pal/
headervec.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! This module implements the `HeaderVec` type for constructing dynamically
//! sized values that have a fixed size header and a variable sized element
//! type. This is a common pattern in IOCTL input buffers.

// UNSAFETY: Implementing a custom data structure that requires manual memory
// management and pointer manipulation.
#![expect(unsafe_code)]
#![allow(clippy::undocumented_unsafe_blocks)]

use std::alloc::Layout;
use std::alloc::{self};
use std::cmp;
use std::mem::MaybeUninit;
use std::ops::Deref;
use std::ops::DerefMut;
use std::ops::Index;
use std::ops::IndexMut;
use std::ptr::NonNull;
use std::slice::Iter;
use std::slice::IterMut;
use std::slice::SliceIndex;

/// Trait implemented by fixed-sized arrays that can be used as the element type
/// for HeaderVec. Once Rust supports const generics, this can be removed.
///
/// # Safety
///
/// Must only be implemented on fixed size arrays (i.e: `[T; N]`)
pub unsafe trait FixedArray {
    type Element: Copy;
    const COUNT: usize;
}

// SAFETY: Only implementing for fixed size arrays.
unsafe impl<T: Copy, const N: usize> FixedArray for [T; N] {
    type Element = T;
    const COUNT: usize = N;
}

#[repr(C)]
#[derive(Debug)]
struct Combined<T, U> {
    head: T,
    tail: MaybeUninit<U>,
}

#[derive(Debug)]
enum Data<T, U: FixedArray> {
    Fixed(Combined<T, U>),
    Alloc(NonNull<Combined<T, U>>, usize),
}

// SAFETY: Data essentially has non-thread-specific ownership of (T, [U]), so it
// is Send + Sync if T and U are Send + Sync.
unsafe impl<T, U: FixedArray> Send for Data<T, U>
where
    T: Send,
    U: Send,
{
}
// SAFETY: See above comment
unsafe impl<T, U: FixedArray> Sync for Data<T, U>
where
    T: Sync,
    U: Sync,
{
}

impl<T, U: FixedArray> Data<T, U> {
    fn head(&self) -> &T {
        match self {
            Data::Fixed(Combined { head, .. }) => head,
            Data::Alloc(p, _) => unsafe { &p.as_ref().head },
        }
    }

    fn head_mut(&mut self) -> &mut T {
        match self {
            Data::Fixed(Combined { head, .. }) => head,
            Data::Alloc(p, _) => unsafe { &mut p.as_mut().head },
        }
    }

    /// SAFETY: the caller must ensure that the first `len` elements have been
    /// initialized.
    unsafe fn tail(&self, len: usize) -> &[U::Element] {
        match self {
            Data::Fixed(Combined { tail, .. }) => {
                assert!(len <= U::COUNT || size_of::<U::Element>() == 0);
                unsafe { std::slice::from_raw_parts(tail.as_ptr().cast::<U::Element>(), len) }
            }
            Data::Alloc(p, cap) => {
                assert!(len <= *cap);
                unsafe {
                    std::slice::from_raw_parts(p.as_ref().tail.as_ptr().cast::<U::Element>(), len)
                }
            }
        }
    }

    /// SAFETY: the caller must ensure that the first `len` elements have been
    /// initialized.
    unsafe fn tail_mut(&mut self, len: usize) -> &mut [U::Element] {
        match self {
            Data::Fixed(Combined { tail, .. }) => {
                assert!(len <= U::COUNT || size_of::<U::Element>() == 0);
                unsafe { std::slice::from_raw_parts_mut(tail.as_ptr() as *mut U::Element, len) }
            }
            Data::Alloc(p, cap) => {
                assert!(len <= *cap);
                unsafe {
                    std::slice::from_raw_parts_mut(p.as_ref().tail.as_ptr() as *mut U::Element, len)
                }
            }
        }
    }

    fn capacity(&self) -> usize {
        match self {
            Data::Fixed(_) => U::COUNT,
            Data::Alloc(_, cap) => *cap,
        }
    }

    fn tail_mut_uninit(&mut self) -> &mut [MaybeUninit<U::Element>] {
        match self {
            Data::Fixed(Combined { tail, .. }) => unsafe {
                std::slice::from_raw_parts_mut(
                    tail.as_mut_ptr().cast::<MaybeUninit<U::Element>>(),
                    U::COUNT,
                )
            },
            Data::Alloc(p, cap) => unsafe {
                std::slice::from_raw_parts_mut(
                    p.as_mut()
                        .tail
                        .as_mut_ptr()
                        .cast::<MaybeUninit<U::Element>>(),
                    *cap,
                )
            },
        }
    }

    /// Compute the allocation layout for `cap` elements.
    fn layout(cap: usize) -> Layout {
        assert!(size_of::<U::Element>() > 0);
        assert!(cap > U::COUNT);

        let base_layout = Layout::new::<Combined<T, [U::Element; 0]>>();
        Layout::from_size_align(
            base_layout
                .size()
                .checked_add(size_of::<U::Element>().checked_mul(cap).unwrap())
                .unwrap(),
            base_layout.align(),
        )
        .unwrap()
    }

