openhcl_boot/
dt.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Module used to write the device tree used by the OpenHCL kernel and
//! usermode.

use crate::MAX_RESERVED_MEM_RANGES;
use crate::ReservedMemoryType;
use crate::host_params::COMMAND_LINE_SIZE;
use crate::host_params::PartitionInfo;
use crate::host_params::shim_params::IsolationType;
use crate::sidecar::SidecarConfig;
use crate::single_threaded::off_stack;
use arrayvec::ArrayString;
use arrayvec::ArrayVec;
use core::fmt;
use core::ops::Range;
use fdt::builder::Builder;
use fdt::builder::StringId;
use host_fdt_parser::GicInfo;
use host_fdt_parser::MemoryAllocationMode;
use host_fdt_parser::VmbusInfo;
use hvdef::Vtl;
use igvm_defs::dt::IGVM_DT_IGVM_TYPE_PROPERTY;
use loader_defs::shim::MemoryVtlType;
use memory_range::MemoryRange;
use memory_range::RangeWalkResult;
use memory_range::walk_ranges;

/// AArch64 defines
mod aarch64 {
    // For compatibility with older hosts, use these legacy Hyper-V defaults if
    // GIC addresses aren't passed in via the host device tree
    pub const DEFAULT_GIC_DISTRIBUTOR_BASE: u64 = 0xFFFF_0000;
    pub const DEFAULT_GIC_REDISTRIBUTORS_BASE: u64 = 0xEFFE_E000;

    // The interrupt IDs (INTID's) in the ARM64 DeviceTree must be _relative_
    // to its base. See `gic_irq_domain_translate` in the Linux kernel, could not
    // find a specification for that.
    //
    // Architecturally, PPIs occupy INTID's in the [16..32) range. In DeviceTree,
    // the type of the interrupt is specified first (PPI) and then the _relative_ INTID:
    // for PPI INTID `27` `[GIC_PPI, 27-16, flags]` goes into the DT description.
    pub const VMBUS_INTID: u32 = 2; // Note: the hardware INTID will be 16 + 2
    pub const TIMER_INTID: u32 = 4; // Note: the hardware INTID will be 16 + 4

    pub const GIC_PHANDLE: u32 = 1;
    pub const GIC_PPI: u32 = 1;
    pub const IRQ_TYPE_EDGE_FALLING: u32 = 2;
    pub const IRQ_TYPE_LEVEL_LOW: u32 = 8;
}

#[derive(Debug)]
pub enum DtError {
    // Field is stored solely for logging via debug, not actually dead.
    Fdt(#[expect(dead_code)] fdt::builder::Error),
}

impl From<fdt::builder::Error> for DtError {
    fn from(err: fdt::builder::Error) -> Self {
        DtError::Fdt(err)
    }
}

macro_rules! format_fixed {
    ($n:expr, $($arg:tt)*) => {
        {
            let mut buf = ArrayString::<$n>::new();
            fmt::write(&mut buf, format_args!($($arg)*)).unwrap();
            buf
        }
    };
}

pub struct BootTimes {
    pub start: u64,
    pub end: u64,
}

/// Info needed about the current device tree being built to add the vmbus node.
#[derive(Clone, Copy)]
pub struct VmbusDeviceTreeInfo {
    p_address_cells: StringId,
    p_size_cells: StringId,
    p_compatible: StringId,
    p_ranges: StringId,
    p_vtl: StringId,
    p_vmbus_connection_id: StringId,
    p_dma_coherent: StringId,
    p_interrupt_parent: StringId,
    p_interrupts: StringId,
    interrupt_cell_value: Option<u32>,
}

/// Write a vmbus node to the device tree.
fn write_vmbus<'a, T>(
    parent: Builder<'a, T>,
    name: &str,
    vtl: Vtl,
    vmbus: &VmbusInfo,
    dt: VmbusDeviceTreeInfo,
) -> Result<Builder<'a, T>, DtError> {
    let VmbusDeviceTreeInfo {
        p_address_cells,
        p_size_cells,
        p_compatible,
        p_ranges,
        p_vtl,
        p_vmbus_connection_id,
        p_dma_coherent,
        p_interrupt_parent,
        p_interrupts,
        interrupt_cell_value,
    } = dt;

