openhcl_boot/
main.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! The openhcl boot loader, which loads before the kernel to set up the
//! kernel's boot parameters.

// See build.rs.
#![cfg_attr(minimal_rt, no_std, no_main)]
// UNSAFETY: Interacting with low level hardware and bootloader primitives.
#![expect(unsafe_code)]

mod arch;
mod boot_logger;
mod cmdline;
mod dt;
mod host_params;
mod hypercall;
mod rt;
mod sidecar;
mod single_threaded;

use crate::arch::setup_vtl2_memory;
use crate::arch::setup_vtl2_vp;
#[cfg(target_arch = "x86_64")]
use crate::arch::tdx::get_tdx_tsc_reftime;
use crate::arch::verify_imported_regions_hash;
use crate::boot_logger::boot_logger_init;
use crate::boot_logger::log;
use crate::hypercall::hvcall;
use crate::single_threaded::off_stack;
use arrayvec::ArrayString;
use arrayvec::ArrayVec;
use boot_logger::LoggerType;
use core::fmt::Write;
use dt::BootTimes;
use dt::write_dt;
use host_params::COMMAND_LINE_SIZE;
use host_params::PartitionInfo;
use host_params::shim_params::IsolationType;
use host_params::shim_params::ShimParams;
use hvdef::Vtl;
use loader_defs::linux::SETUP_DTB;
use loader_defs::linux::setup_data;
use loader_defs::shim::ShimParamsRaw;
use memory_range::MemoryRange;
use memory_range::RangeWalkResult;
use memory_range::merge_adjacent_ranges;
use memory_range::walk_ranges;
use minimal_rt::enlightened_panic::enable_enlightened_panic;
use sidecar::SidecarConfig;
use sidecar_defs::SidecarOutput;
use sidecar_defs::SidecarParams;
use single_threaded::OffStackRef;
use zerocopy::FromBytes;
use zerocopy::FromZeros;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

#[derive(Debug)]
struct CommandLineTooLong;

impl From<core::fmt::Error> for CommandLineTooLong {
    fn from(_: core::fmt::Error) -> Self {
        Self
    }
}

/// Read and setup the underhill kernel command line into the specified buffer.
fn build_kernel_command_line(
    params: &ShimParams,
    cmdline: &mut ArrayString<COMMAND_LINE_SIZE>,
    partition_info: &PartitionInfo,
    can_trust_host: bool,
    sidecar: Option<&SidecarConfig<'_>>,
) -> Result<(), CommandLineTooLong> {
    // For reference:
    // https://www.kernel.org/doc/html/v5.15/admin-guide/kernel-parameters.html
    const KERNEL_PARAMETERS: &[&str] = &[
        // If a console is specified, then write everything to it.
        "loglevel=8",
        // Use a fixed 128KB log buffer by default.
        "log_buf_len=128K",
        // Enable time output on console for ohcldiag-dev.
        "printk.time=1",
        // Enable facility and level output on console for ohcldiag-dev.
        "console_msg_format=syslog",
        // Set uio parameter to configure vmbus ring buffer behavior.
        "uio_hv_generic.no_mask=1",
        // RELIABILITY: Dump anonymous pages and ELF headers only. Skip over
        // huge pages and the shared pages.
        "coredump_filter=0x33",
        // PERF: No processor frequency governing.
        "cpufreq.off=1",
        // PERF: Disable the CPU idle time management entirely. It does not
        // prevent the idle loop from running on idle CPUs, but it prevents
        // the CPU idle time governors and drivers from being invoked.
        "cpuidle.off=1",
        // PERF: No perf checks for crypto algorithms to boot faster.
        // Would have to evaluate the perf wins on the crypto manager vs
        // delaying the boot up.
        "cryptomgr.notests",
        // PERF: Idle threads use HLT on x64 if there is no work.
        // Believed to be a compromise between waking up the processor
        // and the power consumption.
        "idle=halt",
        // WORKAROUND: Avoid init calls that assume presence of CMOS (Simple
        // Boot Flag) or allocate the real-mode trampoline for APs.
        "initcall_blacklist=init_real_mode,sbf_init",
        // CONFIG-STATIC, PERF: Static loops-per-jiffy value to save time on boot.
        "lpj=3000000",
        // PERF: No broken timer check to boot faster.
        "no_timer_check",
        // CONFIG-STATIC, PERF: Using xsave makes VTL transitions being
        // much slower. The xsave state is shared between VTLs, and we don't
        // context switch it in the kernel when leaving/entering VTL2.
        // Removing this will lead to corrupting register state and the
        // undefined behaviour.
        "noxsave",
        // RELIABILITY: Panic on MCEs and faults in the kernel.
        "oops=panic",
        // RELIABILITY: Don't panic on kernel warnings.
        "panic_on_warn=0",
        // PERF, RELIABILITY: Don't print detailed information about the failing
        // processes (memory maps, threads).
        "panic_print=0",
        // RELIABILITY: Reboot immediately on panic, no timeout.
        "panic=-1",
        // RELIABILITY: Don't print processor context information on a fatal
        // signal. Our crash dump collection infrastructure seems reliable, and
        // this information doesn't seem useful without a dump anyways.
        // Additionally it may push important logs off the end of the kmsg
        // page logged by the host.
        //"print_fatal_signals=0",
        // RELIABILITY: Unlimited logging to /dev/kmsg from userspace.
        "printk.devkmsg=on",
        // RELIABILITY: Reboot using a triple fault as the fastest method.
        // That is also the method used for compatibility with earlier versions
        // of the Microsoft HCL.
        "reboot=t",
        // CONFIG-STATIC: Type of the root file system.
        "rootfstype=tmpfs",
        // PERF: Deactivate kcompactd kernel thread, otherwise it will queue a
        // scheduler timer periodically, which introduces jitters for VTL0.
        "sysctl.vm.compaction_proactiveness=0",
        // PERF: No TSC stability check when booting up to boot faster,
        // also no validation during runtime.
        "tsc=reliable",
        // RELIABILITY: Panic on receiving an NMI.
        "unknown_nmi_panic=1",
        // Use vfio for MANA devices.
        "vfio_pci.ids=1414:00ba",
        // WORKAROUND: Enable no-IOMMU mode. This mode provides no device isolation,
        // and no DMA translation.
        "vfio.enable_unsafe_noiommu_mode=1",
        // Specify the init path.
        "rdinit=/underhill-init",
        // Default to user-mode NVMe driver.
        "OPENHCL_NVME_VFIO=1",
        // The next three items reduce the memory overhead of the storvsc driver.
        // Since it is only used for DVD, performance is not critical.
        "hv_storvsc.storvsc_vcpus_per_sub_channel=2048",
        // Fix number of hardware queues at 2.
        "hv_storvsc.storvsc_max_hw_queues=2",
        // Reduce the ring buffer size to 32K.
        "hv_storvsc.storvsc_ringbuffer_size=0x8000",
        // Disable eager mimalloc commit to prevent core dumps from being overly large
        "MIMALLOC_ARENA_EAGER_COMMIT=0",
    ];

