nvme_driver/
queue_pair.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implementation of an admin or IO queue pair.

use super::spec;
use crate::driver::save_restore::Error;
use crate::driver::save_restore::PendingCommandSavedState;
use crate::driver::save_restore::PendingCommandsSavedState;
use crate::driver::save_restore::QueueHandlerSavedState;
use crate::driver::save_restore::QueuePairSavedState;
use crate::queues::CompletionQueue;
use crate::queues::SubmissionQueue;
use crate::registers::DeviceRegisters;
use anyhow::Context;
use futures::StreamExt;
use guestmem::GuestMemory;
use guestmem::GuestMemoryError;
use guestmem::ranges::PagedRange;
use inspect::Inspect;
use inspect_counters::Counter;
use mesh::Cancel;
use mesh::CancelContext;
use mesh::rpc::Rpc;
use mesh::rpc::RpcError;
use mesh::rpc::RpcSend;
use pal_async::driver::SpawnDriver;
use pal_async::task::Task;
use safeatomic::AtomicSliceOps;
use slab::Slab;
use std::future::poll_fn;
use std::num::Wrapping;
use std::sync::Arc;
use std::task::Poll;
use thiserror::Error;
use user_driver::DeviceBacking;
use user_driver::interrupt::DeviceInterrupt;
use user_driver::memory::MemoryBlock;
use user_driver::memory::PAGE_SIZE;
use user_driver::memory::PAGE_SIZE64;
use user_driver::page_allocator::PageAllocator;
use user_driver::page_allocator::ScopedPages;
use zerocopy::FromZeros;

/// Value for unused PRP entries, to catch/mitigate buffer size mismatches.
const INVALID_PAGE_ADDR: u64 = !(PAGE_SIZE as u64 - 1);

pub(crate) struct QueuePair {
    task: Task<QueueHandler>,
    cancel: Cancel,
    issuer: Arc<Issuer>,
    mem: MemoryBlock,
    qid: u16,
    sq_entries: u16,
    cq_entries: u16,
}

impl Inspect for QueuePair {
    fn inspect(&self, req: inspect::Request<'_>) {
        let Self {
            task: _,
            cancel: _,
            issuer,
            mem: _,
            qid: _,
            sq_entries: _,
            cq_entries: _,
        } = self;
        issuer.send.send(Req::Inspect(req.defer()));
    }
}

impl PendingCommands {
    const CID_KEY_BITS: u32 = 10;
    const CID_KEY_MASK: u16 = (1 << Self::CID_KEY_BITS) - 1;
    const MAX_CIDS: usize = 1 << Self::CID_KEY_BITS;
    const CID_SEQ_OFFSET: Wrapping<u16> = Wrapping(1 << Self::CID_KEY_BITS);

    fn new() -> Self {
        Self {
            commands: Slab::new(),
            next_cid_high_bits: Wrapping(0),
        }
    }

    fn is_full(&self) -> bool {
        self.commands.len() >= Self::MAX_CIDS
    }

    fn is_empty(&self) -> bool {
        self.commands.is_empty()
    }

    /// Inserts a command into the pending list, updating it with a new CID.
    fn insert(&mut self, command: &mut spec::Command, respond: Rpc<(), spec::Completion>) {
        let entry = self.commands.vacant_entry();
        assert!(entry.key() < Self::MAX_CIDS);
        assert_eq!(self.next_cid_high_bits % Self::CID_SEQ_OFFSET, Wrapping(0));
        let cid = entry.key() as u16 | self.next_cid_high_bits.0;
        self.next_cid_high_bits += Self::CID_SEQ_OFFSET;
        command.cdw0.set_cid(cid);
        entry.insert(PendingCommand {
            command: *command,
            respond,
        });
    }

    fn remove(&mut self, cid: u16) -> Rpc<(), spec::Completion> {
        let command = self
            .commands
            .try_remove((cid & Self::CID_KEY_MASK) as usize)
            .expect("completion for unknown cid");
        assert_eq!(
            command.command.cdw0.cid(),
            cid,
            "cid sequence number mismatch"
        );
        command.respond
    }

