pal/unix/process/
linux.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Linux process spawning.

use super::Builder;
use super::Child;
use super::FdOp;
use super::SandboxFailureMode;
use crate::unix::errno;
use crate::unix::SyscallResult;
use caps::CapsHashSet;
use landlock::RulesetCreated;
use seccompiler::SeccompFilter;
use std::ffi::CStr;
use std::ffi::CString;
use std::io;
use std::os::unix::prelude::*;

struct CloneContext<'a> {
    executable: &'a CStr,
    argv: &'a [*const libc::c_char],
    envp: &'a [*const libc::c_char],
    result: Option<i32>,
    // TODO: refactor this to contain BorrowedFds
    fd_ops: &'a mut [(i32, FdOp)],
    sandbox_failure_mode: SandboxFailureMode,
    setsid: bool,
    controlling_terminal: Option<BorrowedFd<'a>>,
    uid: Option<libc::uid_t>,
    gid: Option<libc::uid_t>,
    permitted_capabilities: Option<CapsHashSet>,
    effective_capabilities: Option<CapsHashSet>,
    ambient_capabilities: Option<CapsHashSet>,
    inheritable_capabilities: Option<CapsHashSet>,
    bounding_capabilities: Option<CapsHashSet>,
    landlock_rules: Option<RulesetCreated>,
    seccomp_filter: Option<SeccompFilter>,
}

impl Builder<'_> {
    pub(super) fn spawn_internal(
        &self,
        envp: &[CString],
        fd_ops: &mut [(i32, FdOp)],
    ) -> io::Result<Child> {
        let mut landlock_rules = None;
        if let Some(lr) = &self.linux_builder.landlock_rules {
            landlock_rules = Some(lr.try_clone()?);
        }

        // Build the null-terminated arrays for exec.
        let argv = super::c_slice_to_pointers(&self.argv);
        let envp = super::c_slice_to_pointers(envp);

        let mut context = CloneContext {
            executable: &self.executable,
            argv: &argv,
            envp: &envp,
            result: None,
            fd_ops: &mut *fd_ops,
            sandbox_failure_mode: self.linux_builder.sandbox_failure_mode,
            setsid: self.linux_builder.setsid,
            controlling_terminal: self.linux_builder.controlling_terminal,
            uid: self.uid,
            gid: self.gid,
            permitted_capabilities: self.linux_builder.permitted_capabilities.clone(),
            effective_capabilities: self.linux_builder.effective_capabilities.clone(),
            inheritable_capabilities: self.linux_builder.inheritable_capabilities.clone(),
            ambient_capabilities: self.linux_builder.ambient_capabilities.clone(),
            bounding_capabilities: self.linux_builder.bounding_capabilities.clone(),
            landlock_rules,
            seccomp_filter: self.linux_builder.seccomp_filter.clone(),
        };

        // Use CLONE_VM and CLONE_VFORK so that the new process will share the
        // current address space and will block this thread until it either
        // exits or calls exec.
        //
        // Use CLONE_PIDFD to get an fd back to use for polling.
        let mut flags = self.linux_builder.clone_flags | libc::CLONE_PIDFD | libc::SIGCHLD;

        if self.linux_builder.vfork {
            flags |= libc::CLONE_VM | libc::CLONE_VFORK;
        }

        // SAFETY: sysconf has no safety requirements.
        let page_size = unsafe { libc::sysconf(libc::_SC_PAGESIZE) } as usize;

        // Common page sizes are 4KiB, 16KiB, and 64KiB. The stack size must be a multiple
        // of the page size.
        let stack_len: usize = std::cmp::max(16 * 1024, page_size);
        assert!(stack_len % page_size == 0);

