page_table/
x64.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Methods to construct page tables on x64.

use crate::IdentityMapSize;
use zerocopy::FromBytes;
use zerocopy::FromZeros;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

const X64_PTE_PRESENT: u64 = 1;
const X64_PTE_READ_WRITE: u64 = 1 << 1;
const X64_PTE_ACCESSED: u64 = 1 << 5;
const X64_PTE_DIRTY: u64 = 1 << 6;
const X64_PTE_LARGE_PAGE: u64 = 1 << 7;

const PAGE_TABLE_ENTRY_COUNT: usize = 512;

const X64_PAGE_SHIFT: u64 = 12;
const X64_PTE_BITS: u64 = 9;

/// Number of bytes in a page for X64.
pub const X64_PAGE_SIZE: u64 = 4096;

/// Number of bytes in a large page for X64.
pub const X64_LARGE_PAGE_SIZE: u64 = 0x200000;

/// Number of bytes in a 1GB page for X64.
pub const X64_1GB_PAGE_SIZE: u64 = 0x40000000;

#[derive(Copy, Clone, PartialEq, Eq, IntoBytes, Immutable, KnownLayout, FromBytes)]
#[repr(transparent)]
pub struct PageTableEntry {
    pub(crate) entry: u64,
}

impl std::fmt::Debug for PageTableEntry {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("PageTableEntry")
            .field("entry", &self.entry)
            .field("is_present", &self.is_present())
            .field("is_large_page", &self.is_large_page())
            .field("gpa", &self.gpa())
            .finish()
    }
}

#[derive(Debug, Copy, Clone)]
pub enum PageTableEntryType {
    Leaf1GbPage(u64),
    Leaf2MbPage(u64),
    Leaf4kPage(u64),
    Pde(u64),
}

pub trait PteOps {
    fn get_addr_mask(&self) -> u64;
    fn get_confidential_mask(&self) -> u64;

    fn build_pte(entry_type: PageTableEntryType) -> PageTableEntry {
        let mut entry: u64 = X64_PTE_PRESENT | X64_PTE_ACCESSED | X64_PTE_READ_WRITE;

        match entry_type {
            PageTableEntryType::Leaf1GbPage(address) => {
                // Must be 1GB aligned.
                assert!(address % X64_1GB_PAGE_SIZE == 0);
                entry |= address;
                entry |= X64_PTE_LARGE_PAGE | X64_PTE_DIRTY;
            }
            PageTableEntryType::Leaf2MbPage(address) => {
                // Leaf entry, set like UEFI does for 2MB pages. Must be 2MB aligned.
                assert!(address % X64_LARGE_PAGE_SIZE == 0);
                entry |= address;
                entry |= X64_PTE_LARGE_PAGE | X64_PTE_DIRTY;
            }
            PageTableEntryType::Leaf4kPage(address) => {
                // Must be 4K aligned.
                assert!(address % X64_PAGE_SIZE == 0);
                entry |= address;
                entry |= X64_PTE_DIRTY;
            }
            PageTableEntryType::Pde(address) => {
                // Points to another pagetable.
                assert!(address % X64_PAGE_SIZE == 0);
                entry |= address;
            }
        }

        PageTableEntry { entry }
    }

    fn is_pte_present(pte: &PageTableEntry) -> bool {
        pte.is_present()
    }

    fn is_pte_large_page(pte: &PageTableEntry) -> bool {
        pte.is_large_page()
    }

    fn get_gpa_from_pte(&self, pte: &PageTableEntry) -> Option<u64> {
        if pte.is_present() {
            Some(self.get_addr_from_pte(pte))
        } else {
            None
        }
    }

    fn get_addr_from_pte(&self, pte: &PageTableEntry) -> u64 {
        pte.entry & self.get_addr_mask()
    }

    fn set_addr_in_pte(&self, pte: &mut PageTableEntry, address: u64) {
        let mask = self.get_addr_mask();
        pte.entry = (pte.entry & !mask) | (address & mask);
    }

    fn set_pte_confidentiality(&self, pte: &mut PageTableEntry, confidential: bool) {
        let mask = self.get_confidential_mask();
        if confidential {
            pte.entry |= mask;
        } else {
            pte.entry &= !mask;
        }
    }
}

impl PageTableEntry {
    const VALID_BITS: u64 = 0x000f_ffff_ffff_f000;