    /// Save pending commands into a buffer.
    pub fn save(&self) -> PendingCommandsSavedState {
        let commands: Vec<PendingCommandSavedState> = self
            .commands
            .iter()
            .map(|(_index, cmd)| PendingCommandSavedState {
                command: cmd.command,
            })
            .collect();
        PendingCommandsSavedState {
            commands,
            next_cid_high_bits: self.next_cid_high_bits.0,
            // TODO: Not used today, added for future compatibility.
            cid_key_bits: Self::CID_KEY_BITS,
        }
    }

    /// Restore pending commands from the saved state.
    pub fn restore(saved_state: &PendingCommandsSavedState) -> anyhow::Result<Self> {
        let PendingCommandsSavedState {
            commands,
            next_cid_high_bits,
            cid_key_bits: _, // TODO: For future use.
        } = saved_state;

        Ok(Self {
            // Re-create identical Slab where CIDs are correctly mapped.
            commands: commands
                .iter()
                .map(|state| {
                    // To correctly restore Slab we need both the command index,
                    // inherited from command's CID, and the command itself.
                    (
                        // Remove high CID bits to be used as a key.
                        (state.command.cdw0.cid() & Self::CID_KEY_MASK) as usize,
                        PendingCommand {
                            command: state.command,
                            respond: Rpc::detached(()),
                        },
                    )
                })
                .collect::<Slab<PendingCommand>>(),
            next_cid_high_bits: Wrapping(*next_cid_high_bits),
        })
    }
}

impl QueuePair {
    pub const MAX_SQ_ENTRIES: u16 = (PAGE_SIZE / 64) as u16; // Maximum SQ size in entries.
    pub const MAX_CQ_ENTRIES: u16 = (PAGE_SIZE / 16) as u16; // Maximum CQ size in entries.
    const SQ_SIZE: usize = PAGE_SIZE; // Submission Queue size in bytes.
    const CQ_SIZE: usize = PAGE_SIZE; // Completion Queue size in bytes.
    const PER_QUEUE_PAGES: usize = 128;

    pub fn new(
        spawner: impl SpawnDriver,
        device: &impl DeviceBacking,
        qid: u16,
        sq_entries: u16, // Requested SQ size in entries.
        cq_entries: u16, // Requested CQ size in entries.
        interrupt: DeviceInterrupt,
        registers: Arc<DeviceRegisters<impl DeviceBacking>>,
    ) -> anyhow::Result<Self> {
        let total_size =
            QueuePair::SQ_SIZE + QueuePair::CQ_SIZE + QueuePair::PER_QUEUE_PAGES * PAGE_SIZE;
        let dma_client = device.dma_client();
        let mem = dma_client
            .allocate_dma_buffer(total_size)
            .context("failed to allocate memory for queues")?;

        assert!(sq_entries <= Self::MAX_SQ_ENTRIES);
        assert!(cq_entries <= Self::MAX_CQ_ENTRIES);

        QueuePair::new_or_restore(
            spawner, qid, sq_entries, cq_entries, interrupt, registers, mem, None,
        )
    }

    /// Create new object or restore from saved state.
    fn new_or_restore(
        spawner: impl SpawnDriver,
        qid: u16,
        sq_entries: u16, // Submission queue entries.
        cq_entries: u16, // Completion queue entries.
        mut interrupt: DeviceInterrupt,
        registers: Arc<DeviceRegisters<impl DeviceBacking>>,
        mem: MemoryBlock,
        saved_state: Option<&QueueHandlerSavedState>,
    ) -> anyhow::Result<Self> {
        // MemoryBlock is either allocated or restored prior calling here.
        let sq_mem_block = mem.subblock(0, QueuePair::SQ_SIZE);
        let cq_mem_block = mem.subblock(QueuePair::SQ_SIZE, QueuePair::CQ_SIZE);
        let data_offset = QueuePair::SQ_SIZE + QueuePair::CQ_SIZE;