    let mut vmbus_builder = parent
        .start_node(name)?
        .add_u32(p_address_cells, 2)?
        .add_u32(p_size_cells, 2)?
        .add_null(p_dma_coherent)?
        .add_str(p_compatible, "microsoft,vmbus")?
        .add_u32(p_vtl, u8::from(vtl).into())?
        .add_u32(p_vmbus_connection_id, vmbus.connection_id)?;

    let mut mmio_ranges = ArrayVec::<u64, 6>::new();
    for entry in vmbus.mmio.iter() {
        mmio_ranges
            .try_extend_from_slice(&[entry.start(), entry.start(), entry.len()])
            .expect("should always fit");
    }
    vmbus_builder = vmbus_builder.add_u64_array(p_ranges, mmio_ranges.as_slice())?;

    if cfg!(target_arch = "aarch64") {
        vmbus_builder = vmbus_builder
            .add_u32(p_interrupt_parent, aarch64::GIC_PHANDLE)?
            .add_u32_array(
                p_interrupts,
                // Here 3 parameters are used as the "#interrupt-cells"
                // above specifies.
                &[
                    aarch64::GIC_PPI,
                    aarch64::VMBUS_INTID,
                    interrupt_cell_value.expect("must be set on aarch64"),
                ],
            )?;
    }

    Ok(vmbus_builder.end_node()?)
}

/// Writes the device tree blob into `buffer`.
pub fn write_dt(
    buffer: &mut [u8],
    partition_info: &PartitionInfo,
    reserved_memory: &[(MemoryRange, ReservedMemoryType)],
    accepted_ranges: impl IntoIterator<Item = MemoryRange>,
    initrd: Range<u64>,
    cmdline: &ArrayString<COMMAND_LINE_SIZE>,
    sidecar: Option<&SidecarConfig<'_>>,
    boot_times: Option<BootTimes>,
) -> Result<(), DtError> {
    // First, the reservation map is built. That keyes off of the x86 E820 memory map.
    // The `/memreserve/` is used to tell the kernel that the reserved memory is RAM
    // but it is reserved. That way the kernel allows mapping it via `/dev/mem` without
    // inhibiting the cache thus disabling the unaligned access on some architectures.

    let mut memory_reservations =
        off_stack!(ArrayVec<fdt::ReserveEntry, MAX_RESERVED_MEM_RANGES>, ArrayVec::new_const());

    memory_reservations.extend(reserved_memory.iter().map(|(r, _)| fdt::ReserveEntry {
        address: r.start().into(),
        size: r.len().into(),
    }));

    // Build the actual device tree.
    let builder_config = fdt::builder::BuilderConfig {
        blob_buffer: buffer,
        string_table_cap: 1024,
        memory_reservations: &memory_reservations,
    };
    let mut builder = Builder::new(builder_config)?;

    // These StringIds are common across many nodes.
    let p_address_cells = builder.add_string("#address-cells")?;
    let p_size_cells = builder.add_string("#size-cells")?;
    let p_reg = builder.add_string("reg")?;
    let p_reg_names = builder.add_string("reg-names")?;
    let p_device_type = builder.add_string("device_type")?;
    let p_status = builder.add_string("status")?;
    let p_compatible = builder.add_string("compatible")?;
    let p_ranges = builder.add_string("ranges")?;
    let p_numa_node_id = builder.add_string("numa-node-id")?;
    let p_reftime_boot_start = builder.add_string("reftime_boot_start")?;
    let p_reftime_boot_end = builder.add_string("reftime_boot_end")?;
    let p_reftime_sidecar_start = builder.add_string("reftime_sidecar_start")?;
    let p_reftime_sidecar_end = builder.add_string("reftime_sidecar_end")?;
    let p_vtl = builder.add_string(igvm_defs::dt::IGVM_DT_VTL_PROPERTY)?;
    let p_vmbus_connection_id = builder.add_string("microsoft,message-connection-id")?;
    let p_dma_coherent = builder.add_string("dma-coherent")?;
    let p_igvm_type = builder.add_string(IGVM_DT_IGVM_TYPE_PROPERTY)?;
    let p_openhcl_memory = builder.add_string("openhcl,memory-type")?;