    /// Set an AMD64 PDE to either represent a leaf 2MB page or PDE.
    /// This sets the PTE to preset, accessed, dirty, read write execute.
    pub fn set_entry(&mut self, entry_type: PageTableEntryType) {
        self.entry = X64_PTE_PRESENT | X64_PTE_ACCESSED | X64_PTE_READ_WRITE;

        match entry_type {
            PageTableEntryType::Leaf1GbPage(address) => {
                // Must be 1GB aligned.
                assert!(address % X64_1GB_PAGE_SIZE == 0);
                self.entry |= address;
                self.entry |= X64_PTE_LARGE_PAGE | X64_PTE_DIRTY;
            }
            PageTableEntryType::Leaf2MbPage(address) => {
                // Leaf entry, set like UEFI does for 2MB pages. Must be 2MB aligned.
                assert!(address % X64_LARGE_PAGE_SIZE == 0);
                self.entry |= address;
                self.entry |= X64_PTE_LARGE_PAGE | X64_PTE_DIRTY;
            }
            PageTableEntryType::Leaf4kPage(address) => {
                // Must be 4K aligned.
                assert!(address % X64_PAGE_SIZE == 0);
                self.entry |= address;
                self.entry |= X64_PTE_DIRTY;
            }
            PageTableEntryType::Pde(address) => {
                // Points to another pagetable.
                assert!(address % X64_PAGE_SIZE == 0);
                self.entry |= address;
            }
        }
    }

    pub fn is_present(&self) -> bool {
        self.entry & X64_PTE_PRESENT == X64_PTE_PRESENT
    }

    pub fn is_large_page(&self) -> bool {
        self.entry & X64_PTE_LARGE_PAGE == X64_PTE_LARGE_PAGE
    }

    pub fn gpa(&self) -> Option<u64> {
        if self.is_present() {
            // bits 51 to 12 describe the gpa of the next page table
            Some(self.entry & Self::VALID_BITS)
        } else {
            None
        }
    }

    pub fn set_addr(&mut self, addr: u64) {
        assert!(addr & !Self::VALID_BITS == 0);

        // clear addr bits, set new addr
        self.entry &= !Self::VALID_BITS;
        self.entry |= addr;
    }

    pub fn get_addr(&self) -> u64 {
        self.entry & Self::VALID_BITS
    }

    pub fn clear(&mut self) {
        self.entry = 0;
    }
}

#[repr(C)]
#[derive(Debug, Clone, PartialEq, Eq, IntoBytes, Immutable, KnownLayout, FromBytes)]
pub struct PageTable {
    entries: [PageTableEntry; PAGE_TABLE_ENTRY_COUNT],
}

impl PageTable {
    // fn iter(&self) -> impl Iterator<Item = &PageTableEntry> {
    //     self.entries.iter()
    // }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut PageTableEntry> {
        self.entries.iter_mut()
    }

    /// Treat this page table as a page table of a given level, and locate the entry corresponding to a va.
    pub fn entry(&mut self, gva: u64, level: u8) -> &mut PageTableEntry {
        let index = get_amd64_pte_index(gva, level as u64) as usize;
        &mut self.entries[index]
    }
}

impl std::ops::Index<usize> for PageTable {
    type Output = PageTableEntry;

    fn index(&self, index: usize) -> &Self::Output {
        &self.entries[index]
    }
}

impl std::ops::IndexMut<usize> for PageTable {
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
        &mut self.entries[index]
    }
}

/// Get an AMD64 PTE index based on page table level.
pub fn get_amd64_pte_index(gva: u64, page_map_level: u64) -> u64 {
    let index = gva >> (X64_PAGE_SHIFT + page_map_level * X64_PTE_BITS);
    index & ((1 << X64_PTE_BITS) - 1)
}