    const X86_KERNEL_PARAMETERS: &[&str] = &[
        // Disable pcid support. This is a temporary fix to allow
        // Underhill to run nested inside AMD VMs. Otherwise, the
        // Underhill kernel tries to start APs with PCID bits set in CR3
        // without the PCIDE bit set in CR4, which is an invalid
        // VP state (according to the mshv nested implementation).
        //
        // TODO: remove this once we figure out the root cause and apply
        // a workaround/fix elsewhere.
        "clearcpuid=pcid",
        // Disable all attempts to use an IOMMU, including swiotlb.
        "iommu=off",
        // Don't probe for a PCI bus. PCI devices currently come from VPCI. When
        // this changes, we will explicitly enumerate a PCI bus via devicetree.
        "pci=off",
    ];

    const AARCH64_KERNEL_PARAMETERS: &[&str] = &[];

    for p in KERNEL_PARAMETERS {
        write!(cmdline, "{p} ")?;
    }

    let arch_parameters = if cfg!(target_arch = "x86_64") {
        X86_KERNEL_PARAMETERS
    } else {
        AARCH64_KERNEL_PARAMETERS
    };
    for p in arch_parameters {
        write!(cmdline, "{p} ")?;
    }

    const HARDWARE_ISOLATED_KERNEL_PARAMETERS: &[&str] = &[
        // Even with iommu=off, the SWIOTLB is still allocated on AARCH64
        // (iommu=off ignored entirely), and CVMs (memory encryption forces it
        // on). Set it to a single area in 8MB. The first parameter controls the
        // area size in slabs (2KB per slab), the second controls the number of
        // areas (default is # of CPUs).
        //
        // This is set to 8MB on hardware isolated VMs since there are some
        // scenarios, such as provisioning over DVD, which require a larger size
        // since the buffer is being used.
        "swiotlb=4096,1",
    ];

    const NON_HARDWARE_ISOLATED_KERNEL_PARAMETERS: &[&str] = &[
        // Even with iommu=off, the SWIOTLB is still allocated on AARCH64
        // (iommu=off ignored entirely). Set it to the minimum, saving ~63 MiB.
        // The first parameter controls the area size, the second controls the
        // number of areas (default is # of CPUs). Set them both to the minimum.
        "swiotlb=1,1",
    ];

    if params.isolation_type.is_hardware_isolated() {
        for p in HARDWARE_ISOLATED_KERNEL_PARAMETERS {
            write!(cmdline, "{p} ")?;
        }
    } else {
        for p in NON_HARDWARE_ISOLATED_KERNEL_PARAMETERS {
            write!(cmdline, "{p} ")?;
        }
    }

    // Enable the com3 console by default if it's available and we're not
    // isolated, or if we are isolated but also have debugging enabled.
    //
    // Otherwise, set the console to ttynull so the kernel does not default to
    // com1. This is overridden by any user customizations in the static or
    // dynamic command line, as this console argument provided by the bootloader
    // comes first.
    let console = if partition_info.com3_serial_available && can_trust_host {
        "ttyS2,115200"
    } else {
        "ttynull"
    };
    write!(cmdline, "console={console} ")?;

    if params.isolation_type != IsolationType::None {
        write!(
            cmdline,
            "{}=1 ",
            underhill_confidentiality::OPENHCL_CONFIDENTIAL_ENV_VAR_NAME
        )?;
    }

    // Only when explicitly supported by Host.
    // TODO: Move from command line to device tree when stabilized.
    if partition_info.nvme_keepalive && !partition_info.vtl2_pool_memory.is_empty() {
        write!(cmdline, "OPENHCL_NVME_KEEP_ALIVE=1 ")?;
    }

    if let Some(sidecar) = sidecar {
        write!(cmdline, "{} ", sidecar.kernel_command_line())?;
    }

    // If we're isolated we can't trust the host-provided cmdline
    if can_trust_host {
        let old_cmdline = &partition_info.cmdline;

        // HACK: See if we should set the vmbus connection id via kernel
        // commandline. It may already be set, and we don't want to set it again.
        //
        // This code will be removed when the kernel supports setting connection id
        // via device tree.
        if !old_cmdline.contains("hv_vmbus.message_connection_id=") {
            write!(
                cmdline,
                "hv_vmbus.message_connection_id=0x{:x} ",
                partition_info.vmbus_vtl2.connection_id
            )?;
        }

        // Prepend the computed parameters to the original command line.
        cmdline.write_str(old_cmdline)?;
    }

    Ok(())
}

// The Linux kernel requires that the FDT fit within a single 256KB mapping, as
// that is the maximum size the kernel can use during its early boot processes.
// We also want our FDT to be as large as possible to support as many vCPUs as
// possible. We set it to 256KB, but it must also be page-aligned, as leaving it
// unaligned runs the possibility of it taking up 1 too many pages, resulting in
// a 260KB mapping, which will fail.
const FDT_SIZE: usize = 256 * 1024;

#[repr(C, align(4096))]
#[derive(FromBytes, IntoBytes, Immutable, KnownLayout)]
struct Fdt {
    header: setup_data,
    data: [u8; FDT_SIZE - size_of::<setup_data>()],
}

/// Raw shim parameters are provided via a relative offset from the base of
/// where the shim is loaded. Return a ShimParams structure based on the raw
/// offset based RawShimParams.
fn shim_parameters(shim_params_raw_offset: isize) -> ShimParams {
    unsafe extern "C" {
        static __ehdr_start: u8;
    }

    let shim_base = core::ptr::addr_of!(__ehdr_start) as usize;

    // SAFETY: The host is required to relocate everything by the same bias, so
    //         the shim parameters should be at the build time specified offset
    //         from the base address of the image.
    let raw_shim_params = unsafe {
        &*(shim_base.wrapping_add_signed(shim_params_raw_offset) as *const ShimParamsRaw)
    };