    // These StringIds are used across multiple AArch64 nodes.
    //
    // TODO: If we add support for an associative map based add_string/add_prop
    // interface to the fdt builder, these explicit definitions would go away.
    // That would require either alloc support, or an alloc-free associative
    // datastructure.
    let p_interrupt_parent = builder.add_string("interrupt-parent")?;
    let p_interrupts = builder.add_string("interrupts")?;
    let p_enable_method = builder.add_string("enable-method")?;

    let num_cpus = partition_info.cpus.len();

    let mut root_builder = builder
        .start_node("")?
        .add_u32(p_address_cells, 2)?
        .add_u32(p_size_cells, 2)?
        .add_str(p_compatible, "microsoft,openvmm")?;

    if let Some(boot_times) = boot_times {
        let BootTimes { start, end } = boot_times;
        root_builder = root_builder
            .add_u64(p_reftime_boot_start, start)?
            .add_u64(p_reftime_boot_end, end)?;
    }

    if let Some(sidecar) = sidecar {
        root_builder = root_builder
            .add_u64(p_reftime_sidecar_start, sidecar.start_reftime)?
            .add_u64(p_reftime_sidecar_end, sidecar.end_reftime)?;
    }

    let hypervisor_builder = root_builder
        .start_node("hypervisor")?
        .add_str(p_compatible, "microsoft,hyperv")?;
    root_builder = hypervisor_builder.end_node()?;

    // For ARM v8, always specify two register cells, which can accommodate
    // higher number of VPs.
    let address_cells = if cfg!(target_arch = "aarch64") { 2 } else { 1 };
    let mut cpu_builder = root_builder
        .start_node("cpus")?
        .add_u32(p_address_cells, address_cells)?
        .add_u32(p_size_cells, 0)?;

    // Add a CPU node for each cpu.
    for (vp_index, cpu_entry) in partition_info.cpus.iter().enumerate() {
        let name = format_fixed!(32, "cpu@{}", vp_index + 1);

        let mut cpu = cpu_builder
            .start_node(name.as_ref())?
            .add_str(p_device_type, "cpu")?
            .add_u32(p_numa_node_id, cpu_entry.vnode)?;

        if cfg!(target_arch = "aarch64") {
            cpu = cpu
                .add_u64(p_reg, cpu_entry.reg)?
                .add_str(p_compatible, "arm,arm-v8")?;

            if num_cpus > 1 {
                cpu = cpu.add_str(p_enable_method, "psci")?;
            }

            if vp_index == 0 {
                cpu = cpu.add_str(p_status, "okay")?;
            } else {
                cpu = cpu.add_str(p_status, "disabled")?;
            }
        } else {
            cpu = cpu
                .add_u32(p_reg, cpu_entry.reg as u32)?
                .add_str(p_status, "okay")?;
        }

        cpu_builder = cpu.end_node()?;
    }
    root_builder = cpu_builder.end_node()?;

    if cfg!(target_arch = "aarch64") {
        let p_method = root_builder.add_string("method")?;
        let p_cpu_off = root_builder.add_string("cpu_off")?;
        let p_cpu_on = root_builder.add_string("cpu_on")?;
        let psci = root_builder
            .start_node("psci")?
            .add_str(p_compatible, "arm,psci-0.2")?
            .add_str(p_method, "hvc")?
            .add_u32(p_cpu_off, 1)?
            .add_u32(p_cpu_on, 2)?;
        root_builder = psci.end_node()?;
    }

    // Add a memory node for each VTL2 range.
    for mem_entry in partition_info.vtl2_ram.iter() {
        let name = format_fixed!(32, "memory@{:x}", mem_entry.range.start());
        let mut mem = root_builder.start_node(&name)?;
        mem = mem.add_str(p_device_type, "memory")?;
        mem = mem.add_u64_array(p_reg, &[mem_entry.range.start(), mem_entry.range.len()])?;
        mem = mem.add_u32(p_numa_node_id, mem_entry.vnode)?;
        root_builder = mem.end_node()?;
    }

    if cfg!(target_arch = "aarch64") {
        // ARM64 Generic Interrupt Controller aka GIC, v3.