/// Calculate the number of PDE page tables required to identity map a given gpa and size.
pub fn calculate_pde_table_count(start_gpa: u64, size: u64) -> u64 {
    let mut count = 0;

    // Determine the number of bytes from start up to the next 1GB aligned
    let start_aligned_up = align_up_to_1_gb_page_size(start_gpa);
    let end_gpa = start_gpa + size;
    let end_aligned_down = (end_gpa / X64_1GB_PAGE_SIZE) * X64_1GB_PAGE_SIZE;

    // Ranges sized less than 1GB are treated differently.
    if size < X64_1GB_PAGE_SIZE {
        // A range either takes one or two pages depending on if it crosses a 1GB boundary.
        if end_gpa > end_aligned_down && start_gpa < end_aligned_down {
            count = 2;
        } else {
            count = 1;
        }
    } else {
        // Count the first unaligned start up to an aligned 1GB range.
        if start_gpa != start_aligned_up {
            count += 1;
        }

        // Add the inner ranges that are 1GB aligned.
        if end_aligned_down > start_aligned_up {
            count += (end_aligned_down - start_aligned_up) / X64_1GB_PAGE_SIZE;
        }

        // Add any unaligned end range.
        if end_gpa > end_aligned_down {
            count += 1;
        }
    }

    count
}

#[derive(Debug, Clone)]
pub struct PageTableBuilder {
    page_table_gpa: u64,
    start_gpa: u64,
    size: u64,
    local_map: Option<(u64, u64)>,
    confidential_bit: Option<u32>,
    map_reset_vector: bool,
}

impl PteOps for PageTableBuilder {
    fn get_addr_mask(&self) -> u64 {
        const ALL_ADDR_BITS: u64 = 0x000f_ffff_ffff_f000;
        ALL_ADDR_BITS & !self.get_confidential_mask()
    }

    fn get_confidential_mask(&self) -> u64 {
        if let Some(confidential_bit) = self.confidential_bit {
            1u64 << confidential_bit
        } else {
            0
        }
    }
}

impl PageTableBuilder {
    pub fn new(page_table_gpa: u64) -> Self {
        PageTableBuilder {
            page_table_gpa,
            start_gpa: 0,
            size: 0,
            local_map: None,
            confidential_bit: None,
            map_reset_vector: false,
        }
    }

    pub fn with_mapped_region(mut self, start_gpa: u64, size: u64) -> Self {
        self.start_gpa = start_gpa;
        self.size = size;
        self
    }

    pub fn with_local_map(mut self, start_va: u64, size: u64) -> Self {
        self.local_map = Some((start_va, size));
        self
    }

    pub fn with_confidential_bit(mut self, bit_position: u32) -> Self {
        self.confidential_bit = Some(bit_position);
        self
    }

    /// Map the reset vector at page 0xFFFFF with a single page.
    pub fn with_reset_vector(mut self, map_reset_vector: bool) -> Self {
        self.map_reset_vector = map_reset_vector;
        self
    }

    /// Build a set of X64 page tables identity mapping the given region. `size` must be less than 512GB.
    /// This creates up to 3+N page tables: 1 PML4E and up to 2 PDPTE tables, and N page tables counted at 1 per GB of size,
    /// for 2MB mappings.
    pub fn build(self) -> Vec<u8> {
        const SIZE_512_GB: u64 = 0x8000000000;

        if self.size == 0 {
            panic!("size not set");
        }

        if self.size > SIZE_512_GB {
            panic!("more than 512 gb size not supported");
        }

        if self.size % X64_LARGE_PAGE_SIZE != 0 {
            panic!("size not 2mb aligned");
        }

