openhcl_boot/host_params/
mmio.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Manages MMIO range partitioning between VTLs.

use super::PartitionInfo;
use super::dt::DtError;
use memory_range::MemoryRange;

/// The start address of MMIO high range.
const MMIO_HIGH_RANGE_START: u64 = 1 << 32;

impl PartitionInfo {
    /// Select the mmio range that VTL2 should use from looking at VTL0 mmio
    /// ranges.
    ///
    /// VTL2 MMIO is partitioned such that:
    /// - All MMIO low range is assigned to VTL0.
    /// - VTL2_MMIO_HIGH_RANGE_SIZE bytes from the end of the high range is
    ///   assigned to VTL2.
    /// - The remaining high range is assigned to VTL0.
    ///
    /// Assumes input ranges are non-overlapping and in increasing address
    /// order.
    ///
    /// On success, returns the mmio that VTL2 should use.
    ///
    /// Returns an error if the input VTL0 MMIO range is invalid or if the VTL2
    /// allocation amount was not satisfied due to a lack of high MMIO assigned
    /// to VTL0.
    pub fn select_vtl2_mmio_range(&self, vtl2_size: u64) -> Result<MemoryRange, DtError> {
        // Iterate over the list of MMIO ranges in reverse address order so that
        // the VTL2 range is carved out from the end.
        for range in self.vmbus_vtl0.mmio.iter().rev() {
            // Do not select low MMIO ranges for VTL2.
            if range.start() < MMIO_HIGH_RANGE_START {
                continue;
            }

            // Compute the length of the VTL2 subrange. If there is not enough
            // mmio, give up.
            if range.len() < vtl2_size {
                return Err(DtError::NotEnoughMmio);
            }

            let vtl2_range_start = range.end() - vtl2_size;

            return Ok(MemoryRange::new(vtl2_range_start..range.end()));
        }

        Err(DtError::NotEnoughMmio)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use arrayvec::ArrayVec;
    use memory_range::subtract_ranges;

    /// The size (in bytes) of MMIO high range assigned to VTL2.
    const VTL2_MMIO_HIGH_RANGE_SIZE: u64 = 128 * (1 << 20);

    // Tests that MMIO range is partitioned correctly between VTL0 and VTL2
    // for a variety of input ranges.
    #[test]
    fn mmio_range_partitioned_correctly() {
        #[derive(Debug)]
        struct TestCase {
            // Input
            mmio: ArrayVec<MemoryRange, 2>,
            // Expected output
            succeeds: bool,
            vtl0_range: ArrayVec<MemoryRange, 2>,
            vtl2_range: MemoryRange,
        }

        let testcases = vec![
            TestCase {
                // No MMIO range is provided, fails.
                mmio: ArrayVec::new(),
                succeeds: false,
                vtl0_range: ArrayVec::new(),
                vtl2_range: MemoryRange::EMPTY,
            },
            TestCase {
                // Only low mmio, fails.
                mmio: ArrayVec::from([
                    MemoryRange::new(0x3000_0000..0x4000_0000),
                    MemoryRange::new(0x4000_0000..0x5000_0000),
                ]),
                succeeds: false,
                vtl0_range: ArrayVec::new(),
                vtl2_range: MemoryRange::EMPTY,
            },
            TestCase {
                // MMIO high range is less than what VTL2 requested.
                mmio: ArrayVec::from([
                    MemoryRange::new(0x3000_0000..0x4000_0000),
                    MemoryRange::new(
                        MMIO_HIGH_RANGE_START
                            ..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE / 2),
                    ),
                ]),
                succeeds: false,
                vtl0_range: ArrayVec::new(),
                vtl2_range: MemoryRange::EMPTY,
            },
            TestCase {
                // MMIO high range is just enough for VTL2.
                // Low range should be assigned to VTL0.
                // High range should be assigned to VTL2.
                mmio: ArrayVec::from([
                    MemoryRange::new(0x3000_0000..0x4000_0000),
                    MemoryRange::new(
                        MMIO_HIGH_RANGE_START..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE),
                    ),
                ]),
                succeeds: true,
                vtl0_range: [MemoryRange::new(0x3000_0000..0x4000_0000)]
                    .into_iter()
                    .collect(),
                vtl2_range: MemoryRange::new(
                    MMIO_HIGH_RANGE_START..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE),
                ),
            },
            TestCase {
                // MMIO high range is more than what VTL2 requested.
                // VTL2 should be assigned SIZE from the end of the high range.
                // VTL0 should be assigned the remaining high range.
                mmio: ArrayVec::from([
                    MemoryRange::new(0x3000_0000..0x4000_0000),
                    MemoryRange::new(
                        MMIO_HIGH_RANGE_START
                            ..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE * 4),
                    ),
                ]),
                succeeds: true,
                vtl0_range: ArrayVec::from([
                    MemoryRange::new(0x3000_0000..0x4000_0000),
                    MemoryRange::new(
                        MMIO_HIGH_RANGE_START
                            ..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE * 3),
                    ),
                ]),
                vtl2_range: MemoryRange::new(
                    MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE * 3
                        ..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE * 4),
                ),
            },
            TestCase {
                // Multiple MMIO high ranges are provided.
                // VTL2 should be assigned SIZE from the very end of the high range.
                // VTL0 should be assigned all the remaining high ranges.
                mmio: ArrayVec::from([
                    MemoryRange::new(
                        MMIO_HIGH_RANGE_START
                            ..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE * 2),
                    ),
                    MemoryRange::new(
                        (MMIO_HIGH_RANGE_START * 2)
                            ..(MMIO_HIGH_RANGE_START * 2 + VTL2_MMIO_HIGH_RANGE_SIZE * 2),
                    ),
                ]),
                succeeds: true,
                vtl0_range: ArrayVec::from([
                    MemoryRange::new(
                        MMIO_HIGH_RANGE_START
                            ..(MMIO_HIGH_RANGE_START + VTL2_MMIO_HIGH_RANGE_SIZE * 2),
                    ),
                    MemoryRange::new(
                        (MMIO_HIGH_RANGE_START * 2)
                            ..(MMIO_HIGH_RANGE_START * 2 + VTL2_MMIO_HIGH_RANGE_SIZE),
                    ),
                ]),
                vtl2_range: MemoryRange::new(
                    (MMIO_HIGH_RANGE_START * 2 + VTL2_MMIO_HIGH_RANGE_SIZE)
                        ..(MMIO_HIGH_RANGE_START * 2 + VTL2_MMIO_HIGH_RANGE_SIZE * 2),
                ),
            },
        ];

        // Run all test cases.
        for (i, tc) in testcases.iter().enumerate() {
            let mut vtl2_info = PartitionInfo::new();
            vtl2_info.vmbus_vtl0.mmio.clone_from(&tc.mmio);

            let result = vtl2_info.select_vtl2_mmio_range(VTL2_MMIO_HIGH_RANGE_SIZE);

            assert_eq!(
                tc.succeeds,
                result.is_ok(),
                "test case #{i}: unexpected result"
            );

            if tc.succeeds {
                let vtl2_mmio = result.unwrap();
                let vtl0_mmio =
                    subtract_ranges(tc.mmio.iter().cloned(), [vtl2_mmio]).collect::<Vec<_>>();

                assert_eq!(
                    tc.vtl0_range.as_slice(),
                    vtl0_mmio.as_slice(),
                    "test case #{i}: vtl0 was assigned an unexpected mmio range"
                );
                assert_eq!(
                    tc.vtl2_range, vtl2_mmio,
                    "test case #{i}: vtl1 was assigned an unexpected mmio range"
                );
            }
        }
    }
}