page_pool_alloc/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! This module implements a page memory allocator for allocating pages from a
//! given portion of the guest address space.

mod device_dma;

pub use device_dma::PagePoolDmaBuffer;

use anyhow::Context;
use inspect::Inspect;
use inspect::Response;
use memory_range::MemoryRange;
use parking_lot::Mutex;
use safeatomic::AtomicSliceOps;
use sparse_mmap::Mappable;
use sparse_mmap::MappableRef;
use sparse_mmap::SparseMapping;
use sparse_mmap::alloc_shared_memory;
use std::fmt::Debug;
use std::num::NonZeroU64;
use std::sync::Arc;
use std::sync::atomic::AtomicU8;
use thiserror::Error;

const PAGE_SIZE: u64 = 4096;

/// Save restore suport for [`PagePool`].
pub mod save_restore {
    use super::PAGE_SIZE;
    use super::PagePool;
    use super::Slot;
    use super::SlotState;
    use crate::ResolvedSlotState;
    use memory_range::MemoryRange;
    use mesh::payload::Protobuf;
    use vmcore::save_restore::SaveRestore;
    use vmcore::save_restore::SavedStateRoot;

    #[derive(Protobuf)]
    #[mesh(package = "openvmm.pagepool")]
    enum InnerSlotState {
        #[mesh(1)]
        Free,
        #[mesh(2)]
        Allocated {
            #[mesh(1)]
            device_id: String,
            #[mesh(2)]
            tag: String,
        },
        #[mesh(3)]
        Leaked {
            #[mesh(1)]
            device_id: String,
            #[mesh(2)]
            tag: String,
        },
    }

    #[derive(Protobuf)]
    #[mesh(package = "openvmm.pagepool")]
    struct SlotSavedState {
        #[mesh(1)]
        base_pfn: u64,
        #[mesh(2)]
        size_pages: u64,
        #[mesh(3)]
        state: InnerSlotState,
    }

    /// The saved state for [`PagePool`].
    #[derive(Protobuf, SavedStateRoot)]
    #[mesh(package = "openvmm.pagepool")]
    pub struct PagePoolState {
        #[mesh(1)]
        state: Vec<SlotSavedState>,
        #[mesh(2)]
        ranges: Vec<MemoryRange>,
    }

    impl SaveRestore for PagePool {
        type SavedState = PagePoolState;

        fn save(&mut self) -> Result<Self::SavedState, vmcore::save_restore::SaveError> {
            let state = self.inner.state.lock();
            Ok(PagePoolState {
                state: state
                    .slots
                    .iter()
                    .map(|slot| {
                        let slot = slot.resolve(&state.device_ids);
                        let inner_state = match slot.state {
                            ResolvedSlotState::Free => InnerSlotState::Free,
                            ResolvedSlotState::Allocated { device_id, tag } => {
                                InnerSlotState::Allocated {
                                    device_id: device_id.to_string(),
                                    tag: tag.to_string(),
                                }
                            }
                            ResolvedSlotState::Leaked { device_id, tag } => {
                                InnerSlotState::Leaked {
                                    device_id: device_id.to_string(),
                                    tag: tag.to_string(),
                                }
                            }
                            ResolvedSlotState::AllocatedPendingRestore { .. } => {
                                panic!("should not save allocated pending restore")
                            }
                        };

                        SlotSavedState {
                            base_pfn: slot.base_pfn,
                            size_pages: slot.size_pages,
                            state: inner_state,
                        }
                    })
                    .collect(),
                ranges: self.ranges.clone(),
            })
        }

        fn restore(
            &mut self,
            mut state: Self::SavedState,
        ) -> Result<(), vmcore::save_restore::RestoreError> {
            // Verify that the pool describes the same regions of memory as the
            // saved state.
            for (current, saved) in self.ranges.iter().zip(state.ranges.iter()) {
                if current != saved {
                    // TODO: return unmatched range or vecs?
                    return Err(vmcore::save_restore::RestoreError::InvalidSavedState(
                        anyhow::anyhow!("pool ranges do not match"),
                    ));
                }
            }

            let mut inner = self.inner.state.lock();