    ShimParams::new(shim_base as u64, raw_shim_params)
}

/// The maximum number of reserved memory ranges that we might use.
/// See ReservedMemoryType definition for details.
pub const MAX_RESERVED_MEM_RANGES: usize = 5 + sidecar_defs::MAX_NODES;

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum ReservedMemoryType {
    /// VTL2 parameter regions (could be up to 2).
    Vtl2Config,
    /// Reserved memory that should not be used by the kernel or usermode. There
    /// should only be one.
    Vtl2Reserved,
    /// Sidecar image. There should only be one.
    SidecarImage,
    /// A reserved range per sidecar node.
    SidecarNode,
    /// Persistent VTL2 memory used for page allocations in usermode. This
    /// memory is persisted, both location and contents, across servicing.
    /// Today, we only support a single range.
    Vtl2GpaPool,
}

/// Construct a slice representing the reserved memory ranges to be reported to
/// VTL2.
fn reserved_memory_regions(
    partition_info: &PartitionInfo,
    sidecar: Option<&SidecarConfig<'_>>,
) -> OffStackRef<'static, impl AsRef<[(MemoryRange, ReservedMemoryType)]> + use<>> {
    let mut reserved = off_stack!(ArrayVec<(MemoryRange, ReservedMemoryType), MAX_RESERVED_MEM_RANGES>, ArrayVec::new_const());
    reserved.clear();
    reserved.extend(
        partition_info
            .vtl2_config_regions()
            .map(|r| (r, ReservedMemoryType::Vtl2Config)),
    );
    if let Some(sidecar) = sidecar {
        reserved.push((sidecar.image, ReservedMemoryType::SidecarImage));
        reserved.extend(sidecar.node_params.iter().map(|x| {
            (
                MemoryRange::new(x.memory_base..x.memory_base + x.memory_size),
                ReservedMemoryType::SidecarNode,
            )
        }));
    }

    // Add the VTL2 reserved region, if it exists.
    if !partition_info.vtl2_reserved_region.is_empty() {
        reserved.push((
            partition_info.vtl2_reserved_region,
            ReservedMemoryType::Vtl2Reserved,
        ));
    }

    // Add any VTL2 private pool.
    if partition_info.vtl2_pool_memory != MemoryRange::EMPTY {
        reserved.push((
            partition_info.vtl2_pool_memory,
            ReservedMemoryType::Vtl2GpaPool,
        ));
    }

    reserved
        .as_mut()
        .sort_unstable_by_key(|(r, _typ)| r.start());

    // Now flatten the ranges to avoid having more reserved ranges than
    // necessary.
    //
    // You can also imagine doing this with `dedup_by`, but `ArrayVec` doesn't
    // implement that.
    let mut flattened = off_stack!(ArrayVec<(MemoryRange, ReservedMemoryType), MAX_RESERVED_MEM_RANGES>, ArrayVec::new_const());
    flattened.clear();
    flattened.extend(merge_adjacent_ranges(reserved.iter().copied()));
    flattened
}

#[cfg_attr(not(target_arch = "x86_64"), expect(dead_code))]
mod x86_boot {
    use crate::PageAlign;
    use crate::ReservedMemoryType;
    use crate::host_params::PartitionInfo;
    use crate::single_threaded::OffStackRef;
    use crate::single_threaded::off_stack;
    use crate::zeroed;
    use core::mem::size_of;
    use core::ops::Range;
    use core::ptr;
    use loader_defs::linux::E820_RAM;
    use loader_defs::linux::E820_RESERVED;
    use loader_defs::linux::SETUP_E820_EXT;
    use loader_defs::linux::boot_params;
    use loader_defs::linux::e820entry;
    use loader_defs::linux::setup_data;
    use memory_range::MemoryRange;
    use memory_range::RangeWalkResult;
    use memory_range::walk_ranges;
    use zerocopy::FromZeros;
    use zerocopy::Immutable;
    use zerocopy::KnownLayout;

    #[repr(C)]
    #[derive(FromZeros, Immutable, KnownLayout)]
    pub struct E820Ext {
        pub header: setup_data,
        pub entries: [e820entry; 512],
    }

    fn add_e820_entry(
        entry: Option<&mut e820entry>,
        range: MemoryRange,
        typ: u32,
    ) -> Result<(), BuildE820MapError> {
        *entry.ok_or(BuildE820MapError::OutOfE820Entries)? = e820entry {
            addr: range.start().into(),
            size: range.len().into(),
            typ: typ.into(),
        };
        Ok(())
    }

    #[derive(Debug)]
    pub enum BuildE820MapError {
        /// Parameter region not fully covered by VTL2 ram.
        ReservedRegionNotCovered,
        /// Out of e820 entries.
        OutOfE820Entries,
    }

    /// Build the e820 map for the kernel representing usable VTL2 ram.
    pub fn build_e820_map(
        boot_params: &mut boot_params,
        ext: &mut E820Ext,
        partition_info: &PartitionInfo,
        reserved: &[(MemoryRange, ReservedMemoryType)],
    ) -> Result<bool, BuildE820MapError> {
        boot_params.e820_entries = 0;
        let mut entries = boot_params
            .e820_map
            .iter_mut()
            .chain(ext.entries.iter_mut());

        let mut n = 0;
        for (range, r) in walk_ranges(
            partition_info.vtl2_ram.iter().map(|e| (e.range, ())),
            reserved.iter().map(|&(r, _)| (r, ())),
        ) {
            match r {
                RangeWalkResult::Neither => {}
                RangeWalkResult::Left(_) => {
                    add_e820_entry(entries.next(), range, E820_RAM)?;
                    n += 1;
                }
                RangeWalkResult::Right(_) => {
                    return Err(BuildE820MapError::ReservedRegionNotCovered);
                }
                RangeWalkResult::Both(_, _) => {
                    add_e820_entry(entries.next(), range, E820_RESERVED)?;
                    n += 1;
                }
            }
        }

        let base = n.min(boot_params.e820_map.len());
        boot_params.e820_entries = base as u8;
        if base < n {
            ext.header.len = ((n - base) * size_of::<e820entry>()) as u32;
            Ok(true)
        } else {
            Ok(false)
        }
    }

    pub fn build_boot_params(
        partition_info: &PartitionInfo,
        reserved_memory: &[(MemoryRange, ReservedMemoryType)],
        initrd: Range<u64>,
        cmdline: &str,
        setup_data_head: *const setup_data,
        setup_data_tail: &mut &mut setup_data,
    ) -> OffStackRef<'static, PageAlign<boot_params>> {
        let mut boot_params_storage = off_stack!(PageAlign<boot_params>, zeroed());
        let boot_params = &mut boot_params_storage.0;
        boot_params.hdr.type_of_loader = 0xff; // Unknown loader type