    /// Returns a pointer to the start of the [Combined] data that may
    /// either be inline or dynamically allocated.
    fn data_start_ptr(&self) -> *const Combined<T, U> {
        match self {
            Data::Fixed(combined_ref) => combined_ref,
            Data::Alloc(p, _) => p.as_ptr(),
        }
    }
}

impl<T, U: FixedArray> Drop for Data<T, U> {
    fn drop(&mut self) {
        match self {
            Data::Fixed(_) => (),
            Data::Alloc(p, cap) => unsafe {
                alloc::dealloc(p.as_ptr().cast::<u8>(), Self::layout(*cap))
            },
        }
    }
}

/// Implements a `Vec`-like type for building structures with a fixed-sized
/// prefix before a dynamic number of elements.
///
/// To avoid allocations in common cases, the header and elements are stored
/// internally without allocating until the element count would exceed the
/// statically determined capacity.
///
/// Only a small portion of the `Vec` interface is supported. Additional methods
/// can be added as needed.
///
/// The data managed by this type must be `Copy`. This simplifies the resource
/// management and should be sufficient for most use cases.
///
/// # Example
/// ```
/// # use pal::HeaderVec;
/// #[derive(Copy, Clone)]
/// struct Header { x: u32 }
/// let mut v = HeaderVec::<Header, [u8; 10]>::new(Header{ x: 1234 });
/// v.push(5);
/// v.push(6);
/// assert_eq!(v.x, 1234);
/// assert_eq!(&v[..], &[5, 6]);
/// ```
#[derive(Debug)]
pub struct HeaderVec<T, U: FixedArray> {
    data: Data<T, U>,
    len: usize,
}

impl<T: Copy + Default, U: FixedArray> Default for HeaderVec<T, U> {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl<T: Copy, U: FixedArray> HeaderVec<T, U> {
    /// Constructs a new `HeaderVec` with a header of `head` and no tail
    /// elements.
    pub fn new(head: T) -> Self {
        Self {
            data: Data::Fixed(Combined {
                head,
                tail: MaybeUninit::uninit(),
            }),
            len: 0,
        }
    }

    /// Constructs a new `HeaderVec` with a header of `head` and no tail
    /// elements, but with a dynamically allocated capacity for `cap` elements.
    pub fn with_capacity(head: T, cap: usize) -> Self {
        let mut vec = Self::new(head);
        if cap > U::COUNT {
            vec.realloc(cap);
        }
        vec
    }

    fn realloc(&mut self, cap: usize) {
        assert!(cap > self.len);

        let layout = Data::<T, U>::layout(cap);
        unsafe {
            let alloc = alloc::alloc(layout).cast::<Combined<T, U>>();
            if let Some(alloc) = NonNull::new(alloc) {
                // Copy the old header and elements.
                alloc.as_ptr().cast::<u8>().copy_from(
                    self.data.data_start_ptr().cast::<u8>(),
                    self.total_byte_len(),
                );

                self.data = Data::Alloc(alloc, cap);
            } else {
                alloc::handle_alloc_error(layout);
            }
        }
    }

    fn extend_tail(&mut self, n: usize) -> &mut [MaybeUninit<U::Element>] {
        let cap = self.capacity();
        if cap - self.len < n {
            // Double the current capacity to ensure a geometric progression
            // (avoiding O(n^2) allocations).
            let new_cap = cmp::max(
                cmp::max(8, cap.checked_mul(2).unwrap()),
                self.len.checked_add(n).unwrap(),
            );
            self.realloc(new_cap);
        }
        &mut self.data.tail_mut_uninit()[self.len..self.len + n]
    }

    pub fn reserve(&mut self, n: usize) {
        self.extend_tail(n);
    }

    /// Returns the remaining spare capacity of the tail as a slice of
    /// `MaybeUninit<U::Element>`.
    ///
    /// The returned slice can be used to fill the tail with data before marking
    /// the data as initialized using [`Self::set_len].
    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<U::Element>] {
        &mut self.data.tail_mut_uninit()[self.len..]
    }

    /// Pushes a tail element, reallocating if necessary.
    pub fn push(&mut self, val: U::Element) {
        // For zero-sized types (unlikely to be useful but hard to prohibit),
        // just increment len.
        if size_of_val(&val) > 0 {
            unsafe {
                self.extend_tail(1)[0].as_mut_ptr().write(val);
            }
        }
        self.len += 1;
    }

    /// Extends the tail elements from the given slice.
    pub fn extend_from_slice(&mut self, other: &[U::Element]) {
        if size_of::<U::Element>() > 0 && !other.is_empty() {
            unsafe {
                std::ptr::copy(
                    other.as_ptr(),
                    self.extend_tail(other.len())[0].as_mut_ptr(),
                    other.len(),
                );
            }
        }
        self.len += other.len();
    }