        // start_gpa and size must be 2MB aligned.
        if self.start_gpa % X64_LARGE_PAGE_SIZE != 0 {
            panic!("start_gpa not 2mb aligned");
        }

        let start_va = self.start_gpa;
        let end_va = start_va + self.size;
        let page_table_gpa = self.page_table_gpa;

        if let Some((local_map_start, local_map_size)) = self.local_map {
            if local_map_start % X64_LARGE_PAGE_SIZE != 0 {
                panic!("local map address not 2 mb aligned");
            }

            if local_map_size % X64_LARGE_PAGE_SIZE != 0 {
                panic!("local map size not 2 mb aligned");
            }

            if local_map_size == 0 {
                panic!("local map size cannot be 0");
            }

            let local_map_end = local_map_start + local_map_size;
            if local_map_end > start_va && local_map_start < end_va {
                panic!("local map overlaps with mapped region");
            }
        }

        // Allocate single PML4E page table.
        let mut page_table: Vec<PageTable> = Vec::new();
        page_table.push(PageTable::new_zeroed());
        let pml4_table_index = 0;
        let confidential = self.confidential_bit.is_some();

        let mut link_tables = |start_va: u64, end_va: u64, use_large_pages: bool| {
            let mut current_va = start_va;
            while current_va < end_va {
                tracing::trace!(current_va);

                let pdpte_table_index = {
                    let next_index = page_table.len();
                    let pml4_entry = page_table[pml4_table_index].entry(current_va, 3);
                    if !pml4_entry.is_present() {
                        // Allocate and link PDPTE table.
                        let output_address = page_table_gpa + next_index as u64 * X64_PAGE_SIZE;
                        let mut new_entry =
                            Self::build_pte(PageTableEntryType::Pde(output_address));
                        self.set_pte_confidentiality(&mut new_entry, confidential);
                        *pml4_entry = new_entry;
                        page_table.push(PageTable::new_zeroed());

                        next_index
                    } else {
                        ((self.get_addr_from_pte(pml4_entry) - page_table_gpa) / X64_PAGE_SIZE)
                            .try_into()
                            .expect("Valid page table index")
                    }
                };

                tracing::trace!(pdpte_table_index);

                let pde_table_index = {
                    let next_index = page_table.len();
                    let pdpte_entry = page_table[pdpte_table_index].entry(current_va, 2);
                    if !pdpte_entry.is_present() {
                        // Allocate and link PDE table.
                        let output_address = page_table_gpa + next_index as u64 * X64_PAGE_SIZE;
                        let mut new_entry =
                            Self::build_pte(PageTableEntryType::Pde(output_address));
                        self.set_pte_confidentiality(&mut new_entry, confidential);
                        *pdpte_entry = new_entry;
                        page_table.push(PageTable::new_zeroed());

                        next_index
                    } else {
                        ((self.get_addr_from_pte(pdpte_entry) - page_table_gpa) / X64_PAGE_SIZE)
                            .try_into()
                            .expect("Valid page table index")
                    }
                };

                tracing::trace!(pde_table_index);

                let next_index = page_table.len();
                let pde_entry = page_table[pde_table_index].entry(current_va, 1);
                assert!(!pde_entry.is_present());

                if use_large_pages {
                    assert!(!pde_entry.is_present());

                    let mut new_entry =
                        Self::build_pte(PageTableEntryType::Leaf2MbPage(current_va));
                    self.set_pte_confidentiality(&mut new_entry, confidential);
                    *pde_entry = new_entry;
                    current_va += X64_LARGE_PAGE_SIZE;
                } else {
                    let pt_table_index = if !pde_entry.is_present() {
                        // Allocate and link page table.
                        let output_address = page_table_gpa + next_index as u64 * X64_PAGE_SIZE;
                        let mut new_entry =
                            Self::build_pte(PageTableEntryType::Pde(output_address));
                        self.set_pte_confidentiality(&mut new_entry, confidential);
                        *pde_entry = new_entry;
                        page_table.push(PageTable::new_zeroed());