        // HACK: A kernel change just in the Underhill kernel tree has a workaround
        // to disable probe_roms and reserve_bios_regions when X86_SUBARCH_LGUEST
        // (1) is set by the bootloader. This stops the kernel from reading VTL0
        // memory during kernel boot, which can have catastrophic consequences
        // during a servicing operation when VTL0 has written values to memory, or
        // unaccepted page accesses in an isolated partition.
        //
        // This is only intended as a stopgap until a suitable upstreamable kernel
        // patch is made.
        boot_params.hdr.hardware_subarch = 1.into();

        boot_params.hdr.ramdisk_image = (initrd.start as u32).into();
        boot_params.ext_ramdisk_image = (initrd.start >> 32) as u32;
        let initrd_len = initrd.end - initrd.start;
        boot_params.hdr.ramdisk_size = (initrd_len as u32).into();
        boot_params.ext_ramdisk_size = (initrd_len >> 32) as u32;

        let e820_ext = OffStackRef::leak(off_stack!(E820Ext, zeroed()));

        let used_ext = build_e820_map(boot_params, e820_ext, partition_info, reserved_memory)
            .expect("building e820 map must succeed");

        if used_ext {
            e820_ext.header.ty = SETUP_E820_EXT;
            setup_data_tail.next = ptr::from_ref(&e820_ext.header) as u64;
            *setup_data_tail = &mut e820_ext.header;
        }

        let cmd_line_addr = cmdline.as_ptr() as u64;
        boot_params.hdr.cmd_line_ptr = (cmd_line_addr as u32).into();
        boot_params.ext_cmd_line_ptr = (cmd_line_addr >> 32) as u32;

        boot_params.hdr.setup_data = (setup_data_head as u64).into();
        boot_params_storage
    }
}

/// Build the cc_blob containing the location of different parameters associated with SEV.
#[cfg(target_arch = "x86_64")]
fn build_cc_blob_sev_info(
    cc_blob: &mut loader_defs::linux::cc_blob_sev_info,
    shim_params: &ShimParams,
) {
    // TODO SNP: Currently only the first CPUID page is passed through.
    // Consider changing this.
    cc_blob.magic = loader_defs::linux::CC_BLOB_SEV_INFO_MAGIC;
    cc_blob.version = 0;
    cc_blob._reserved = 0;
    cc_blob.secrets_phys = shim_params.secrets_start();
    cc_blob.secrets_len = hvdef::HV_PAGE_SIZE as u32;
    cc_blob._rsvd1 = 0;
    cc_blob.cpuid_phys = shim_params.cpuid_start();
    cc_blob.cpuid_len = hvdef::HV_PAGE_SIZE as u32;
    cc_blob._rsvd2 = 0;
}

#[repr(C, align(4096))]
#[derive(FromZeros, Immutable, KnownLayout)]
struct PageAlign<T>(T);

const fn zeroed<T: FromZeros>() -> T {
    // SAFETY: `T` implements `FromZeros`, so this is a safe initialization of `T`.
    unsafe { core::mem::MaybeUninit::<T>::zeroed().assume_init() }
}

fn get_ref_time(isolation: IsolationType) -> Option<u64> {
    match isolation {
        #[cfg(target_arch = "x86_64")]
        IsolationType::Tdx => get_tdx_tsc_reftime(),
        #[cfg(target_arch = "x86_64")]
        IsolationType::Snp => None,
        _ => Some(minimal_rt::reftime::reference_time()),
    }
}

fn shim_main(shim_params_raw_offset: isize) -> ! {
    let p = shim_parameters(shim_params_raw_offset);

    // The support code for the fast hypercalls does not set
    // the Guest ID if it is not set yet as opposed to the slow
    // hypercall code path where that is done automatically.
    // Thus the fast hypercalls will fail as the the Guest ID has
    // to be set first hence initialize hypercall support
    // explicitly.
    //
    // In the hardware-isolated case, the hypervisor cannot
    // access the guest registers so the fast hypercalls and
    // any other methods of passing data to/from the hypervisor
    // via the CPU registers (e.g. CPUID, hypercall call code or
    // status) do not work, and the `hvcall()` doesn't have
    // provisions for the hardware-isolated case.
    if !p.isolation_type.is_hardware_isolated() {
        hvcall().initialize();
        if p.isolation_type == IsolationType::None {
            enable_enlightened_panic();
        }
    }

    // Enable early log output if requested in the static command line.
    // Also check for confidential debug mode if we're isolated.
    let static_options =
        cmdline::parse_boot_command_line(p.command_line().command_line().unwrap_or(""));
    if let Some(typ) = static_options.logger {
        boot_logger_init(p.isolation_type, typ);
        log!("openhcl_boot: early debugging enabled");
    }

    let can_trust_host =
        p.isolation_type == IsolationType::None || static_options.confidential_debug;

    let boot_reftime = get_ref_time(p.isolation_type);

    let mut dt_storage = off_stack!(PartitionInfo, PartitionInfo::new());
    let partition_info = match PartitionInfo::read_from_dt(&p, &mut dt_storage, can_trust_host) {
        Ok(Some(val)) => val,
        Ok(None) => panic!("host did not provide a device tree"),
        Err(e) => panic!("unable to read device tree params {}", e),
    };

    // Fill out the non-devicetree derived parts of PartitionInfo.
    if !p.isolation_type.is_hardware_isolated()
        && hvcall().vtl() == Vtl::Vtl2
        && hvdef::HvRegisterVsmCapabilities::from(
            hvcall()
                .get_register(hvdef::HvAllArchRegisterName::VsmCapabilities.into())
                .expect("failed to query vsm capabilities")
                .as_u64(),
        )
        .vtl0_alias_map_available()
    {
        // If the vtl0 alias map was not provided in the devicetree, attempt to
        // derive it from the architectural physical address bits.
        //
        // The value in the ID_AA64MMFR0_EL1 register used to determine the
        // physical address bits can only represent multiples of 4. As a result,
        // the Surface Pro X (and systems with similar CPUs) cannot properly
        // report their address width of 39 bits. This causes the calculated
        // alias map to be incorrect, which results in panics when trying to
        // read memory and getting invalid data.
        if partition_info.vtl0_alias_map.is_none() {
            partition_info.vtl0_alias_map =
                Some(1 << (arch::physical_address_bits(p.isolation_type) - 1));
        }
    } else {
        // Ignore any devicetree-provided alias map if the conditions above
        // aren't met.
        partition_info.vtl0_alias_map = None;
    }