            // Verify there are no existing allocators present, as we rely on
            // the pool being completely free since we will overwrite the state
            // of the pool with the stored slot info.
            //
            // Note that this also means that the pool does not have any pending
            // allocations, as it's impossible to allocate without creating an
            // allocator.
            if !inner.device_ids.is_empty() {
                return Err(vmcore::save_restore::RestoreError::InvalidSavedState(
                    anyhow::anyhow!("existing allocators present, pool must be empty to restore"),
                ));
            }

            state.state.sort_by_key(|slot| slot.base_pfn);

            let mut mapping_offset = 0;
            inner.slots = state
                .state
                .into_iter()
                .map(|slot| {
                    let inner = match slot.state {
                        InnerSlotState::Free => SlotState::Free,
                        InnerSlotState::Allocated { device_id, tag } => {
                            SlotState::AllocatedPendingRestore { device_id, tag }
                        }
                        InnerSlotState::Leaked { device_id, tag } => {
                            SlotState::Leaked { device_id, tag }
                        }
                    };

                    let slot = Slot {
                        base_pfn: slot.base_pfn,
                        mapping_offset: mapping_offset as usize,
                        size_pages: slot.size_pages,
                        state: inner,
                    };
                    mapping_offset += slot.size_pages * PAGE_SIZE;
                    slot
                })
                .collect();

            if mapping_offset != self.inner.mapping.len() as u64 {
                return Err(vmcore::save_restore::RestoreError::InvalidSavedState(
                    anyhow::anyhow!("missing slots in saved state"),
                ));
            }

            Ok(())
        }
    }
}

/// Errors returned on allocation methods.
#[derive(Debug, Error)]
pub enum Error {
    /// Unable to allocate memory due to not enough free pages.
    #[error("unable to allocate page pool size {size} with tag {tag}")]
    PagePoolOutOfMemory {
        /// The size in pages of the allocation.
        size: u64,
        /// The tag of the allocation.
        tag: String,
    },
    /// Unable to create mapping requested for the allocation.
    #[error("failed to create mapping for allocation")]
    Mapping(#[source] anyhow::Error),
    /// No matching allocation found for restore.
    #[error("no matching allocation found for restore")]
    NoMatchingAllocation,
}

/// Error returned when unrestored allocations are found.
#[derive(Debug, Error)]
#[error("unrestored allocations found")]
pub struct UnrestoredAllocations;

#[derive(Debug, PartialEq, Eq)]
struct Slot {
    base_pfn: u64,
    mapping_offset: usize,
    size_pages: u64,
    state: SlotState,
}

#[derive(Clone, Debug, PartialEq, Eq)]
enum SlotState {
    Free,
    Allocated {
        /// This is an index into the outer [`PagePoolInner`]'s device_ids
        /// vector.
        device_id: usize,
        tag: String,
    },
    /// This allocation was restored, and is waiting for a
    /// [`PagePoolAllocator::restore_alloc`] to restore it.
    AllocatedPendingRestore {
        device_id: String,
        tag: String,
    },
    /// This allocation was leaked, and is no longer able to be allocated from.
    Leaked {
        device_id: String,
        tag: String,
    },
}

impl Slot {
    fn resolve<'a>(&'a self, device_ids: &'a [DeviceId]) -> ResolvedSlot<'a> {
        ResolvedSlot {
            base_pfn: self.base_pfn,
            mapping_offset: self.mapping_offset,
            size_pages: self.size_pages,
            state: match self.state {
                SlotState::Free => ResolvedSlotState::Free,
                SlotState::Allocated { device_id, ref tag } => ResolvedSlotState::Allocated {
                    device_id: device_ids[device_id].name(),
                    tag,
                },
                SlotState::AllocatedPendingRestore {
                    ref device_id,
                    ref tag,
                } => ResolvedSlotState::AllocatedPendingRestore { device_id, tag },
                SlotState::Leaked {
                    ref device_id,
                    ref tag,
                } => ResolvedSlotState::Leaked { device_id, tag },
            },
        }
    }
}

impl SlotState {
    fn restore_allocated(&mut self, device_id: usize) {
        if !matches!(self, SlotState::AllocatedPendingRestore { .. }) {
            panic!("invalid state");
        }