        // Use legacy Hyper-V defaults if not specified in the host device tree.
        let default = GicInfo {
            gic_distributor_base: aarch64::DEFAULT_GIC_DISTRIBUTOR_BASE,
            gic_distributor_size: aarch64defs::GIC_DISTRIBUTOR_SIZE,
            gic_redistributors_base: aarch64::DEFAULT_GIC_REDISTRIBUTORS_BASE,
            gic_redistributors_size: aarch64defs::GIC_REDISTRIBUTOR_SIZE * num_cpus as u64,
            gic_redistributor_stride: aarch64defs::GIC_REDISTRIBUTOR_SIZE,
        };
        let gic = partition_info.gic.as_ref().unwrap_or(&default);

        // Validate sizes
        assert_eq!(gic.gic_distributor_size, default.gic_distributor_size);
        assert_eq!(gic.gic_redistributors_size, default.gic_redistributors_size);
        assert_eq!(
            gic.gic_redistributor_stride,
            default.gic_redistributor_stride
        );

        let p_interrupt_cells = root_builder.add_string("#interrupt-cells")?;
        let p_redist_regions = root_builder.add_string("#redistributor-regions")?;
        let p_redist_stride = root_builder.add_string("redistributor-stride")?;
        let p_interrupt_controller = root_builder.add_string("interrupt-controller")?;
        let p_phandle = root_builder.add_string("phandle")?;
        let p_interrupt_names = root_builder.add_string("interrupt-names")?;
        let p_always_on = root_builder.add_string("always-on")?;
        let name = format_fixed!(32, "intc@{}", gic.gic_distributor_base);
        let gicv3 = root_builder
            .start_node(name.as_ref())?
            .add_str(p_compatible, "arm,gic-v3")?
            .add_u32(p_redist_regions, 1)?
            .add_u64(p_redist_stride, gic.gic_redistributor_stride)?
            .add_u64_array(
                p_reg,
                &[
                    gic.gic_distributor_base,
                    gic.gic_distributor_size,
                    gic.gic_redistributors_base,
                    gic.gic_redistributors_size,
                ],
            )?
            .add_u32(p_address_cells, 2)?
            .add_u32(p_size_cells, 2)?
            .add_u32(p_interrupt_cells, 3)?
            .add_null(p_interrupt_controller)?
            .add_u32(p_phandle, aarch64::GIC_PHANDLE)?
            .add_null(p_ranges)?;
        root_builder = gicv3.end_node()?;

        // ARM64 Architectural Timer.
        let timer = root_builder
            .start_node("timer")?
            .add_str(p_compatible, "arm,armv8-timer")?
            .add_u32(p_interrupt_parent, aarch64::GIC_PHANDLE)?
            .add_str(p_interrupt_names, "virt")?
            .add_u32_array(
                p_interrupts,
                // Here 3 parameters are used as the "#interrupt-cells"
                // above specifies. The only interrupt employed is
                // the one for the virtualized environment, it is a
                // Private Peripheral Interrupt.
                &[
                    aarch64::GIC_PPI,
                    aarch64::TIMER_INTID,
                    aarch64::IRQ_TYPE_LEVEL_LOW,
                ],
            )?
            .add_null(p_always_on)?;
        root_builder = timer.end_node()?;
    }

    // Linux requires vmbus to be under a simple-bus node.
    let mut simple_bus_builder = root_builder
        .start_node("bus")?
        .add_str(p_compatible, "simple-bus")?
        .add_u32(p_address_cells, 2)?
        .add_u32(p_size_cells, 2)?;
    simple_bus_builder = simple_bus_builder.add_prop_array(p_ranges, &[])?;

    let vmbus_info = VmbusDeviceTreeInfo {
        p_address_cells,
        p_size_cells,
        p_compatible,
        p_ranges,
        p_vtl,
        p_vmbus_connection_id,
        p_dma_coherent,
        p_interrupt_parent,
        p_interrupts,
        interrupt_cell_value: if cfg!(target_arch = "aarch64") {
            Some(aarch64::IRQ_TYPE_EDGE_FALLING)
        } else {
            None
        },
    };

    simple_bus_builder = write_vmbus(
        simple_bus_builder,
        "vmbus",
        Vtl::Vtl2,
        &partition_info.vmbus_vtl2,
        vmbus_info,
    )?;

