oversized_box/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! This crate provides a `Box`-like type that is allocated larger than
//! necessary.
//!
//! This allows it to be reused for objects of different sizes without
//! reallocating.
// UNSAFETY: Manual memory management and pointer manipulation.
#![expect(unsafe_code)]
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ops::Deref;
use std::ops::DerefMut;
use std::pin::Pin;
use std::ptr::NonNull;
/// A `Box` for `T` with an allocation whose size and alignment is the same as
/// `S`.
pub struct OversizedBox<T: ?Sized, S> {
ptr: NonNull<T>,
phantom: PhantomData<*mut S>,
}
struct AssertFits<T, S>(PhantomData<(T, S)>);
impl<T, S> AssertFits<T, S> {
const ASSERT: bool = {
if size_of::<T>() > size_of::<S>() {
panic!("T does not fit in S");
}
if align_of::<T>() > align_of::<S>() {
panic!("T has greater alignment than S does");
}
true
};
}
// SAFETY: passing through Send from T.
unsafe impl<T: ?Sized + Send, S> Send for OversizedBox<T, S> {}
// SAFETY: passing through Sync from T.
unsafe impl<T: ?Sized + Sync, S> Sync for OversizedBox<T, S> {}
impl<T: ?Sized, S> Unpin for OversizedBox<T, S> {}
impl<T, S> OversizedBox<T, S> {
/// Allocates a new box and inserts `t`.
///
/// ```rust
/// # use oversized_box::OversizedBox;
/// OversizedBox::<_, u64>::new(0u32);
/// ```
///
/// Fails to compile if `T`'s size or alignment is larger than `S`'s.
///
/// ```compile_fail
/// # use oversized_box::OversizedBox;
/// OversizedBox::<_, u32>::new(0u64);
/// ```
pub fn new(t: T) -> Self {
let _ = AssertFits::<T, S>::ASSERT;
let ptr = Box::into_raw(Box::new(MaybeUninit::<S>::uninit())).cast::<T>();
// SAFETY: `ptr` is a valid write target for `t`.
unsafe { ptr.write(t) };
Self {
ptr: NonNull::new(ptr).unwrap(),
phantom: PhantomData,
}
}
/// Allocates a new box, inserts `t`, and pins the box.
pub fn pin(t: T) -> Pin<Self> {
Self::into_pin(Self::new(t))
}
}
impl<T: ?Sized, S> OversizedBox<T, S> {
/// Drops the current contents of the box, then replaces them with `t`.
///
/// Returns the new box, which may have a different type from the current
/// one.
///
/// Panics if `T2`'s size or alignment is larger than `S`'s.
pub fn refill<T2>(this: Self, t: T2) -> OversizedBox<T2, S> {
let _ = AssertFits::<T2, S>::ASSERT;
// SAFETY: `ptr` uniquely owns the T we are dropping.
unsafe { std::ptr::drop_in_place(this.ptr.as_ptr()) };
let other = OversizedBox {
ptr: this.ptr.cast::<T2>(),
phantom: PhantomData,
};
std::mem::forget(this);
// SAFETY: `ptr` is now a valid target for writes of T2.
unsafe { other.ptr.as_ptr().write(t) };
other
}
/// Empties the box, dropping the contents but preserving the allocation.
pub fn empty(this: Self) -> OversizedBox<(), S> {
Self::refill(this, ())
}
/// Empties a pinned box, dropping the contents but preserving the
/// allocation.
pub fn empty_pinned(this: Pin<Self>) -> OversizedBox<(), S> {
// SAFETY: `empty` will just drop the current contents and not
// otherwise access it. The pinned object has no more references, so it
// does not violate any pin invariants to drop it and reuse the memory.
Self::empty(unsafe { Pin::into_inner_unchecked(this) })
}
/// Pins the box.
pub fn into_pin(this: Self) -> Pin<Self> {
// SAFETY: the underlying object is allocated on the heap and will not
// move until dropped.
unsafe { Pin::new_unchecked(this) }
}
/// Consumes `this` and returns the allocation plus the phantom data
/// specifying the allocation type.