        // Temporarily swap with free so we can move the string tag to the
        // restored state without allocating.
        let prev = std::mem::replace(self, SlotState::Free);
        *self = match prev {
            SlotState::AllocatedPendingRestore { device_id: _, tag } => {
                SlotState::Allocated { device_id, tag }
            }
            _ => unreachable!(),
        };
    }
}

#[derive(Inspect)]
struct ResolvedSlot<'a> {
    base_pfn: u64,
    mapping_offset: usize,
    size_pages: u64,
    state: ResolvedSlotState<'a>,
}

#[derive(Inspect)]
#[inspect(external_tag)]
enum ResolvedSlotState<'a> {
    Free,
    Allocated { device_id: &'a str, tag: &'a str },
    AllocatedPendingRestore { device_id: &'a str, tag: &'a str },
    Leaked { device_id: &'a str, tag: &'a str },
}

#[derive(Inspect, Debug, Clone, PartialEq, Eq)]
#[inspect(tag = "state")]
enum DeviceId {
    /// A device id that is in use by an allocator.
    Used(#[inspect(rename = "name")] String),
    /// A device id that was dropped and can be reused if an allocator with the
    /// same name is created.
    Unassigned(#[inspect(rename = "name")] String),
}

impl DeviceId {
    fn name(&self) -> &str {
        match self {
            DeviceId::Used(name) => name,
            DeviceId::Unassigned(name) => name,
        }
    }
}

#[derive(Inspect)]
struct PagePoolInner {
    #[inspect(flatten)]
    state: Mutex<PagePoolState>,
    /// The pfn_bias for the pool.
    pfn_bias: u64,
    /// The mapper used to create mappings for allocations.
    source: Box<dyn PoolSource>,
    #[inspect(skip)]
    mapping: SparseMapping,
}

impl Debug for PagePoolInner {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("PagePoolInner")
            .field("state", &self.state)
            .field("pfn_bias", &self.pfn_bias)
            .field("mapping", &self.mapping)
            .finish()
    }
}

#[derive(Debug)]
struct PagePoolState {
    /// The internal slots for the pool, representing page state.
    slots: Vec<Slot>,
    /// The list of device ids for outstanding allocators. Each name must be
    /// unique.
    device_ids: Vec<DeviceId>,
}

impl Inspect for PagePoolState {
    fn inspect(&self, req: inspect::Request<'_>) {
        let Self { slots, device_ids } = self;
        req.respond().field(
            "slots",
            inspect::iter_by_index(slots).map_value(|s| s.resolve(device_ids)),
        );
    }
}

/// A handle for a page pool allocation. When dropped, the allocation is
/// freed.
#[derive(Debug)]
pub struct PagePoolHandle {
    inner: Arc<PagePoolInner>,
    base_pfn: u64,
    size_pages: u64,
    mapping_offset: usize,
}

impl PagePoolHandle {
    /// The base pfn (with bias) for this allocation.
    pub fn base_pfn(&self) -> u64 {
        self.base_pfn + self.inner.pfn_bias
    }

    /// The base pfn without bias for this allocation.
    pub fn base_pfn_without_bias(&self) -> u64 {
        self.base_pfn
    }

    /// The number of 4K pages for this allocation.
    pub fn size_pages(&self) -> u64 {
        self.size_pages
    }

    /// The associated mapping with this allocation.
    pub fn mapping(&self) -> &[AtomicU8] {
        self.inner
            .mapping
            .atomic_slice(self.mapping_offset, (self.size_pages * PAGE_SIZE) as usize)
    }

    /// Create a memory block from this allocation.
    fn into_memory_block(self) -> anyhow::Result<user_driver::memory::MemoryBlock> {
        let pfns: Vec<_> = (self.base_pfn()..self.base_pfn() + self.size_pages).collect();
        Ok(user_driver::memory::MemoryBlock::new(PagePoolDmaBuffer {
            alloc: self,
            pfns,
        }))
    }
}

impl Drop for PagePoolHandle {
    fn drop(&mut self) {
        let mut inner = self.inner.state.lock();

        let slot = inner
            .slots
            .iter_mut()
            .find(|slot| {
                if matches!(slot.state, SlotState::Allocated { .. }) {
                    slot.base_pfn == self.base_pfn && slot.size_pages == self.size_pages
                } else {
                    false
                }
            })
            .expect("must find allocation");

        assert_eq!(slot.mapping_offset, self.mapping_offset);
        slot.state = SlotState::Free;
    }
}