        let mut queue_handler = match saved_state {
            Some(s) => QueueHandler::restore(sq_mem_block, cq_mem_block, s)?,
            None => {
                // Create a new one.
                QueueHandler {
                    sq: SubmissionQueue::new(qid, sq_entries, sq_mem_block),
                    cq: CompletionQueue::new(qid, cq_entries, cq_mem_block),
                    commands: PendingCommands::new(),
                    stats: Default::default(),
                    drain_after_restore: false,
                }
            }
        };

        let (send, recv) = mesh::channel();
        let (mut ctx, cancel) = CancelContext::new().with_cancel();
        let task = spawner.spawn("nvme-queue", {
            async move {
                ctx.until_cancelled(async {
                    queue_handler.run(&registers, recv, &mut interrupt).await;
                })
                .await
                .ok();
                queue_handler
            }
        });

        // Page allocator uses remaining part of the buffer for dynamic allocation.
        const _: () = assert!(
            QueuePair::PER_QUEUE_PAGES * PAGE_SIZE >= 128 * 1024 + PAGE_SIZE,
            "not enough room for an ATAPI IO plus a PRP list"
        );
        let alloc: PageAllocator =
            PageAllocator::new(mem.subblock(data_offset, QueuePair::PER_QUEUE_PAGES * PAGE_SIZE));

        Ok(Self {
            task,
            cancel,
            issuer: Arc::new(Issuer { send, alloc }),
            mem,
            qid,
            sq_entries,
            cq_entries,
        })
    }

    pub fn sq_addr(&self) -> u64 {
        self.mem.pfns()[0] * PAGE_SIZE64
    }

    pub fn cq_addr(&self) -> u64 {
        self.mem.pfns()[1] * PAGE_SIZE64
    }

    pub fn issuer(&self) -> &Arc<Issuer> {
        &self.issuer
    }

    pub async fn shutdown(mut self) -> impl Send {
        self.cancel.cancel();
        self.task.await
    }

    /// Save queue pair state for servicing.
    pub async fn save(&self) -> anyhow::Result<QueuePairSavedState> {
        // Return error if the queue does not have any memory allocated.
        if self.mem.pfns().is_empty() {
            return Err(Error::InvalidState.into());
        }
        // Send an RPC request to QueueHandler thread to save its data.
        // QueueHandler stops any other processing after completing Save request.
        let handler_data = self.issuer.send.call(Req::Save, ()).await??;

        Ok(QueuePairSavedState {
            mem_len: self.mem.len(),
            base_pfn: self.mem.pfns()[0],
            qid: self.qid,
            sq_entries: self.sq_entries,
            cq_entries: self.cq_entries,
            handler_data,
        })
    }

    /// Restore queue pair state after servicing.
    pub fn restore(
        spawner: impl SpawnDriver,
        interrupt: DeviceInterrupt,
        registers: Arc<DeviceRegisters<impl DeviceBacking>>,
        mem: MemoryBlock,
        saved_state: &QueuePairSavedState,
    ) -> anyhow::Result<Self> {
        let QueuePairSavedState {
            mem_len: _,  // Used to restore DMA buffer before calling this.
            base_pfn: _, // Used to restore DMA buffer before calling this.
            qid,
            sq_entries,
            cq_entries,
            handler_data,
        } = saved_state;

        QueuePair::new_or_restore(
            spawner,
            *qid,
            *sq_entries,
            *cq_entries,
            interrupt,
            registers,
            mem,
            Some(handler_data),
        )
    }
}