    if can_trust_host {
        // Enable late log output if requested in the dynamic command line.
        // Confidential debug is only allowed in the static command line.
        let dynamic_options = cmdline::parse_boot_command_line(&partition_info.cmdline);
        if let Some(typ) = dynamic_options.logger {
            boot_logger_init(p.isolation_type, typ);
        } else if partition_info.com3_serial_available && cfg!(target_arch = "x86_64") {
            // If COM3 is available and we can trust the host, enable log output even
            // if it wasn't otherwise requested.
            boot_logger_init(p.isolation_type, LoggerType::Serial);
        }
    }

    log!("openhcl_boot: entered shim_main");

    if partition_info.cpus.is_empty() {
        panic!("no cpus");
    }

    validate_vp_hw_ids(partition_info);

    setup_vtl2_vp(partition_info);
    setup_vtl2_memory(&p, partition_info);
    verify_imported_regions_hash(&p);

    let mut sidecar_params = off_stack!(PageAlign<SidecarParams>, zeroed());
    let mut sidecar_output = off_stack!(PageAlign<SidecarOutput>, zeroed());
    let sidecar = sidecar::start_sidecar(
        &p,
        partition_info,
        &mut sidecar_params.0,
        &mut sidecar_output.0,
    );

    let mut cmdline = off_stack!(ArrayString<COMMAND_LINE_SIZE>, ArrayString::new_const());
    build_kernel_command_line(
        &p,
        &mut cmdline,
        partition_info,
        can_trust_host,
        sidecar.as_ref(),
    )
    .unwrap();

    let mut fdt = off_stack!(Fdt, zeroed());
    fdt.header.len = fdt.data.len() as u32;
    fdt.header.ty = SETUP_DTB;

    #[cfg(target_arch = "x86_64")]
    let mut setup_data_tail = &mut fdt.header;
    #[cfg(target_arch = "x86_64")]
    let setup_data_head = core::ptr::from_ref(setup_data_tail);

    #[cfg(target_arch = "x86_64")]
    if p.isolation_type == IsolationType::Snp {
        let cc_blob = OffStackRef::leak(off_stack!(loader_defs::linux::cc_blob_sev_info, zeroed()));
        build_cc_blob_sev_info(cc_blob, &p);

        let cc_data = OffStackRef::leak(off_stack!(loader_defs::linux::cc_setup_data, zeroed()));
        cc_data.header.len = size_of::<loader_defs::linux::cc_setup_data>() as u32;
        cc_data.header.ty = loader_defs::linux::SETUP_CC_BLOB;
        cc_data.cc_blob_address = core::ptr::from_ref(&*cc_blob) as u32;

        // Chain in the setup data.
        setup_data_tail.next = core::ptr::from_ref(&*cc_data) as u64;
        setup_data_tail = &mut cc_data.header;
    }

    let reserved_memory = reserved_memory_regions(partition_info, sidecar.as_ref());
    let initrd = p.initrd_base..p.initrd_base + p.initrd_size;

    // Validate the initrd crc matches what was put at file generation time.
    let computed_crc = crc32fast::hash(p.initrd());
    assert_eq!(
        computed_crc, p.initrd_crc,
        "computed initrd crc does not match build time calculated crc"
    );

    #[cfg(target_arch = "x86_64")]
    let boot_params = x86_boot::build_boot_params(
        partition_info,
        reserved_memory.as_ref(),
        initrd.clone(),
        &cmdline,
        setup_data_head,
        &mut setup_data_tail,
    );

    // Compute the ending boot time. This has to be before writing to device
    // tree, so this is as late as we can do it.

    let boot_times = boot_reftime.map(|start| BootTimes {
        start,
        end: get_ref_time(p.isolation_type).unwrap_or(0),
    });

    // Validate that no imported regions that are pending are not part of vtl2
    // ram.
    for (range, result) in walk_ranges(
        partition_info.vtl2_ram.iter().map(|r| (r.range, ())),
        p.imported_regions(),
    ) {
        match result {
            RangeWalkResult::Neither | RangeWalkResult::Left(_) | RangeWalkResult::Both(_, _) => {}
            RangeWalkResult::Right(accepted) => {
                // Ranges that are not a part of VTL2 ram must have been
                // preaccepted, as usermode expect that to be the case.
                assert!(
                    accepted,
                    "range {:#x?} not in vtl2 ram was not preaccepted at launch",
                    range
                );
            }
        }
    }

    write_dt(
        &mut fdt.data,
        partition_info,
        reserved_memory.as_ref(),
        p.imported_regions().map(|r| {
            // Discard if the range was previously pending - the bootloader has
            // accepted all pending ranges.
            //
            // NOTE: No VTL0 memory today is marked as pending. The check above
            // validates that, and this code may need to change if this becomes
            // no longer true.
            r.0
        }),
        initrd,
        &cmdline,
        sidecar.as_ref(),
        boot_times,
    )
    .unwrap();

    rt::verify_stack_cookie();

    log!("uninitializing hypercalls, about to jump to kernel");
    hvcall().uninitialize();

    cfg_if::cfg_if! {
        if #[cfg(target_arch = "x86_64")] {
            // SAFETY: the parameter blob is trusted.
            let kernel_entry: extern "C" fn(u64, &loader_defs::linux::boot_params) -> ! =
                unsafe { core::mem::transmute(p.kernel_entry_address) };
            kernel_entry(0, &boot_params.0)
        } else if #[cfg(target_arch = "aarch64")] {
            // SAFETY: the parameter blob is trusted.
            let kernel_entry: extern "C" fn(fdt_data: *const u8, mbz0: u64, mbz1: u64, mbz2: u64) -> ! =
                unsafe { core::mem::transmute(p.kernel_entry_address) };
            // Disable MMU for kernel boot without EFI, as required by the boot protocol.
            // Flush (and invalidate) the caches, as that is required for disabling MMU.
            // SAFETY: Just changing a bit in the register and then jumping to the kernel.
            unsafe {
                core::arch::asm!(
                    "
                    mrs     {0}, sctlr_el1
                    bic     {0}, {0}, #0x1
                    msr     sctlr_el1, {0}
                    tlbi    vmalle1
                    dsb     sy
                    isb     sy",
                    lateout(reg) _,
                );
            }
            kernel_entry(fdt.data.as_ptr(), 0, 0, 0)
        } else {
            panic!("unsupported arch")
        }
    }
}