/// A source for pool allocations.
pub trait PoolSource: Inspect + Send + Sync {
    /// The bias to apply to the physical address of each allocation.
    fn address_bias(&self) -> u64;
    /// Translates a physical address into the file offset to use when mapping
    /// the page.
    fn file_offset(&self, address: u64) -> u64;
    /// Returns the OS object to map pages from.
    fn mappable(&self) -> MappableRef<'_>;
}

/// A mapper that uses an internal buffer to map pages. This is meant to be used
/// for tests that use [`PagePool`].
#[derive(Inspect)]
#[inspect(extra = "TestMapper::inspect_extra")]
pub struct TestMapper {
    #[inspect(skip)]
    mem: Mappable,
    len: usize,
}

impl TestMapper {
    /// Create a new test mapper that holds an internal buffer of `size_pages`.
    pub fn new(size_pages: u64) -> anyhow::Result<Self> {
        let len = (size_pages * PAGE_SIZE) as usize;
        let fd = alloc_shared_memory(len).context("creating shared mem")?;

        Ok(Self { mem: fd, len })
    }

    /// Returns [`SparseMapping`] that maps starting at page 0.
    pub fn sparse_mapping(&self) -> SparseMapping {
        let mappable = self.mappable();
        let mapping = SparseMapping::new(self.len).unwrap();
        mapping.map_file(0, self.len, mappable, 0, true).unwrap();
        mapping
    }

    fn inspect_extra(&self, resp: &mut Response<'_>) {
        resp.field("type", "test");
    }
}

impl PoolSource for TestMapper {
    fn address_bias(&self) -> u64 {
        0
    }

    fn file_offset(&self, address: u64) -> u64 {
        address
    }

    fn mappable(&self) -> MappableRef<'_> {
        #[cfg(windows)]
        return std::os::windows::io::AsHandle::as_handle(&self.mem);
        #[cfg(not(windows))]
        std::os::unix::io::AsFd::as_fd(&self.mem)
    }
}

/// A page allocator for memory.
///
/// This memory may be private memory, or shared visibility memory on isolated
/// VMs. depending on the memory range passed into the corresponding new
/// methods.
///
/// Pages are allocated via [`PagePoolAllocator`] from [`Self::allocator`] or
/// [`PagePoolAllocatorSpawner::allocator`].
///
/// This struct is considered the "owner" of the pool allowing for save/restore.
#[derive(Inspect)]
pub struct PagePool {
    #[inspect(flatten)]
    inner: Arc<PagePoolInner>,
    #[inspect(iter_by_index)]
    ranges: Vec<MemoryRange>,
}

impl PagePool {
    /// Returns a new page pool managing the address ranges in `ranges`,
    /// using `source` to access the memory.
    pub fn new<T: PoolSource + 'static>(ranges: &[MemoryRange], source: T) -> anyhow::Result<Self> {
        Self::new_internal(ranges, Box::new(source))
    }

    fn new_internal(memory: &[MemoryRange], source: Box<dyn PoolSource>) -> anyhow::Result<Self> {
        let mut mapping_offset = 0;
        let pages = memory
            .iter()
            .map(|range| {
                let slot = Slot {
                    base_pfn: range.start() / PAGE_SIZE,
                    size_pages: range.len() / PAGE_SIZE,
                    mapping_offset,
                    state: SlotState::Free,
                };
                mapping_offset += range.len() as usize;
                slot
            })
            .collect();

        let total_len = mapping_offset;

        // Create a contiguous mapping of the memory ranges.
        let mapping = SparseMapping::new(total_len).context("failed to reserve VA")?;
        let mappable = source.mappable();
        let mut mapping_offset = 0;
        for range in memory {
            let file_offset = source.file_offset(range.start());
            let len = range.len() as usize;
            mapping
                .map_file(mapping_offset, len, mappable, file_offset, true)
                .context("failed to map range")?;
            mapping_offset += len;
        }

        assert_eq!(mapping_offset, total_len);

        Ok(Self {
            inner: Arc::new(PagePoolInner {
                state: Mutex::new(PagePoolState {
                    slots: pages,
                    device_ids: Vec::new(),
                }),
                pfn_bias: source.address_bias() / PAGE_SIZE,
                source,
                mapping,
            }),
            ranges: memory.to_vec(),
        })
    }

