nvme_driver/
queues.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implementation of submission and completion queues.

use super::spec;
use crate::driver::save_restore::CompletionQueueSavedState;
use crate::driver::save_restore::SubmissionQueueSavedState;
use crate::registers::DeviceRegisters;
use inspect::Inspect;
use safeatomic::AtomicSliceOps;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering::Acquire;
use std::sync::atomic::Ordering::Relaxed;
use user_driver::DeviceBacking;
use user_driver::memory::MemoryBlock;

#[derive(Inspect)]
pub(crate) struct SubmissionQueue {
    sqid: u16,
    head: u32,
    tail: u32,
    committed_tail: u32,
    len: u32,
    #[inspect(skip)]
    mem: MemoryBlock,
}

#[derive(Debug)]
pub(crate) struct QueueFull;

impl SubmissionQueue {
    pub fn new(sqid: u16, len: u16, mem: MemoryBlock) -> Self {
        Self {
            sqid,
            head: 0,
            tail: 0,
            committed_tail: 0,
            len: len.into(),
            mem,
        }
    }

    pub fn id(&self) -> u16 {
        self.sqid
    }

    pub fn update_head(&mut self, head: u16) {
        let head = head as u32;
        assert!(head < self.len);
        self.head = head;
    }

    pub fn is_full(&self) -> bool {
        advance(self.tail, self.len) == self.head
    }

    pub fn write(&mut self, command: spec::Command) -> Result<(), QueueFull> {
        let next_tail = advance(self.tail, self.len);
        if next_tail == self.head {
            return Err(QueueFull);
        }
        self.mem
            .write_obj(self.tail as usize * size_of_val(&command), &command);
        self.tail = next_tail;
        Ok(())
    }

    pub fn commit<T: DeviceBacking>(&mut self, region: &DeviceRegisters<T>) {
        if self.tail != self.committed_tail {
            safe_intrinsics::store_fence();
            region.doorbell(self.sqid, false, self.tail);
            self.committed_tail = self.tail;
        }
    }

    /// Saves queue data for servicing.
    pub fn save(&self) -> SubmissionQueueSavedState {
        SubmissionQueueSavedState {
            sqid: self.sqid,
            head: self.head,
            tail: self.tail,
            committed_tail: self.committed_tail,
            len: self.len,
        }
    }

    /// Restores queue data after servicing.
    pub fn restore(
        mem: MemoryBlock,
        saved_state: &SubmissionQueueSavedState,
    ) -> anyhow::Result<Self> {
        let SubmissionQueueSavedState {
            sqid,
            head,
            tail,
            committed_tail,
            len,
        } = saved_state;
        Ok(Self {
            sqid: *sqid,
            head: *head,
            tail: *tail,
            committed_tail: *committed_tail,
            len: *len,
            mem,
        })
    }
}

#[derive(Inspect)]
pub(crate) struct CompletionQueue {
    cqid: u16,
    head: u32,
    committed_head: u32,
    /// Queue size in entries.
    len: u32,
    phase: bool,
    #[inspect(skip)]
    mem: MemoryBlock,
}

impl CompletionQueue {
    pub fn new(cqid: u16, len: u16, mem: MemoryBlock) -> CompletionQueue {
        Self {
            cqid,
            head: 0,
            committed_head: 0,
            len: len.into(),
            phase: true,
            mem,
        }
    }

    pub fn _id(&self) -> u16 {
        self.cqid
    }

    pub fn read(&mut self) -> Option<spec::Completion> {
        let completion_mem = self.mem.as_slice()
            [self.head as usize * size_of::<spec::Completion>()..]
            [..size_of::<spec::Completion>() * 2]
            .as_atomic_slice::<AtomicU64>()
            .unwrap();

        // Check the phase bit, using an acquire read to ensure the rest of the
        // completion is read with or after the phase bit.
        let high = completion_mem[1].load(Acquire);
        let status = spec::CompletionStatus::from((high >> 48) as u16);
        if status.phase() != self.phase {
            return None;
        }
        let low = completion_mem[0].load(Relaxed);
        let completion: spec::Completion = zerocopy::transmute!([low, high]);
        self.head += 1;
        if self.head == self.len {
            self.head = 0;
            self.phase = !self.phase;
        }
        Some(completion)
    }

    pub fn commit<T: DeviceBacking>(&mut self, registers: &DeviceRegisters<T>) {
        if self.head != self.committed_head {
            safe_intrinsics::store_fence();
            registers.doorbell(self.cqid, true, self.head);
            self.committed_head = self.head;
        }
    }

    /// Saves queue data for servicing.
    pub fn save(&self) -> CompletionQueueSavedState {
        CompletionQueueSavedState {
            cqid: self.cqid,
            head: self.head,
            committed_head: self.committed_head,
            len: self.len,
            phase: self.phase,
        }
    }

    /// Restores queue data after servicing.
    pub fn restore(
        mem: MemoryBlock,
        saved_state: &CompletionQueueSavedState,
    ) -> anyhow::Result<Self> {
        let CompletionQueueSavedState {
            cqid,
            head,
            committed_head,
            len,
            phase,
        } = saved_state;

        Ok(Self {
            cqid: *cqid,
            head: *head,
            committed_head: *committed_head,
            len: *len,
            phase: *phase,
            mem,
        })
    }
}

fn advance(n: u32, l: u32) -> u32 {
    if n + 1 < l { n + 1 } else { 0 }
}