/// Ensure that mshv VP indexes for the CPUs listed in the partition info
/// correspond to the N in the cpu@N devicetree node name. OpenVMM assumes that
/// this will be the case.
fn validate_vp_hw_ids(partition_info: &PartitionInfo) {
    use host_params::MAX_CPU_COUNT;
    use hypercall::HwId;

    if partition_info.isolation.is_hardware_isolated() {
        // TODO TDX SNP: we don't have a GHCB/GHCI page set up to communicate
        // with the hypervisor here, so we can't easily perform the check. Since
        // there is no security impact to this check, we can skip it for now; if
        // the VM fails to boot, then this is due to a host contract violation.
        //
        // For TDX, we could use ENUM TOPOLOGY to validate that the TD VCPU
        // indexes correspond to the APIC IDs in the right order. I am not
        // certain if there are places where we depend on this mapping today.
        return;
    }

    if hvcall().vtl() != Vtl::Vtl2 {
        // If we're not using guest VSM, then the guest won't communicate
        // directly with the hypervisor, so we can choose the VP indexes
        // ourselves.
        return;
    }

    // Ensure the host and hypervisor agree on VP index ordering.

    let mut hw_ids = off_stack!(ArrayVec<HwId, MAX_CPU_COUNT>, ArrayVec::new_const());
    hw_ids.clear();
    hw_ids.extend(partition_info.cpus.iter().map(|c| c.reg as _));
    let mut vp_indexes = off_stack!(ArrayVec<u32, MAX_CPU_COUNT>, ArrayVec::new_const());
    vp_indexes.clear();
    if let Err(err) = hvcall().get_vp_index_from_hw_id(&hw_ids, &mut vp_indexes) {
        panic!(
            "failed to get VP index for hardware ID {:#x}: {}",
            hw_ids[vp_indexes.len().min(hw_ids.len() - 1)],
            err
        );
    }
    if let Some((i, &vp_index)) = vp_indexes
        .iter()
        .enumerate()
        .find(|&(i, vp_index)| i as u32 != *vp_index)
    {
        panic!(
            "CPU hardware ID {:#x} does not correspond to VP index {}",
            hw_ids[i], vp_index
        );
    }
}

// See build.rs. See `mod rt` for the actual bootstrap code required to invoke
// shim_main.
#[cfg(not(minimal_rt))]
fn main() {
    unimplemented!("build with MINIMAL_RT_BUILD to produce a working boot loader");
}

#[cfg(test)]
mod test {
    use super::x86_boot::E820Ext;
    use super::x86_boot::build_e820_map;
    use crate::ReservedMemoryType;
    use crate::dt::write_dt;
    use crate::host_params::MAX_CPU_COUNT;
    use crate::host_params::PartitionInfo;
    use crate::host_params::shim_params::IsolationType;
    use crate::reserved_memory_regions;
    use arrayvec::ArrayString;
    use arrayvec::ArrayVec;
    use core::ops::Range;
    use host_fdt_parser::CpuEntry;
    use host_fdt_parser::MemoryEntry;
    use host_fdt_parser::VmbusInfo;
    use igvm_defs::MemoryMapEntryType;
    use loader_defs::linux::E820_RAM;
    use loader_defs::linux::E820_RESERVED;
    use loader_defs::linux::boot_params;
    use loader_defs::linux::e820entry;
    use memory_range::MemoryRange;
    use memory_range::RangeWalkResult;
    use memory_range::walk_ranges;
    use zerocopy::FromZeros;

    const HIGH_MMIO_GAP_END: u64 = 0x1000000000; //  64 GiB
    const VMBUS_MMIO_GAP_SIZE: u64 = 0x10000000; // 256 MiB
    const HIGH_MMIO_GAP_START: u64 = HIGH_MMIO_GAP_END - VMBUS_MMIO_GAP_SIZE;

    /// Create partition info with given cpu count enabled and sequential
    /// apic_ids.
    fn new_partition_info(cpu_count: usize) -> PartitionInfo {
        let mut cpus: ArrayVec<CpuEntry, MAX_CPU_COUNT> = ArrayVec::new();

        for id in 0..(cpu_count as u64) {
            cpus.push(CpuEntry { reg: id, vnode: 0 });
        }

        let mut mmio = ArrayVec::new();
        mmio.push(
            MemoryRange::try_new(HIGH_MMIO_GAP_START..HIGH_MMIO_GAP_END).expect("valid range"),
        );

        PartitionInfo {
            vtl2_ram: ArrayVec::new(),
            vtl2_full_config_region: MemoryRange::EMPTY,
            vtl2_config_region_reclaim: MemoryRange::EMPTY,
            vtl2_reserved_region: MemoryRange::EMPTY,
            vtl2_pool_memory: MemoryRange::EMPTY,
            vtl2_used_ranges: ArrayVec::new(),
            partition_ram: ArrayVec::new(),
            isolation: IsolationType::None,
            bsp_reg: cpus[0].reg as u32,
            cpus,
            cmdline: ArrayString::new(),
            vmbus_vtl2: VmbusInfo {
                mmio,
                connection_id: 0,
            },
            vmbus_vtl0: VmbusInfo {
                mmio: ArrayVec::new(),
                connection_id: 0,
            },
            com3_serial_available: false,
            gic: None,
            memory_allocation_mode: host_fdt_parser::MemoryAllocationMode::Host,
            entropy: None,
            vtl0_alias_map: None,
            nvme_keepalive: false,
        }
    }

    // ensure we can boot with a _lot_ of vcpus
    #[test]
    #[cfg_attr(
        target_arch = "aarch64",
        ignore = "TODO: investigate why this doesn't always work on ARM"
    )]
    fn fdt_cpu_scaling() {
        const MAX_CPUS: usize = 2048;

        let mut buf = [0; 0x40000];
        write_dt(
            &mut buf,
            &new_partition_info(MAX_CPUS),
            &[],
            [],
            0..0,
            &ArrayString::from("test").unwrap_or_default(),
            None,
            None,
        )
        .unwrap();
    }

    // Must match the DeviceTree blob generated with the standard tooling
    // to ensure being compliant to the standards (or, at least, compatibility
    // with a widely used implementation).
    // For details on regenerating the test content, see `fdt_dtc_decompile`
    // below.
    #[test]
    #[ignore = "TODO: temporarily broken"]
    fn fdt_dtc_check_content() {
        const MAX_CPUS: usize = 2;
        const BUF_SIZE: usize = 0x1000;