    /// Create an allocator instance that can be used to allocate pages. The
    /// specified `device_name` must be unique.
    ///
    /// Users should create a new allocator for each device, as the device name
    /// is used to track allocations in the pool.
    pub fn allocator(&self, device_name: String) -> anyhow::Result<PagePoolAllocator> {
        PagePoolAllocator::new(&self.inner, device_name)
    }

    /// Create a spawner that allows creating multiple allocators.
    pub fn allocator_spawner(&self) -> PagePoolAllocatorSpawner {
        PagePoolAllocatorSpawner {
            inner: self.inner.clone(),
        }
    }

    /// Validate that all allocations have been restored. This should be called
    /// after all devices have been restored.
    ///
    /// `leak_unrestored` controls what to do if a matching allocation was not
    /// restored. If true, the allocation is marked as leaked and the function
    /// returns Ok. If false, the function returns an error if any are
    /// unmatched.
    ///
    /// Unmatched allocations are always logged via a `tracing::warn!` log.
    pub fn validate_restore(&self, leak_unrestored: bool) -> Result<(), UnrestoredAllocations> {
        let mut inner = self.inner.state.lock();
        let mut unrestored_allocation = false;

        // Mark unrestored allocations as leaked.
        for slot in inner.slots.iter_mut() {
            match &slot.state {
                SlotState::Free | SlotState::Allocated { .. } | SlotState::Leaked { .. } => {}
                SlotState::AllocatedPendingRestore { device_id, tag } => {
                    tracing::warn!(
                        base_pfn = slot.base_pfn,
                        pfn_bias = slot.size_pages,
                        size_pages = slot.size_pages,
                        device_id = device_id,
                        tag = tag.as_str(),
                        "unrestored allocation"
                    );

                    if leak_unrestored {
                        slot.state = SlotState::Leaked {
                            device_id: device_id.clone(),
                            tag: tag.clone(),
                        };
                    }

                    unrestored_allocation = true;
                }
            }
        }

        if unrestored_allocation && !leak_unrestored {
            Err(UnrestoredAllocations)
        } else {
            Ok(())
        }
    }
}

/// A spawner for [`PagePoolAllocator`] instances.
///
/// Useful when you need to create multiple allocators, without having ownership
/// of the actual [`PagePool`].
pub struct PagePoolAllocatorSpawner {
    inner: Arc<PagePoolInner>,
}

impl PagePoolAllocatorSpawner {
    /// Create an allocator instance that can be used to allocate pages. The
    /// specified `device_name` must be unique.
    ///
    /// Users should create a new allocator for each device, as the device name
    /// is used to track allocations in the pool.
    pub fn allocator(&self, device_name: String) -> anyhow::Result<PagePoolAllocator> {
        PagePoolAllocator::new(&self.inner, device_name)
    }
}

/// A page allocator for memory.
///
/// Pages are allocated via the [`Self::alloc`] method and freed by dropping the
/// associated handle returned.
///
/// When an allocator is dropped, outstanding allocations for that device
/// are left as-is in the pool. A new allocator can then be created with the
/// same name. Exisitng allocations with that same device_name will be
/// linked to the new allocator.
#[derive(Inspect)]
pub struct PagePoolAllocator {
    #[inspect(skip)]
    inner: Arc<PagePoolInner>,
    #[inspect(skip)]
    device_id: usize,
}

impl PagePoolAllocator {
    fn new(inner: &Arc<PagePoolInner>, device_name: String) -> anyhow::Result<Self> {
        let device_id;
        {
            let mut inner = inner.state.lock();

            let index = inner
                .device_ids
                .iter()
                .position(|id| id.name() == device_name);

            // Device ID must be unique, or be unassigned or pending a restore.
            match index {
                Some(index) => {
                    let entry = &mut inner.device_ids[index];

                    match entry {
                        DeviceId::Unassigned(_) => {
                            *entry = DeviceId::Used(device_name);
                            device_id = index;
                        }
                        DeviceId::Used(_) => {
                            anyhow::bail!("device name {device_name} already in use");
                        }
                    }
                }
                None => {
                    inner.device_ids.push(DeviceId::Used(device_name));
                    device_id = inner.device_ids.len() - 1;
                }
            }
        }