///
/// The phantom data is returned to make `coerce!` work.
pub fn into_raw(this: Self) -> (NonNull<T>, PhantomData<*mut S>) {
let Self { ptr, phantom } = this;
std::mem::forget(this);
(ptr, phantom)
}
/// Re-creates the box from the allocation plus phantom data specifying the
/// underlying allocation type.
///
/// The phantom data is consumed to make `coerce!` work.
///
/// # Safety
///
/// `t` must have been returned from `into_raw`.
pub unsafe fn from_raw(t: NonNull<T>, s: PhantomData<*mut S>) -> Self {
Self { ptr: t, phantom: s }
}
}
/// Coerces an oversized box.
///
/// This is necessary because [`std::ops::CoerceUnsized`] is not stable.
///
/// # Example
///
/// ```rust
/// # use oversized_box::OversizedBox;
/// let x = OversizedBox::<_, u64>::new(5u32);
/// let y: OversizedBox<dyn Send, u64> = oversized_box::coerce!(x);
/// ```
///
/// You cannot use this to change the storage type. This will fail to build.
///
/// ```compile_fail
/// # use oversized_box::OversizedBox;
/// let x = OversizedBox::<_, u64>::new(5u32);
/// let y: OversizedBox<dyn Send, u32> = oversized_box::coerce!(x);
/// ```
#[macro_export]
macro_rules! coerce {
($e:expr) => {
{
let e: OversizedBox<_, _> = $e;
let (t, s) = OversizedBox::into_raw(e);
// SAFETY: This will coerce `t` and `s` using normal coercion rules.
// Because `s` is a *mut S, it is invariant and will not coerce,
// which is what we want. But `t` is a NonNull<T>, so it will coerce
// to NonNull<T2> if T coerces to T2, which again is what we want.
unsafe { OversizedBox::from_raw(t, s) }
}
};
}
impl<T: ?Sized, S> Drop for OversizedBox<T, S> {
fn drop(&mut self) {
// SAFETY: `self.ptr` is owned and contains a T. But it's backed back a
// Box<MaybeUninit<S>>.
unsafe {
std::ptr::drop_in_place(self.ptr.as_ptr());
drop(Box::from_raw(self.ptr.as_ptr().cast::<MaybeUninit<S>>()));
}
}
}
impl<T: ?Sized, S> Deref for OversizedBox<T, S> {
type Target = T;
fn deref(&self) -> &Self::Target {
// SAFETY: ptr is valid for read.
unsafe { self.ptr.as_ref() }
}
}
impl<T: ?Sized, S> DerefMut for OversizedBox<T, S> {
fn deref_mut(&mut self) -> &mut Self::Target {
// SAFETY: ptr is valid for write.
unsafe { self.ptr.as_mut() }
}
}
impl<T: ?Sized, S> AsRef<T> for OversizedBox<T, S> {
fn as_ref(&self) -> &T {
self
}
}
impl<T: ?Sized, S> AsMut<T> for OversizedBox<T, S> {
fn as_mut(&mut self) -> &mut T {
self
}
}
impl<T: ?Sized, S> From<OversizedBox<T, S>> for Pin<OversizedBox<T, S>> {
fn from(this: OversizedBox<T, S>) -> Self {
OversizedBox::into_pin(this)
}
}
#[cfg(test)]
mod tests {
use crate::OversizedBox;
use std::fmt::Display;
#[test]
fn basic_test() {
let x = OversizedBox::<_, [usize; 3]>::new(5u32);
println!("{}", x.as_ref());
let x = OversizedBox::refill(x, "now it's a string");
println!("{}", x.as_ref());
let x = OversizedBox::empty(x);
let x = OversizedBox::refill(x, "string again");
println!("{}", x.as_ref());
let x: OversizedBox<dyn Display, _> = coerce!(x);
println!("dyn {}", x.as_ref());
}
}