    /// Retrieves a pointer to the head. The tail is guaranteed to immediately
    /// after the head (with appropriate padding).
    pub fn as_ptr(&self) -> *const T {
        self.data.head()
    }

    /// Retrieves a mutable pointer to the head. The tail is guaranteed to
    /// immediately after the head (with appropriate padding).
    pub fn as_mut_ptr(&mut self) -> *mut T {
        self.data.head_mut()
    }

    /// Returns a slice of the tail elements.
    pub fn as_slice(&self) -> &[U::Element] {
        unsafe { self.data.tail(self.len) }
    }

    /// Returns a mutable slice of the tail elements.
    pub fn as_mut_slice(&mut self) -> &mut [U::Element] {
        unsafe { self.data.tail_mut(self.len) }
    }

    /// Returns the number of tail elements.
    pub fn len(&self) -> usize {
        self.len
    }

    pub fn capacity(&self) -> usize {
        self.data.capacity()
    }

    /// Returns `true` if there are no tail elements.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Sets the number of tail elements to 0.
    pub fn clear(&mut self) {
        self.len = 0;
    }

    /// Truncates the tail to `len` elements. Has no effect if there are already
    /// fewer than `len` tail elements.
    pub fn truncate(&mut self, len: usize) {
        if len < self.len {
            self.len = len;
        }
    }

    /// Sets the number of tail elements.
    ///
    /// Panics if `len` is greater than the capacity.
    ///
    /// # Safety
    ///
    /// The caller must ensure that all `len` elements have been initialized.
    pub unsafe fn set_len(&mut self, len: usize) {
        assert!(len <= self.capacity());
        self.len = len;
    }

    /// Returns the total contiguous byte length of the structure, including
    /// both the head and tail elements.
    pub fn total_byte_len(&self) -> usize {
        // N.B. this calculation cannot overflow unless len is corrupted.
        size_of::<Combined<T, [U::Element; 0]>>() + size_of::<U::Element>() * self.len
    }

    /// Returns the total contiguous byte length of the structure, including
    /// both the head and tail elements, including the tail's capacity.
    pub fn total_byte_capacity(&self) -> usize {
        // N.B. this calculation cannot overflow unless len is corrupted.
        size_of::<Combined<T, [U::Element; 0]>>() + size_of::<U::Element>() * self.capacity()
    }

    /// Returns an iterator of the tail elements.
    pub fn iter(&self) -> Iter<'_, U::Element> {
        self.as_slice().iter()
    }

    /// Returns a mutable iterator of the tail elements.
    pub fn iter_mut(&mut self) -> IterMut<'_, U::Element> {
        self.as_mut_slice().iter_mut()
    }
}

impl<T: Copy, U: FixedArray, I: SliceIndex<[U::Element]>> Index<I> for HeaderVec<T, U> {
    type Output = I::Output;
    fn index(&self, index: I) -> &Self::Output {
        self.as_slice().index(index)
    }
}

impl<T: Copy, U: FixedArray, I: SliceIndex<[U::Element]>> IndexMut<I> for HeaderVec<T, U> {
    fn index_mut(&mut self, index: I) -> &mut Self::Output {
        self.as_mut_slice().index_mut(index)
    }
}

impl<T, U: FixedArray> Deref for HeaderVec<T, U> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        self.data.head()
    }
}

impl<T, U: FixedArray> DerefMut for HeaderVec<T, U> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.data.head_mut()
    }
}

impl<T: Copy, U: FixedArray> Extend<U::Element> for HeaderVec<T, U> {
    fn extend<I: IntoIterator<Item = U::Element>>(&mut self, iter: I) {
        for item in iter {
            self.push(item);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::FixedArray;
    use super::HeaderVec;
    use std::fmt::Debug;

    fn test<T: Copy + Eq + Debug, U: FixedArray>(head: T, vals: Vec<U::Element>)
    where
        U::Element: Eq + Debug,
    {
        let mut v: HeaderVec<T, U> = HeaderVec::new(head);
        for i in vals.iter() {
            v.push(*i);
        }
        assert_eq!(*v, head);
        assert_eq!(v.as_slice(), vals.as_slice());
    }

    #[test]
    fn test_push() {
        test::<u8, [u32; 3]>(0x10, (0..200).collect());
    }

    #[test]
    fn test_zero_array() {
        test::<u8, [u32; 0]>(0x10, (0..200).collect());
    }

    #[test]
    fn test_zst_head() {
        test::<(), [u32; 3]>((), (0..200).collect());
    }

    #[test]
    fn test_zst_tail() {
        test::<u8, [(); 0]>(0x10, (0..200).map(|_| ()).collect());
    }

    #[test]
    fn test_zst_both() {
        test::<(), [(); 0]>((), (0..200).map(|_| ()).collect());
    }
}