        Ok(Self {
            inner: inner.clone(),
            device_id,
        })
    }

    fn alloc_inner(&self, size_pages: NonZeroU64, tag: String) -> Result<PagePoolHandle, Error> {
        let mut inner = self.inner.state.lock();
        let size_pages = size_pages.get();

        let index = inner
            .slots
            .iter()
            .position(|slot| match slot.state {
                SlotState::Free => slot.size_pages >= size_pages,
                SlotState::Allocated { .. }
                | SlotState::AllocatedPendingRestore { .. }
                | SlotState::Leaked { .. } => false,
            })
            .ok_or(Error::PagePoolOutOfMemory {
                size: size_pages,
                tag: tag.clone(),
            })?;

        // Track which slots we should append if the mapping creation succeeds.
        // If the mapping creation fails, we instead commit the original free
        // slot back to the pool.
        let (allocation_slot, free_slot) = {
            let slot = inner.slots.swap_remove(index);
            assert!(matches!(slot.state, SlotState::Free));

            let allocation_slot = Slot {
                base_pfn: slot.base_pfn,
                mapping_offset: slot.mapping_offset,
                size_pages,
                state: SlotState::Allocated {
                    device_id: self.device_id,
                    tag: tag.clone(),
                },
            };

            let free_slot = if slot.size_pages > size_pages {
                Some(Slot {
                    base_pfn: slot.base_pfn + size_pages,
                    mapping_offset: slot.mapping_offset + (size_pages * PAGE_SIZE) as usize,
                    size_pages: slot.size_pages - size_pages,
                    state: SlotState::Free,
                })
            } else {
                None
            };

            (allocation_slot, free_slot)
        };

        let base_pfn = allocation_slot.base_pfn;
        let mapping_offset = allocation_slot.mapping_offset;
        assert_eq!(mapping_offset % PAGE_SIZE as usize, 0);

        // Commit state to the pool.
        inner.slots.push(allocation_slot);
        if let Some(free_slot) = free_slot {
            inner.slots.push(free_slot);
        }

        Ok(PagePoolHandle {
            inner: self.inner.clone(),
            base_pfn,
            size_pages,
            mapping_offset,
        })
    }

    /// Allocate contiguous pages from the page pool with the given tag. If a
    /// contiguous region of free pages is not available, then an error is
    /// returned.
    pub fn alloc(&self, size_pages: NonZeroU64, tag: String) -> Result<PagePoolHandle, Error> {
        self.alloc_inner(size_pages, tag)
    }

    /// Restore an allocation that was previously allocated in the pool. The
    /// base_pfn, size_pages, and device must match.
    ///
    /// `with_mapping` specifies if a mapping should be created that can be used
    /// via [`PagePoolHandle::mapping`].
    pub fn restore_alloc(
        &self,
        base_pfn: u64,
        size_pages: NonZeroU64,
    ) -> Result<PagePoolHandle, Error> {
        let size_pages = size_pages.get();
        let mut inner = self.inner.state.lock();
        let inner = &mut *inner;
        let slot = inner
            .slots
            .iter_mut()
            .find(|slot| {
                if let SlotState::AllocatedPendingRestore { device_id, tag: _ } = &slot.state {
                    device_id == inner.device_ids[self.device_id].name()
                        && slot.base_pfn == base_pfn
                        && slot.size_pages == size_pages
                } else {
                    false
                }
            })
            .ok_or(Error::NoMatchingAllocation)?;

        slot.state.restore_allocated(self.device_id);
        assert_eq!(slot.mapping_offset % PAGE_SIZE as usize, 0);