        // Rust cannot infer the type.
        let dtb_data_spans: [(usize, &[u8]); 2] = [
            (
                /* Span starts at offset */ 0,
                b"\xd0\x0d\xfe\xed\x00\x00\x10\x00\x00\x00\x04\x38\x00\x00\x00\x38\
                \x00\x00\x00\x28\x00\x00\x00\x11\x00\x00\x00\x10\x00\x00\x00\x00\
                \x00\x00\x00\x4a\x00\x00\x01\x6c\x00\x00\x00\x00\x00\x00\x00\x00\
                \x00\x00\x00\x00\x00\x00\x00\x00\x23\x61\x64\x64\x72\x65\x73\x73\
                \x2d\x63\x65\x6c\x6c\x73\x00\x23\x73\x69\x7a\x65\x2d\x63\x65\x6c\
                \x6c\x73\x00\x6d\x6f\x64\x65\x6c\x00\x72\x65\x67\x00\x64\x65\x76\
                \x69\x63\x65\x5f\x74\x79\x70\x65\x00\x73\x74\x61\x74\x75\x73\x00\
                \x63\x6f\x6d\x70\x61\x74\x69\x62\x6c\x65\x00\x72\x61\x6e\x67\x65\
                \x73",
            ),
            (
                /* Span starts at offset */ 0x430,
                b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\
                \x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x02\
                \x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x0f\x00\x00\x00\x00\
                \x00\x00\x00\x03\x00\x00\x00\x0f\x00\x00\x00\x1b\x6d\x73\x66\x74\
                \x2c\x75\x6e\x64\x65\x72\x68\x69\x6c\x6c\x00\x00\x00\x00\x00\x01\
                \x63\x70\x75\x73\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\
                \x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00\x04\
                \x00\x00\x00\x0f\x00\x00\x00\x00\x00\x00\x00\x01\x63\x70\x75\x40\
                \x30\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x25\
                \x63\x70\x75\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x21\
                \x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x05\x00\x00\x00\x31\
                \x6f\x6b\x61\x79\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\
                \x63\x70\x75\x40\x31\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\
                \x00\x00\x00\x25\x63\x70\x75\x00\x00\x00\x00\x03\x00\x00\x00\x04\
                \x00\x00\x00\x21\x00\x00\x00\x01\x00\x00\x00\x03\x00\x00\x00\x05\
                \x00\x00\x00\x31\x6f\x6b\x61\x79\x00\x00\x00\x00\x00\x00\x00\x02\
                \x00\x00\x00\x02\x00\x00\x00\x01\x76\x6d\x62\x75\x73\x00\x00\x00\
                \x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x02\
                \x00\x00\x00\x03\x00\x00\x00\x04\x00\x00\x00\x0f\x00\x00\x00\x01\
                \x00\x00\x00\x03\x00\x00\x00\x0b\x00\x00\x00\x38\x6d\x73\x66\x74\
                \x2c\x76\x6d\x62\x75\x73\x00\x00\x00\x00\x00\x03\x00\x00\x00\x14\
                \x00\x00\x00\x43\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0f\
                \xf0\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x02\
                \x00\x00\x00\x09",
            ),
        ];

        let mut sample_buf = [0u8; BUF_SIZE];
        for (span_start, bytes) in dtb_data_spans {
            sample_buf[span_start..span_start + bytes.len()].copy_from_slice(bytes);
        }

        let mut buf = [0u8; BUF_SIZE];
        write_dt(
            &mut buf,
            &new_partition_info(MAX_CPUS),
            &[],
            [],
            0..0,
            &ArrayString::from("test").unwrap_or_default(),
            None,
            None,
        )
        .unwrap();

        assert!(sample_buf == buf);
    }

    // This test should be manually enabled when need to regenerate
    // the sample content above and validate spec compliance with `dtc`.
    // Before running the test, please install the DeviceTree compiler:
    // ```shell
    // sudo apt-get update && sudo apt-get install device-tree-compiler
    // ```
    #[test]
    #[ignore = "enabling the test requires installing additional software, \
                and developers will experience a break."]
    fn fdt_dtc_decompile() {
        const MAX_CPUS: usize = 2048;

        let mut buf = [0; 0x40000];
        write_dt(
            &mut buf,
            &new_partition_info(MAX_CPUS),
            &[],
            [],
            0..0,
            &ArrayString::from("test").unwrap_or_default(),
            None,
            None,
        )
        .unwrap();

        let input_dtb_file_name = "openhcl_boot.dtb";
        let output_dts_file_name = "openhcl_boot.dts";
        std::fs::write(input_dtb_file_name, buf).unwrap();
        let success = std::process::Command::new("dtc")
            .args([input_dtb_file_name, "-I", "dtb", "-o", output_dts_file_name])
            .status()
            .unwrap()
            .success();
        assert!(success);
    }

    fn partition_info_ram_ranges(
        ram: &[Range<u64>],
        parameter_range: MemoryRange,
        reclaim: Option<Range<u64>>,
    ) -> PartitionInfo {
        let mut info = PartitionInfo::new();

        info.vtl2_ram = ram
            .iter()
            .map(|r| MemoryEntry {
                range: MemoryRange::try_new(r.clone()).unwrap(),
                mem_type: MemoryMapEntryType::VTL2_PROTECTABLE,
                vnode: 0,
            })
            .collect();

        info.vtl2_full_config_region = parameter_range;

        info.vtl2_config_region_reclaim = reclaim
            .map(|r| MemoryRange::try_new(r).unwrap())
            .unwrap_or(MemoryRange::EMPTY);

        info
    }

    fn check_e820(boot_params: &boot_params, ext: &E820Ext, expected: &[(Range<u64>, u32)]) {
        let actual = boot_params.e820_map[..boot_params.e820_entries as usize]
            .iter()
            .chain(
                ext.entries
                    .iter()
                    .take((ext.header.len as usize) / size_of::<e820entry>()),
            );

        assert_eq!(actual.clone().count(), expected.len());

        for (actual, (expected_range, expected_type)) in actual.zip(expected.iter()) {
            let addr: u64 = actual.addr.into();
            let size: u64 = actual.size.into();
            let typ: u32 = actual.typ.into();
            assert_eq!(addr, expected_range.start);
            assert_eq!(size, expected_range.end - expected_range.start);
            assert_eq!(typ, *expected_type);
        }
    }

    const ONE_MB: u64 = 0x10_0000;