/// An error issuing an NVMe request.
#[derive(Debug, Error)]
#[expect(missing_docs)]
pub enum RequestError {
    #[error("queue pair is gone")]
    Gone(#[source] RpcError),
    #[error("nvme error")]
    Nvme(#[source] NvmeError),
    #[error("memory error")]
    Memory(#[source] GuestMemoryError),
    #[error("i/o too large for double buffering")]
    TooLarge,
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct NvmeError(spec::Status);

impl NvmeError {
    pub fn status(&self) -> spec::Status {
        self.0
    }
}

impl From<spec::Status> for NvmeError {
    fn from(value: spec::Status) -> Self {
        Self(value)
    }
}

impl std::error::Error for NvmeError {}

impl std::fmt::Display for NvmeError {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self.0.status_code_type() {
            spec::StatusCodeType::GENERIC => write!(f, "general error {:#x?}", self.0),
            spec::StatusCodeType::COMMAND_SPECIFIC => {
                write!(f, "command-specific error {:#x?}", self.0)
            }
            spec::StatusCodeType::MEDIA_ERROR => {
                write!(f, "media error {:#x?}", self.0)
            }
            _ => write!(f, "{:#x?}", self.0),
        }
    }
}

#[derive(Debug, Inspect)]
pub struct Issuer {
    #[inspect(skip)]
    send: mesh::Sender<Req>,
    alloc: PageAllocator,
}

impl Issuer {
    pub async fn issue_raw(
        &self,
        command: spec::Command,
    ) -> Result<spec::Completion, RequestError> {
        match self.send.call(Req::Command, command).await {
            Ok(completion) if completion.status.status() == 0 => Ok(completion),
            Ok(completion) => Err(RequestError::Nvme(NvmeError(spec::Status(
                completion.status.status(),
            )))),
            Err(err) => Err(RequestError::Gone(err)),
        }
    }

    pub async fn issue_external(
        &self,
        mut command: spec::Command,
        guest_memory: &GuestMemory,
        mem: PagedRange<'_>,
    ) -> Result<spec::Completion, RequestError> {
        let mut double_buffer_pages = None;
        let opcode = spec::Opcode(command.cdw0.opcode());
        assert!(
            opcode.transfer_controller_to_host()
                || opcode.transfer_host_to_controller()
                || mem.is_empty()
        );

        // Ensure the memory is currently mapped.
        guest_memory
            .probe_gpns(mem.gpns())
            .map_err(RequestError::Memory)?;

        let prp = if mem
            .gpns()
            .iter()
            .all(|&gpn| guest_memory.iova(gpn * PAGE_SIZE64).is_some())
        {
            // Guest memory is available to the device, so issue the IO directly.
            self.make_prp(
                mem.offset() as u64,
                mem.gpns()
                    .iter()
                    .map(|&gpn| guest_memory.iova(gpn * PAGE_SIZE64).unwrap()),
            )
            .await
        } else {
            tracing::debug!(opcode = opcode.0, size = mem.len(), "double buffering");

            // Guest memory is not accessible by the device. Double buffer
            // through an allocation.
            let double_buffer_pages = double_buffer_pages.insert(
                self.alloc
                    .alloc_bytes(mem.len())
                    .await
                    .ok_or(RequestError::TooLarge)?,
            );

            if opcode.transfer_host_to_controller() {
                double_buffer_pages
                    .copy_from_guest_memory(guest_memory, mem)
                    .map_err(RequestError::Memory)?;
            }

            self.make_prp(
                0,
                (0..double_buffer_pages.page_count())
                    .map(|i| double_buffer_pages.physical_address(i)),
            )
            .await
        };

        command.dptr = prp.dptr;
        let r = self.issue_raw(command).await;
        if let Some(double_buffer_pages) = double_buffer_pages {
            if r.is_ok() && opcode.transfer_controller_to_host() {
                double_buffer_pages
                    .copy_to_guest_memory(guest_memory, mem)
                    .map_err(RequestError::Memory)?;
            }
        }
        r
    }

    async fn make_prp(
        &self,
        offset: u64,
        mut iovas: impl ExactSizeIterator<Item = u64>,
    ) -> Prp<'_> {
        let mut prp_pages = None;
        let dptr = match iovas.len() {
            0 => [INVALID_PAGE_ADDR; 2],
            1 => [iovas.next().unwrap() + offset, INVALID_PAGE_ADDR],
            2 => [iovas.next().unwrap() + offset, iovas.next().unwrap()],
            _ => {
                let a = iovas.next().unwrap();
                assert!(iovas.len() <= 4096);
                let prp = self
                    .alloc
                    .alloc_pages(1)
                    .await
                    .expect("pool cap is >= 1 page");