        Ok(PagePoolHandle {
            inner: self.inner.clone(),
            base_pfn,
            size_pages,
            mapping_offset: slot.mapping_offset,
        })
    }
}

impl Drop for PagePoolAllocator {
    fn drop(&mut self) {
        let mut inner = self.inner.state.lock();
        let device_name = inner.device_ids[self.device_id].name().to_string();
        let prev = std::mem::replace(
            &mut inner.device_ids[self.device_id],
            DeviceId::Unassigned(device_name),
        );
        assert!(matches!(prev, DeviceId::Used(_)));
    }
}

impl user_driver::DmaClient for PagePoolAllocator {
    fn allocate_dma_buffer(&self, len: usize) -> anyhow::Result<user_driver::memory::MemoryBlock> {
        if len as u64 % PAGE_SIZE != 0 {
            anyhow::bail!("not a page-size multiple");
        }

        let size_pages = NonZeroU64::new(len as u64 / PAGE_SIZE)
            .context("allocation of size 0 not supported")?;

        let alloc = self
            .alloc(size_pages, "vfio dma".into())
            .context("failed to allocate shared mem")?;

        // The VfioDmaBuffer trait requires that newly allocated buffers are
        // zeroed.
        alloc.mapping().atomic_fill(0);
        alloc.into_memory_block()
    }

    /// Restore a dma buffer in the predefined location with the given `len` in
    /// bytes.
    fn attach_dma_buffer(
        &self,
        len: usize,
        base_pfn: u64,
    ) -> anyhow::Result<user_driver::memory::MemoryBlock> {
        if len as u64 % PAGE_SIZE != 0 {
            anyhow::bail!("not a page-size multiple");
        }

        let size_pages = NonZeroU64::new(len as u64 / PAGE_SIZE)
            .context("allocation of size 0 not supported")?;

        let alloc = self
            .restore_alloc(base_pfn, size_pages)
            .context("failed to restore allocation")?;

        // Preserve the existing contents of memory and do not zero the restored
        // allocation.
        alloc.into_memory_block()
    }
}

#[cfg(test)]
mod test {
    use crate::PAGE_SIZE;
    use crate::PagePool;
    use crate::PoolSource;
    use crate::TestMapper;
    use inspect::Inspect;
    use memory_range::MemoryRange;
    use safeatomic::AtomicSliceOps;
    use sparse_mmap::MappableRef;
    use vmcore::save_restore::SaveRestore;

    #[derive(Inspect)]
    #[inspect(bound = "T: Inspect")]
    struct BiasedMapper<T> {
        mapper: T,
        bias: u64,
    }

    impl<T: PoolSource> BiasedMapper<T> {
        fn new(mapper: T, bias: u64) -> Self {
            Self { mapper, bias }
        }
    }

    impl<T: PoolSource> PoolSource for BiasedMapper<T> {
        fn address_bias(&self) -> u64 {
            self.bias.wrapping_add(self.mapper.address_bias())
        }

        fn file_offset(&self, address: u64) -> u64 {
            self.mapper.file_offset(address)
        }

        fn mappable(&self) -> MappableRef<'_> {
            self.mapper.mappable()
        }
    }

    fn big_test_mapper() -> TestMapper {
        TestMapper::new(1024 * 1024).unwrap()
    }

    #[test]
    fn test_basic_alloc() {
        let pfn_bias = 15;
        let pool = PagePool::new(
            &[MemoryRange::from_4k_gpn_range(10..30)],
            BiasedMapper::new(big_test_mapper(), pfn_bias * PAGE_SIZE),
        )
        .unwrap();
        let alloc = pool.allocator("test".into()).unwrap();

        let a1 = alloc.alloc(5.try_into().unwrap(), "alloc1".into()).unwrap();
        assert_eq!(a1.base_pfn, 10);
        assert_eq!(a1.base_pfn(), a1.base_pfn + pfn_bias);
        assert_eq!(a1.base_pfn_without_bias(), a1.base_pfn);
        assert_eq!(a1.size_pages, 5);

        let a2 = alloc
            .alloc(15.try_into().unwrap(), "alloc2".into())
            .unwrap();
        assert_eq!(a2.base_pfn, 15);
        assert_eq!(a2.base_pfn(), a2.base_pfn + pfn_bias);
        assert_eq!(a2.base_pfn_without_bias(), a2.base_pfn);
        assert_eq!(a2.size_pages, 15);

        assert!(alloc.alloc(1.try_into().unwrap(), "failed".into()).is_err());

        drop(a1);
        drop(a2);

        let inner = alloc.inner.state.lock();
        assert_eq!(inner.slots.len(), 2);
    }