    #[test]
    fn test_e820_basic() {
        // memmap with no param reclaim
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(2 * ONE_MB..3 * ONE_MB).unwrap();
        let partition_info =
            partition_info_ram_ranges(&[ONE_MB..4 * ONE_MB], parameter_range, None);

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_ok()
        );

        check_e820(
            &boot_params,
            &ext,
            &[
                (ONE_MB..2 * ONE_MB, E820_RAM),
                (2 * ONE_MB..3 * ONE_MB, E820_RESERVED),
                (3 * ONE_MB..4 * ONE_MB, E820_RAM),
            ],
        );

        // memmap with reclaim
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(2 * ONE_MB..5 * ONE_MB).unwrap();
        let partition_info = partition_info_ram_ranges(
            &[ONE_MB..6 * ONE_MB],
            parameter_range,
            Some(3 * ONE_MB..4 * ONE_MB),
        );

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_ok()
        );

        check_e820(
            &boot_params,
            &ext,
            &[
                (ONE_MB..2 * ONE_MB, E820_RAM),
                (2 * ONE_MB..3 * ONE_MB, E820_RESERVED),
                (3 * ONE_MB..4 * ONE_MB, E820_RAM),
                (4 * ONE_MB..5 * ONE_MB, E820_RESERVED),
                (5 * ONE_MB..6 * ONE_MB, E820_RAM),
            ],
        );

        // two mem ranges
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(2 * ONE_MB..5 * ONE_MB).unwrap();
        let partition_info = partition_info_ram_ranges(
            &[ONE_MB..4 * ONE_MB, 4 * ONE_MB..10 * ONE_MB],
            parameter_range,
            Some(3 * ONE_MB..4 * ONE_MB),
        );

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_ok()
        );

        check_e820(
            &boot_params,
            &ext,
            &[
                (ONE_MB..2 * ONE_MB, E820_RAM),
                (2 * ONE_MB..3 * ONE_MB, E820_RESERVED),
                (3 * ONE_MB..4 * ONE_MB, E820_RAM),
                (4 * ONE_MB..5 * ONE_MB, E820_RESERVED),
                (5 * ONE_MB..10 * ONE_MB, E820_RAM),
            ],
        );

        // memmap in 1 mb chunks
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(2 * ONE_MB..5 * ONE_MB).unwrap();
        let partition_info = partition_info_ram_ranges(
            &[
                ONE_MB..2 * ONE_MB,
                2 * ONE_MB..3 * ONE_MB,
                3 * ONE_MB..4 * ONE_MB,
                4 * ONE_MB..5 * ONE_MB,
                5 * ONE_MB..6 * ONE_MB,
                6 * ONE_MB..7 * ONE_MB,
                7 * ONE_MB..8 * ONE_MB,
            ],
            parameter_range,
            Some(3 * ONE_MB..4 * ONE_MB),
        );

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_ok()
        );

        check_e820(
            &boot_params,
            &ext,
            &[
                (ONE_MB..2 * ONE_MB, E820_RAM),
                (2 * ONE_MB..3 * ONE_MB, E820_RESERVED),
                (3 * ONE_MB..4 * ONE_MB, E820_RAM),
                (4 * ONE_MB..5 * ONE_MB, E820_RESERVED),
                (5 * ONE_MB..6 * ONE_MB, E820_RAM),
                (6 * ONE_MB..7 * ONE_MB, E820_RAM),
                (7 * ONE_MB..8 * ONE_MB, E820_RAM),
            ],
        );
    }

    #[test]
    fn test_e820_param_not_covered() {
        // parameter range not covered by ram at all
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(5 * ONE_MB..6 * ONE_MB).unwrap();
        let partition_info =
            partition_info_ram_ranges(&[ONE_MB..4 * ONE_MB], parameter_range, None);

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_err()
        );

        // parameter range start partial coverage
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(3 * ONE_MB..6 * ONE_MB).unwrap();
        let partition_info =
            partition_info_ram_ranges(&[ONE_MB..4 * ONE_MB], parameter_range, None);

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_err()
        );

        // parameter range end partial coverage
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(2 * ONE_MB..5 * ONE_MB).unwrap();
        let partition_info =
            partition_info_ram_ranges(&[4 * ONE_MB..6 * ONE_MB], parameter_range, None);

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_err()
        );

        // parameter range larger than ram
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(2 * ONE_MB..8 * ONE_MB).unwrap();
        let partition_info =
            partition_info_ram_ranges(&[4 * ONE_MB..6 * ONE_MB], parameter_range, None);

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_err()
        );

        // ram has gap inside param range
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let parameter_range = MemoryRange::try_new(2 * ONE_MB..8 * ONE_MB).unwrap();
        let partition_info = partition_info_ram_ranges(
            &[ONE_MB..6 * ONE_MB, 7 * ONE_MB..10 * ONE_MB],
            parameter_range,
            None,
        );

        assert!(
            build_e820_map(
                &mut boot_params,
                &mut ext,
                &partition_info,
                reserved_memory_regions(&partition_info, None).as_ref(),
            )
            .is_err()
        );
    }

    #[test]
    fn test_e820_huge() {
        // memmap with no param reclaim
        let mut boot_params: boot_params = FromZeros::new_zeroed();
        let mut ext = FromZeros::new_zeroed();
        let ram = MemoryRange::new(0..32 * ONE_MB);
        let partition_info = partition_info_ram_ranges(&[ram.into()], MemoryRange::EMPTY, None);
        let reserved = (0..256)
            .map(|i| {
                (
                    MemoryRange::from_4k_gpn_range(i * 8 + 1..i * 8 + 3),
                    ReservedMemoryType::Vtl2Config,
                )
            })
            .collect::<Vec<_>>();

        build_e820_map(&mut boot_params, &mut ext, &partition_info, &reserved).unwrap();

        assert!(ext.header.len > 0);

        let expected = walk_ranges([(ram, ())], reserved.iter().map(|&(r, _)| (r, ())))
            .flat_map(|(range, r)| match r {
                RangeWalkResult::Neither => None,
                RangeWalkResult::Left(_) => Some((range.into(), E820_RAM)),
                RangeWalkResult::Right(_) => unreachable!(),
                RangeWalkResult::Both(_, _) => Some((range.into(), E820_RESERVED)),
            })
            .collect::<Vec<_>>();

        check_e820(&boot_params, &ext, &expected);
    }
}