    if let Some(sidecar) = sidecar {
        for node in sidecar.nodes {
            let name = format_fixed!(64, "sidecar@{:x}", node.control_page);
            simple_bus_builder = simple_bus_builder
                .start_node(&name)?
                .add_str(p_compatible, "microsoft,openhcl-sidecar")?
                .add_u64_array(
                    p_reg,
                    &[
                        node.control_page,
                        sidecar_defs::PAGE_SIZE as u64,
                        node.shmem_pages_base,
                        node.shmem_pages_size,
                    ],
                )?
                .add_str_array(p_reg_names, &["ctrl", "shmem"])?
                .end_node()?;
        }
    }

    root_builder = simple_bus_builder.end_node()?;

    if cfg!(target_arch = "aarch64") {
        let p_bootargs = root_builder.add_string("bootargs")?;
        let p_initrd_start = root_builder.add_string("linux,initrd-start")?;
        let p_initrd_end = root_builder.add_string("linux,initrd-end")?;

        let chosen = root_builder
            .start_node("chosen")?
            .add_str(p_bootargs, cmdline.as_str())?
            .add_u64(p_initrd_start, initrd.start)?
            .add_u64(p_initrd_end, initrd.end)?;
        root_builder = chosen.end_node()?;
    }

    // Add information used by openhcl usermode.
    let mut openhcl_builder = root_builder.start_node("openhcl")?;

    let p_isolation_type = openhcl_builder.add_string("isolation-type")?;
    let isolation_type = match partition_info.isolation {
        IsolationType::None => "none",
        IsolationType::Vbs => "vbs",
        #[cfg(target_arch = "x86_64")]
        IsolationType::Snp => "snp",
        #[cfg(target_arch = "x86_64")]
        IsolationType::Tdx => "tdx",
    };
    openhcl_builder = openhcl_builder.add_str(p_isolation_type, isolation_type)?;

    // Indicate what kind of memory allocation mode was done by the bootloader
    // to usermode.
    let p_memory_allocation_mode = openhcl_builder.add_string("memory-allocation-mode")?;
    match partition_info.memory_allocation_mode {
        MemoryAllocationMode::Host => {
            openhcl_builder = openhcl_builder.add_str(p_memory_allocation_mode, "host")?;
        }
        MemoryAllocationMode::Vtl2 {
            memory_size,
            mmio_size,
        } => {
            let p_memory_size = openhcl_builder.add_string("memory-size")?;
            let p_mmio_size = openhcl_builder.add_string("mmio-size")?;
            openhcl_builder = openhcl_builder.add_str(p_memory_allocation_mode, "vtl2")?;
            if let Some(memory_size) = memory_size {
                openhcl_builder = openhcl_builder.add_u64(p_memory_size, memory_size)?;
            }
            if let Some(mmio_size) = mmio_size {
                openhcl_builder = openhcl_builder.add_u64(p_mmio_size, mmio_size)?;
            }
        }
    }

    if let Some(data) = partition_info.vtl0_alias_map {
        let p_vtl0_alias_map = openhcl_builder.add_string("vtl0-alias-map")?;
        openhcl_builder = openhcl_builder.add_u64(p_vtl0_alias_map, data)?;
    }

    #[derive(Debug, Copy, Clone, PartialEq, Eq)]
    struct Vtl2MemoryEntry {
        range: MemoryRange,
        memory_type: MemoryVtlType,
    }

    // First, construct the unified VTL2 memory map.
    let mut vtl2_memory_map = off_stack!(ArrayVec::<Vtl2MemoryEntry, 512>, ArrayVec::new_const());
    for (range, result) in walk_ranges(
        partition_info
            .vtl2_ram
            .iter()
            .map(|r| (r.range, MemoryVtlType::VTL2_RAM)),
        reserved_memory.iter().map(|&(r, typ)| {
            (
                r,
                match typ {
                    ReservedMemoryType::Vtl2Config => MemoryVtlType::VTL2_CONFIG,
                    ReservedMemoryType::SidecarImage => MemoryVtlType::VTL2_SIDECAR_IMAGE,
                    ReservedMemoryType::SidecarNode => MemoryVtlType::VTL2_SIDECAR_NODE,
                    ReservedMemoryType::Vtl2Reserved => MemoryVtlType::VTL2_RESERVED,
                    ReservedMemoryType::Vtl2GpaPool => MemoryVtlType::VTL2_GPA_POOL,
                },
            )
        }),
    ) {
        match result {
            RangeWalkResult::Left(typ) | RangeWalkResult::Both(_, typ) => {
                // This range is for VTL2. If only in Left, it's ram, but if in
                // Both, it's the reserve type indicated in right.
                vtl2_memory_map.push(Vtl2MemoryEntry {
                    range,
                    memory_type: typ,
                });
            }
            RangeWalkResult::Right(typ) => {
                panic!(
                    "reserved vtl2 range {:?} with type {:?} not contained in vtl2 ram",
                    range, typ
                );
            }
            // Ignore ranges not in both.
            RangeWalkResult::Neither => {}
        }
    }