    #[test]
    fn test_duplicate_device_name() {
        let pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..30)], big_test_mapper()).unwrap();
        let _alloc = pool.allocator("test".into()).unwrap();

        assert!(pool.allocator("test".into()).is_err());
    }

    #[test]
    fn test_dropping_allocator() {
        let pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..40)], big_test_mapper()).unwrap();
        let alloc = pool.allocator("test".into()).unwrap();
        let _alloc2 = pool.allocator("test2".into()).unwrap();

        let _a1 = alloc.alloc(5.try_into().unwrap(), "alloc1".into()).unwrap();
        let _a2 = alloc
            .alloc(15.try_into().unwrap(), "alloc2".into())
            .unwrap();

        drop(alloc);

        let alloc = pool.allocator("test".into()).unwrap();
        let _a3 = alloc.alloc(5.try_into().unwrap(), "alloc3".into()).unwrap();
    }

    #[test]
    fn test_save_restore() {
        let mut pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..30)], big_test_mapper()).unwrap();
        let alloc = pool.allocator("test".into()).unwrap();

        let a1 = alloc.alloc(5.try_into().unwrap(), "alloc1".into()).unwrap();
        let a1_pfn = a1.base_pfn();
        let a1_size = a1.size_pages;

        let a2 = alloc
            .alloc(15.try_into().unwrap(), "alloc2".into())
            .unwrap();
        let a2_pfn = a2.base_pfn();
        let a2_size = a2.size_pages;

        let state = pool.save().unwrap();

        let mut pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..30)], big_test_mapper()).unwrap();
        pool.restore(state).unwrap();
        let alloc = pool.allocator("test".into()).unwrap();

        let restored_a1 = alloc
            .restore_alloc(a1_pfn, a1_size.try_into().unwrap())
            .unwrap();
        let restored_a2 = alloc
            .restore_alloc(a2_pfn, a2_size.try_into().unwrap())
            .unwrap();

        assert_eq!(restored_a1.base_pfn(), a1_pfn);
        assert_eq!(restored_a1.size_pages, a1_size);

        assert_eq!(restored_a2.base_pfn(), a2_pfn);
        assert_eq!(restored_a2.size_pages, a2_size);

        pool.validate_restore(false).unwrap();
    }

    #[test]
    fn test_save_restore_unmatched_allocations() {
        let mut pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..30)], big_test_mapper()).unwrap();

        let alloc = pool.allocator("test".into()).unwrap();
        let _a1 = alloc.alloc(5.try_into().unwrap(), "alloc1".into()).unwrap();

        let state = pool.save().unwrap();

        let mut pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..30)], big_test_mapper()).unwrap();

        pool.restore(state).unwrap();

        assert!(pool.validate_restore(false).is_err());
    }

    #[test]
    fn test_restore_other_allocator() {
        let mut pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..30)], big_test_mapper()).unwrap();

        let alloc = pool.allocator("test".into()).unwrap();
        let a1 = alloc.alloc(5.try_into().unwrap(), "alloc1".into()).unwrap();

        let state = pool.save().unwrap();

        let mut pool =
            PagePool::new(&[MemoryRange::from_4k_gpn_range(10..30)], big_test_mapper()).unwrap();

        pool.restore(state).unwrap();

        let alloc = pool.allocator("test2".into()).unwrap();
        assert!(
            alloc
                .restore_alloc(a1.base_pfn, a1.size_pages.try_into().unwrap())
                .is_err()
        );
    }

    #[test]
    fn test_mapping() {
        let pool = PagePool::new(
            &[MemoryRange::from_4k_gpn_range(0..30)],
            TestMapper::new(30).unwrap(),
        )
        .unwrap();
        let alloc = pool.allocator("test".into()).unwrap();

        let a1 = alloc.alloc(5.try_into().unwrap(), "alloc1".into()).unwrap();
        let a1_mapping = a1.mapping();
        assert_eq!(a1_mapping.len(), 5 * PAGE_SIZE as usize);
        a1_mapping[123..][..4].atomic_write(&[1, 2, 3, 4]);
        let mut data = [0; 4];
        a1_mapping[123..][..4].atomic_read(&mut data);
        assert_eq!(data, [1, 2, 3, 4]);
        let mut data = [0; 2];
        a1_mapping[125..][..2].atomic_read(&mut data);
        assert_eq!(data, [3, 4]);
    }
}