        // Create a stack with one guard page.
        let stack_len = stack_len + page_size;
        // SAFETY: creating a new mapping, which has no safety requirements.
        let stack = unsafe {
            libc::mmap(
                std::ptr::null_mut(),
                stack_len,
                libc::PROT_READ | libc::PROT_WRITE,
                libc::MAP_PRIVATE | libc::MAP_ANONYMOUS,
                -1,
                0,
            )
        };
        if stack == libc::MAP_FAILED {
            return Err(errno().into());
        }
        let mmap_guard = ChildStackGuard(stack, stack_len);
        // SAFETY: The stack has been checked to be valid, and its length is more than one page.
        unsafe { libc::mprotect(stack, page_size, libc::PROT_NONE) }.syscall_result()?;
        let mut pidfd: libc::pid_t = -1;

        // SAFETY: The stack is valid for stack len, if the child goes off the
        // stack they'll hit our guard page, the flags include PIDFD so passing
        // pidfd is valid, and clone_cb takes a CloneContext pointer as its only
        // argument.
        let pid = unsafe {
            libc::clone(
                clone_cb,
                stack.add(stack_len),
                flags,
                std::ptr::from_mut(&mut context).cast(),
                &mut pidfd,
            )
        }
        .syscall_result()?;
        drop(mmap_guard);

        // SAFETY: We set the PIDFD flag, and clone returned successfully, so pidfd is now valid.
        let pidfd = unsafe { OwnedFd::from_raw_fd(pidfd) };
        let mut child = Child {
            pid,
            pidfd,
            status: None,
        };

        // This can only be done if we are vforking, without sharing another
        // type of status object we can't determine if the execve failed or
        // the process failed during early initialization.
        if self.linux_builder.vfork && context.result != Some(0) {
            // The new process failed without successfully calling execve. Reap
            // it and return the associated error code (which may come from
            // context or from the exit code).
            let status = child.wait().unwrap();
            let ec = context.result.unwrap_or_else(|| {
                status
                    .code()
                    .expect("child should not have failed with a signal")
            });
            return Err(io::Error::from_raw_os_error(ec));
        }

        Ok(child)
    }
}

struct ChildStackGuard(*mut libc::c_void, usize);

impl Drop for ChildStackGuard {
    fn drop(&mut self) {
        // SAFETY: We know the pointer is valid and the length is correct at
        // construction, and we know the child is not running anymore, so it's
        // safe to unmap the stack.
        unsafe { libc::munmap(self.0, self.1) }
            .syscall_result()
            .unwrap();
    }
}

/// Runs in the cloned process to set up the process environment and exec the
/// new binary.
///
/// This function must not use the heap or call any functions that might. It
/// also has only a small amount of stack space available. It should avoid using
/// OS functionality via the std crate and should use libc directly.
///
/// Returns the exit code for the new process. If this function does not update
/// context's result, then the exit code will be the Linux errno value
/// associated with the error.
//
// N.B. this should be unsafe but the libc crate neglected to mark the clone
// callback appropriately.
extern "C" fn clone_cb(context: *mut libc::c_void) -> libc::c_int {
    // SAFETY: Context is temporarily owned by this function, and we know
    // we were passed a valid pointer.
    let context = unsafe { &mut *(context.cast::<CloneContext<'_>>()) };

    if context.setsid {
        // SAFETY: setsid has no safety requirements.
        if unsafe { libc::setsid() } < 0 {
            return errno().0;
        }
    }

    if let Some(fd) = context.controlling_terminal {
        // SAFETY: fd is guaranteed to be valid.
        if unsafe { libc::ioctl(fd.as_raw_fd(), libc::TIOCSCTTY, 0) } < 0 {
            return errno().0;
        }
    }

    // Find the maximum newfd, needed below.
    let maxfd = context.fd_ops.iter().map(|(fd, _)| *fd).max();

    if let Some(maxfd) = maxfd {
        for (newfd, op) in &mut *context.fd_ops {
            match op {
                FdOp::Close => {}
                FdOp::Dup(oldfd) => {
                    // Ensure oldfd is above the maximum newfd. This is
                    // necessary to ensure that another operation does not close
                    // an oldfd targeted by this operation.
                    if oldfd != newfd && *oldfd < maxfd {
                        // SAFETY: fd is guaranteed to be valid
                        let new_oldfd =
                            unsafe { libc::fcntl(*oldfd, libc::F_DUPFD_CLOEXEC, maxfd) };
                        if new_oldfd < 0 {
                            return errno().0;
                        }
                        *oldfd = new_oldfd;
                    }
                }
            }
        }