    // Now, report the unified memory map to usermode describing which memory is
    // used by what.
    for (range, result) in walk_ranges(
        partition_info.partition_ram.iter().map(|r| (r.range, r)),
        vtl2_memory_map.iter().map(|r| (r.range, r)),
    ) {
        match result {
            RangeWalkResult::Left(entry) => {
                // This range is usable by VTL0.
                let name = format_fixed!(64, "memory@{:x}", range.start());
                openhcl_builder = openhcl_builder
                    .start_node(&name)?
                    .add_str(p_device_type, "memory")?
                    .add_u64_array(p_reg, &[range.start(), range.len()])?
                    .add_u32(p_numa_node_id, entry.vnode)?
                    .add_u32(p_igvm_type, entry.mem_type.0.into())?
                    .add_u32(p_openhcl_memory, MemoryVtlType::VTL0.0)?
                    .end_node()?;
            }
            RangeWalkResult::Both(partition_entry, vtl2_entry) => {
                // This range is in use by VTL2. Indicate that.
                let name = format_fixed!(64, "memory@{:x}", range.start());
                openhcl_builder = openhcl_builder
                    .start_node(&name)?
                    .add_str(p_device_type, "memory")?
                    .add_u64_array(p_reg, &[range.start(), range.len()])?
                    .add_u32(p_numa_node_id, partition_entry.vnode)?
                    .add_u32(p_igvm_type, partition_entry.mem_type.0.into())?
                    .add_u32(p_openhcl_memory, vtl2_entry.memory_type.0)?
                    .end_node()?;
            }
            RangeWalkResult::Right(..) => {
                panic!("vtl2 range {:?} not contained in partition ram", range)
            }
            // Ignore ranges not described in either.
            RangeWalkResult::Neither => {}
        }
    }

    // Add mmio ranges for both VTL0 and VTL2.
    for entry in &partition_info.vmbus_vtl0.mmio {
        let name = format_fixed!(64, "memory@{:x}", entry.start());
        openhcl_builder = openhcl_builder
            .start_node(&name)?
            .add_str(p_device_type, "memory")?
            .add_u64_array(p_reg, &[entry.start(), entry.len()])?
            .add_u32(p_openhcl_memory, MemoryVtlType::VTL0_MMIO.0)?
            .end_node()?;
    }

    for entry in &partition_info.vmbus_vtl2.mmio {
        let name = format_fixed!(64, "memory@{:x}", entry.start());
        openhcl_builder = openhcl_builder
            .start_node(&name)?
            .add_str(p_device_type, "memory")?
            .add_u64_array(p_reg, &[entry.start(), entry.len()])?
            .add_u32(p_openhcl_memory, MemoryVtlType::VTL2_MMIO.0)?
            .end_node()?;
    }

    // Report accepted ranges underhil openhcl node.
    for range in accepted_ranges {
        let name = format_fixed!(64, "accepted-memory@{:x}", range.start());
        openhcl_builder = openhcl_builder
            .start_node(&name)?
            .add_u64_array(p_reg, &[range.start(), range.len()])?
            .end_node()?;
    }

    // Pass through host-provided entropy to the init process for seeding
    // the OpenHCL kernel random number generator
    if let Some(entropy) = &partition_info.entropy {
        openhcl_builder = openhcl_builder
            .start_node("entropy")?
            .add_prop_array(p_reg, &[entropy])?
            .end_node()?;
    }

    let root_builder = openhcl_builder.end_node()?;

    root_builder.end_node()?.build(partition_info.bsp_reg)?;
    Ok(())
}