                        next_index
                    } else {
                        ((self.get_addr_from_pte(pde_entry) - page_table_gpa) / X64_PAGE_SIZE)
                            .try_into()
                            .expect("Valid page table index")
                    };

                    tracing::trace!(pt_table_index);

                    let pt_entry = page_table[pt_table_index].entry(current_va, 0);
                    let mut new_entry = Self::build_pte(PageTableEntryType::Leaf4kPage(current_va));
                    self.set_pte_confidentiality(&mut new_entry, confidential);
                    *pt_entry = new_entry;
                    current_va += X64_PAGE_SIZE;
                }
            }
        };

        link_tables(start_va, end_va, true);

        // Create local map area if present.
        if let Some((local_map_start, local_map_size)) = self.local_map {
            link_tables(local_map_start, local_map_start + local_map_size, true);
        }

        if self.map_reset_vector {
            // Map the reset vector pfn of 0xFFFFF
            tracing::trace!("identity mapping reset page 0xFFFFF");
            let reset_vector_addr = 0xFFFFF * X64_PAGE_SIZE;
            link_tables(reset_vector_addr, reset_vector_addr + X64_PAGE_SIZE, false);
        }

        // Flatten page table vec into u8 vec
        flatten_page_table(page_table)
    }
}

/// Build a set of X64 page tables identity mapping the bottom address
/// space with an optional address bias.
///
/// An optional PML4E entry may be linked, with arguments being (link_target_gpa, linkage_gpa).
/// link_target_gpa represents the GPA of the PML4E to link into the built page table.
/// linkage_gpa represents the GPA at which the linked PML4E should be linked.
pub fn build_page_tables_64(
    page_table_gpa: u64,
    address_bias: u64,
    identity_map_size: IdentityMapSize,
    pml4e_link: Option<(u64, u64)>,
) -> Vec<u8> {
    // Allocate page tables. There are up to 6 total page tables:
    //      1 PML4E (Level 4) (omitted if the address bias is non-zero)
    //      1 PDPTE (Level 3)
    //      4 or 8 PDE tables (Level 2)
    // Note that there are no level 1 page tables, as 2MB pages are used.
    let leaf_page_table_count = match identity_map_size {
        IdentityMapSize::Size4Gb => 4,
        IdentityMapSize::Size8Gb => 8,
    };
    let page_table_count = leaf_page_table_count + if address_bias == 0 { 2 } else { 1 };
    let mut page_table: Vec<PageTable> = vec![PageTable::new_zeroed(); page_table_count];
    let mut page_table_allocator = page_table.iter_mut().enumerate();

    // Allocate single PDPTE table.
    let pdpte_table = if address_bias == 0 {
        // Allocate single PML4E page table.
        let (_, pml4e_table) = page_table_allocator
            .next()
            .expect("pagetable should always be available, code bug if not");

        // PDPTE table is the next pagetable.
        let (pdpte_table_index, pdpte_table) = page_table_allocator
            .next()
            .expect("pagetable should always be available, code bug if not");

        // Set PML4E entry linking PML4E to PDPTE.
        let output_address = page_table_gpa + pdpte_table_index as u64 * X64_PAGE_SIZE;
        pml4e_table[0].set_entry(PageTableEntryType::Pde(output_address));

        // Set PML4E entry to link the additional entry if specified.
        if let Some((link_target_gpa, linkage_gpa)) = pml4e_link {
            assert!((linkage_gpa & 0x7FFFFFFFFF) == 0);
            pml4e_table[linkage_gpa as usize >> 39]
                .set_entry(PageTableEntryType::Pde(link_target_gpa));
        }

        pdpte_table
    } else {
        // PDPTE table is the first table, if no PML4E.
        page_table_allocator
            .next()
            .expect("pagetable should always be available, code bug if not")
            .1
    };

    // Build PDEs that point to 2 MB pages.
    let top_address = match identity_map_size {
        IdentityMapSize::Size4Gb => 0x100000000u64,
        IdentityMapSize::Size8Gb => 0x200000000u64,
    };
    let mut current_va = 0;

    while current_va < top_address {
        // Allocate a new PDE table
        let (pde_table_index, pde_table) = page_table_allocator
            .next()
            .expect("pagetable should always be available, code bug if not");