        for (newfd, op) in &*context.fd_ops {
            match op {
                FdOp::Close => {
                    // SAFETY: fd is guaranteed to be valid
                    if unsafe { libc::close(*newfd) } < 0 {
                        return errno().0;
                    }
                }
                FdOp::Dup(oldfd) => {
                    if *newfd == *oldfd {
                        // SAFETY: fd is guaranteed to be valid
                        if unsafe {
                            libc::fcntl(
                                *oldfd,
                                libc::F_SETFD,
                                libc::fcntl(*oldfd, libc::F_GETFD) & !libc::FD_CLOEXEC,
                            )
                        } < 0
                        {
                            return errno().0;
                        }
                    } else {
                        // SAFETY: fds are guaranteed to be valid
                        if unsafe { libc::dup2(*oldfd, *newfd) } < 0 {
                            return errno().0;
                        }
                    }
                }
            }
        }
    }

    macro_rules! handle_sandbox_failure {
        ($m:expr, $r:expr) => {
            match context.sandbox_failure_mode {
                SandboxFailureMode::Silent => {}
                SandboxFailureMode::Warn => {
                    tracing::warn!($m);
                }
                SandboxFailureMode::Error => {
                    tracing::error!($m);
                    return $r;
                }
            }
        };
    }

    if let Some(landlock_rules) = context.landlock_rules.take() {
        if landlock_rules.restrict_self().is_err() {
            handle_sandbox_failure!("failed to apply landlock ruleset", libc::ENOTSUP);
        }
    }

    if let Some(gid) = context.gid {
        // SAFETY: setresgid has no safety requirements.
        if unsafe { libc::setresgid(gid, gid, gid) } < 0 {
            handle_sandbox_failure!("failed to change group id", libc::ENOTSUP);
        }
    }

    if let Some(uid) = context.uid {
        // SAFETY: setresuid has no safety requirements.
        if unsafe { libc::setresuid(uid, uid, uid) } < 0 {
            handle_sandbox_failure!("failed to change user id", libc::ENOTSUP);
        }
    }

    macro_rules! set_capabilities {
        ($t:expr, $v:ident) => {
            if let Some($v) = &context.$v {
                if caps::set(None, $t, &$v).is_err() {
                    handle_sandbox_failure!(
                        std::concat!("failed to apply ", stringify!($t), " capabilities"),
                        libc::ENOTSUP
                    );
                }
            }
        };
    }

    set_capabilities!(caps::CapSet::Bounding, bounding_capabilities);
    set_capabilities!(caps::CapSet::Permitted, permitted_capabilities);
    set_capabilities!(caps::CapSet::Ambient, ambient_capabilities);
    set_capabilities!(caps::CapSet::Inheritable, inheritable_capabilities);
    set_capabilities!(caps::CapSet::Effective, effective_capabilities);

    if let Some(seccomp_filter) = context.seccomp_filter.take() {
        if let Ok(bpf_program) = TryInto::<seccompiler::BpfProgram>::try_into(seccomp_filter) {
            if seccompiler::apply_filter(&bpf_program).is_err() {
                handle_sandbox_failure!("failed to apply seccomp profile", libc::ENOTSUP);
            }
        }
    }

    // Update the result indicating success in case execvpe does not return.
    context.result = Some(0);
    // N.B. This will only return on error.
    // SAFETY: Arguments in the context are valid CStrings, and the two arrays
    // are properly null terminated.
    unsafe {
        libc::execvpe(
            context.executable.as_ptr(),
            context.argv.as_ptr(),
            context.envp.as_ptr(),
        )
    };
    // Update the result with the failure code.
    context.result = Some(errno().0);
    255
}

impl AsFd for Child {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.pidfd.as_fd()
    }
}