value),
            _ if self.pio_data.offset_of(io_port).is_some() => self.handle_data_read(&mut value),
            _ => {
                return IoResult::Err(IoError::InvalidRegister);
            }
        };

        tracing::trace!(?io_port, ?res, ?data, "io port read");

        match res {
            IoResult::Ok => {
                let value = shift_read_value(io_port, data.len(), value);
                data.copy_from_slice(&value.as_bytes()[..data.len()]);
                IoResult::Ok
            }
            IoResult::Err(e) => {
                self.trace_error(e, "read");
                // Regardless of the pci error that occurred we return all zeros.
                // This is technically device-specific behavior, but it's what all
                // hyper-v devices do and it's worked for us so far.
                data.zero();
                IoResult::Ok
            }
            IoResult::Defer(deferred_device_read) => {
                let (bus_read, bus_token) = defer_read();
                assert!(self.deferred_action.is_none());
                self.deferred_action = Some(DeferredAction::Read {
                    deferred_device_read,
                    bus_read,
                    read_len: data.len(),
                    io_port,
                    address: self.state.pio_addr_reg.address(),
                });
                if let Some(waker) = self.waker.take() {
                    waker.wake();
                }
                IoResult::Defer(bus_token)
            }
        }
    }

    fn io_write(&mut self, io_port: u16, data: &[u8]) -> IoResult {
        if !matches!(data.len(), 1 | 2 | 4) {
            return IoResult::Err(IoError::InvalidAccessSize);
        }

        let new_value = {
            let mut temp: u32 = 0;
            temp.as_bytes_mut()[..data.len()].copy_from_slice(data);
            temp
        };

        tracing::trace!(?io_port, data = ?new_value, "io port write");

        match io_port {
            _ if self.pio_addr.offset_of(io_port).is_some() => {
                // In theory, only 4-byte accesses are valid here, but
                // RedHat Linux modifies the bottom byte of the PCI
                // configuration address by using a 1-byte access
                let v = if data.len() == 4 {
                    new_value
                } else {
                    let mut old_value = 0;
                    self.handle_addr_read(&mut old_value).unwrap();
                    match data.len() {
                        2 => (old_value & 0xFFFF0000) | (new_value & 0xFFFF),
                        1 => (old_value & 0xFFFFFF00) | (new_value & 0xFF),
                        _ => unreachable!(),
                    }
                };

                self.handle_addr_write(v)
            }
            _ if self.pio_data.offset_of(io_port).is_some() => {
                let merged_value = if data.len() == 4 {
                    new_value
                } else {
                    // If the access isn't a double word, read in the old data
                    // to form a full word.
                    //
                    // Note that this isn't *really* correct, because reading
                    // bits may have a side-effect. Also, writing to bits that
                    // weren't actually written to may have side-effects...
                    //
                    // However, this technique appears to work fine for
                    // everything we've encountered so far ¯\_(ツ)_/¯
                    let mut old_value = 0;
                    match self.handle_data_read(&mut old_value) {
                        IoResult::Ok => {
                            combine_old_new_values(io_port, old_value, new_value, data.len())
                        }
                        IoResult::Err(e) => {
                            self.trace_error(e, "read for undersized write");
                            // Regardless of the pci error that occurred, we return all zeros.
                            // This is technically device-specific behavior, but it's what all
                            // hyper-v devices do and it's worked for us so far.
                            0
                        }
                        IoResult::Defer(deferred_device_read) => {
                            let (bus_write, bus_token) = defer_write();
                            assert!(self.deferred_action.is_none());
                            self.deferred_action = Some(DeferredAction::ReadForWrite {
                                deferred_device_read,
                                bus_write,
                                write_len: data.len(),
                                io_port,
                                new_value,
                                address: self.state.pio_addr_reg.address(),
                            });
                            if let Some(waker) = self.waker.take() {
                                waker.wake();
                            }
                            return IoResult::Defer(bus_token);
                        }
                    }
                };

                let write_result = self.handle_data_write(merged_value);
                match write_result {
                    IoResult::Err(e) => {
                        self.trace_error(e, "write");
                        IoResult::Ok
                    }
                    IoResult::Ok | IoResult::Defer(_) => {
                        // If the write was successful we're all set.
                        // If the write is deferred we have no extra work to do after
                        // it resolves, unlike with read, so we can just return it and
                        // let the motherboard poll.
                        write_result
                    }
                }
            }
            _ => IoResult::Err(IoError::InvalidRegister),
        }
    }
}