        // Link PDPTE table to PDE table (L3 to L2)
        let pdpte_index = get_amd64_pte_index(current_va, 2);
        let output_address = page_table_gpa + pde_table_index as u64 * X64_PAGE_SIZE;
        let pdpte_entry = &mut pdpte_table[pdpte_index as usize];
        assert!(!pdpte_entry.is_present());
        pdpte_entry.set_entry(PageTableEntryType::Pde(output_address));

        // Set all 2MB entries in this PDE table.
        for entry in pde_table.iter_mut() {
            entry.set_entry(PageTableEntryType::Leaf2MbPage(current_va + address_bias));
            current_va += X64_LARGE_PAGE_SIZE;
        }
    }

    // All pagetables should be used, code bug if not.
    assert!(page_table_allocator.next().is_none());

    // Flatten page table vec into u8 vec
    flatten_page_table(page_table)
}

/// Align an address up to the start of the next page.
pub fn align_up_to_page_size(address: u64) -> u64 {
    (address + X64_PAGE_SIZE - 1) & !(X64_PAGE_SIZE - 1)
}

/// Align an address up to the start of the next large (2MB) page.
pub fn align_up_to_large_page_size(address: u64) -> u64 {
    (address + X64_LARGE_PAGE_SIZE - 1) & !(X64_LARGE_PAGE_SIZE - 1)
}

/// Align an address up to the start of the next 1GB page.
pub fn align_up_to_1_gb_page_size(address: u64) -> u64 {
    (address + X64_1GB_PAGE_SIZE - 1) & !(X64_1GB_PAGE_SIZE - 1)
}

fn flatten_page_table(page_table: Vec<PageTable>) -> Vec<u8> {
    let mut flat_tables = Vec::with_capacity(page_table.len() * X64_PAGE_SIZE as usize);
    for table in page_table {
        flat_tables.extend_from_slice(table.as_bytes());
    }

    flat_tables
}

#[cfg(test)]
mod tests {
    use super::X64_1GB_PAGE_SIZE;
    use super::align_up_to_large_page_size;
    use super::align_up_to_page_size;
    use super::calculate_pde_table_count;

    #[test]
    fn test_align_up() {
        assert_eq!(align_up_to_page_size(4096), 4096);
        assert_eq!(align_up_to_page_size(4095), 4096);
        assert_eq!(align_up_to_page_size(4097), 8192);
    }

    #[test]
    fn test_large_align_up() {
        assert_eq!(align_up_to_large_page_size(0), 0);
        assert_eq!(align_up_to_large_page_size(4096), 0x200000);
        assert_eq!(align_up_to_large_page_size(0x200000), 0x200000);
        assert_eq!(align_up_to_large_page_size(0x200001), 0x400000);
    }

    #[test]
    fn test_pde_size_calc() {
        assert_eq!(calculate_pde_table_count(0, 512), 1);
        assert_eq!(calculate_pde_table_count(0, 1024 * 1024), 1);
        assert_eq!(calculate_pde_table_count(512, 1024 * 1024), 1);
        assert_eq!(calculate_pde_table_count(X64_1GB_PAGE_SIZE - 512, 1024), 2);
        assert_eq!(calculate_pde_table_count(X64_1GB_PAGE_SIZE - 512, 512), 1);
        assert_eq!(calculate_pde_table_count(0, X64_1GB_PAGE_SIZE), 1);
        assert_eq!(calculate_pde_table_count(0, X64_1GB_PAGE_SIZE + 1), 2);
        assert_eq!(calculate_pde_table_count(1, X64_1GB_PAGE_SIZE + 1), 2);
        assert_eq!(calculate_pde_table_count(512, X64_1GB_PAGE_SIZE * 2), 3);

        assert_eq!(calculate_pde_table_count(0, X64_1GB_PAGE_SIZE * 3), 3);
        assert_eq!(
            calculate_pde_table_count(X64_1GB_PAGE_SIZE, X64_1GB_PAGE_SIZE * 3),
            3
        );
    }
}