impl PollDevice for GenericPciBus {
    fn poll_device(&mut self, cx: &mut Context<'_>) {
        self.waker = Some(cx.waker().clone());
        if let Some(action) = self.deferred_action.take() {
            match action {
                DeferredAction::Read {
                    mut deferred_device_read,
                    bus_read,
                    read_len,
                    io_port,
                    address,
                } => {
                    let mut buf = 0;
                    if let Poll::Ready(res) = deferred_device_read.poll_read(cx, buf.as_bytes_mut())
                    {
                        let value = match res {
                            Ok(()) => buf,
                            Err(e) => {
                                self.trace_recv_error(e, "deferred read");
                                0
                            }
                        };
                        let value = shift_read_value(io_port, read_len, value);
                        bus_read.complete(&value.as_bytes()[..read_len]);
                    } else {
                        self.deferred_action = Some(DeferredAction::Read {
                            deferred_device_read,
                            bus_read,
                            read_len,
                            io_port,
                            address,
                        });
                    }
                }
                DeferredAction::ReadForWrite {
                    mut deferred_device_read,
                    bus_write,
                    write_len,
                    io_port,
                    new_value,
                    address,
                } => {
                    let mut buf = 0;
                    if let Poll::Ready(res) = deferred_device_read.poll_read(cx, buf.as_bytes_mut())
                    {
                        let old_value = match res {
                            Ok(()) => buf,
                            Err(e) => {
                                self.trace_recv_error(e, "deferred read for write");
                                0
                            }
                        };
                        let merged_value =
                            combine_old_new_values(io_port, old_value, new_value, write_len);
                        match self.handle_data_write(merged_value) {
                            IoResult::Ok => {
                                bus_write.complete();
                            }
                            IoResult::Err(e) => {
                                self.trace_error(e, "write");
                                bus_write.complete();
                            }
                            IoResult::Defer(deferred_device_write) => {
                                self.deferred_action = Some(DeferredAction::Write {
                                    deferred_device_write,
                                    bus_write,
                                    value: merged_value,
                                    address,
                                });
                                cx.waker().wake_by_ref();
                            }
                        }
                    } else {
                        self.deferred_action = Some(DeferredAction::ReadForWrite {
                            deferred_device_read,
                            bus_write,
                            write_len,
                            io_port,
                            new_value,
                            address,
                        });
                    }
                }
                DeferredAction::Write {
                    mut deferred_device_write,
                    bus_write,
                    value,
                    address,
                } => {
                    if let Poll::Ready(res) = deferred_device_write.poll_write(cx) {
                        match res {
                            Ok(()) => {}
                            Err(e) => {
                                self.trace_recv_error(e, "deferred write");
                            }
                        }
                        bus_write.complete();
                    } else {
                        self.deferred_action = Some(DeferredAction::Write {
                            deferred_device_write,
                            bus_write,
                            value,
                            address,
                        });
                    }
                }
            }
        }
    }
}

#[rustfmt::skip]
#[derive(Inspect)]
#[bitfield(u32)]
struct AddressRegister {
    #[bits(8)] register: u8,
    #[bits(3)] function: u8,
    #[bits(5)] device: u8,
    #[bits(8)] bus: u8,
    #[bits(7)] reserved: u8,
    #[bits(1)] enabled: bool,
}

impl AddressRegister {
    fn address(&self) -> PciAddr {
        PciAddr {
            bus: self.bus(),
            device: self.device(),
            function: self.function(),
        }
    }

    /// Set all reserved / zero bits to zero
    fn fixup(&mut self) {
        // the register accessed is always DWORD aligned
        // (the low two bits are hard-coded to 0)
        self.set_register(self.register() & !0b11);
        self.set_reserved(0);
    }
}

impl core::fmt::Display for AddressRegister {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}@{:04x}", self.address(), self.register())
    }
}

mod save_restore {
    use super::*;
    use thiserror::Error;
    use vmcore::save_restore::RestoreError;
    use vmcore::save_restore::SaveError;
    use vmcore::save_restore::SaveRestore;

    mod state {
        use mesh::payload::Protobuf;
        use vmcore::save_restore::SavedStateRoot;

        #[derive(Protobuf, SavedStateRoot)]
        #[mesh(package = "pci.bus")]
        pub struct SavedState {
            #[mesh(1)]
            pub pio_addr_reg: u32,
        }
    }

    #[derive(Debug, Error)]
    enum GenericPciBusRestoreError {
        #[error("saved address contained non-zero reserved bits")]
        AddressNonZeroReserved,
        #[error("saved address contained non-dword aligned register bits")]
        AddressNotDwordAligned,
    }

    impl SaveRestore for GenericPciBus {
        type SavedState = state::SavedState;

        fn save(&mut self) -> Result<Self::SavedState, SaveError> {
            let GenericPciBusState { pio_addr_reg } = self.state;

            let saved_state = state::SavedState {
                pio_addr_reg: pio_addr_reg.into(),
            };

            Ok(saved_state)
        }

        fn restore(&mut self, state: Self::SavedState) -> Result<(), RestoreError> {
            let state::SavedState { pio_addr_reg } = state;

            self.state = GenericPciBusState {
                pio_addr_reg: pio_addr_reg.into(),
            };

            // saved state sanity checks
            {
                if self.state.pio_addr_reg.reserved() != 0 {
                    return Err(RestoreError::InvalidSavedState(
                        GenericPciBusRestoreError::AddressNonZeroReserved.into(),
                    ));
                }

                if self.state.pio_addr_reg.register() & 0b11 != 0 {
                    return Err(RestoreError::InvalidSavedState(
                        GenericPciBusRestoreError::AddressNotDwordAligned.into(),
                    ));
                }
            }

            Ok(())
        }
    }
}