                let prp_addr = prp.physical_address(0);
                let page = prp.page_as_slice(0);
                for (iova, dest) in iovas.zip(page.chunks_exact(8)) {
                    dest.atomic_write_obj(&iova.to_le_bytes());
                }
                prp_pages = Some(prp);
                [a + offset, prp_addr]
            }
        };
        Prp {
            dptr,
            _pages: prp_pages,
        }
    }

    pub async fn issue_neither(
        &self,
        mut command: spec::Command,
    ) -> Result<spec::Completion, RequestError> {
        command.dptr = [INVALID_PAGE_ADDR; 2];
        self.issue_raw(command).await
    }

    pub async fn issue_in(
        &self,
        mut command: spec::Command,
        data: &[u8],
    ) -> Result<spec::Completion, RequestError> {
        let mem = self
            .alloc
            .alloc_bytes(data.len())
            .await
            .expect("pool cap is >= 1 page");

        mem.write(data);
        assert_eq!(
            mem.page_count(),
            1,
            "larger requests not currently supported"
        );
        let prp = Prp {
            dptr: [mem.physical_address(0), INVALID_PAGE_ADDR],
            _pages: None,
        };
        command.dptr = prp.dptr;
        self.issue_raw(command).await
    }

    pub async fn issue_out(
        &self,
        mut command: spec::Command,
        data: &mut [u8],
    ) -> Result<spec::Completion, RequestError> {
        let mem = self
            .alloc
            .alloc_bytes(data.len())
            .await
            .expect("pool cap is sufficient");

        assert_eq!(
            mem.page_count(),
            1,
            "larger requests not currently supported"
        );
        let prp = Prp {
            dptr: [mem.physical_address(0), INVALID_PAGE_ADDR],
            _pages: None,
        };
        command.dptr = prp.dptr;
        let completion = self.issue_raw(command).await;
        mem.read(data);
        completion
    }
}

struct Prp<'a> {
    dptr: [u64; 2],
    _pages: Option<ScopedPages<'a>>,
}

#[derive(Inspect)]
struct PendingCommands {
    /// Mapping from the low bits of cid to pending command.
    #[inspect(iter_by_key)]
    commands: Slab<PendingCommand>,
    #[inspect(hex)]
    next_cid_high_bits: Wrapping<u16>,
}

#[derive(Inspect)]
struct PendingCommand {
    // Keep the command around for diagnostics.
    command: spec::Command,
    #[inspect(skip)]
    respond: Rpc<(), spec::Completion>,
}

enum Req {
    Command(Rpc<spec::Command, spec::Completion>),
    Inspect(inspect::Deferred),
    Save(Rpc<(), Result<QueueHandlerSavedState, anyhow::Error>>),
}

#[derive(Inspect)]
struct QueueHandler {
    sq: SubmissionQueue,
    cq: CompletionQueue,
    commands: PendingCommands,
    stats: QueueStats,
    drain_after_restore: bool,
}

#[derive(Inspect, Default)]
struct QueueStats {
    issued: Counter,
    completed: Counter,
    interrupts: Counter,
}

impl QueueHandler {
    async fn run(
        &mut self,
        registers: &DeviceRegisters<impl DeviceBacking>,
        mut recv: mesh::Receiver<Req>,
        interrupt: &mut DeviceInterrupt,
    ) {
        loop {
            enum Event {
                Request(Req),
                Completion(spec::Completion),
            }

            let event = if !self.drain_after_restore {
                // Normal processing of the requests and completions.
                poll_fn(|cx| {
                    if !self.sq.is_full() && !self.commands.is_full() {
                        if let Poll::Ready(Some(req)) = recv.poll_next_unpin(cx) {
                            return Event::Request(req).into();
                        }
                    }
                    while !self.commands.is_empty() {
                        if let Some(completion) = self.cq.read() {
                            return Event::Completion(completion).into();
                        }
                        if interrupt.poll(cx).is_pending() {
                            break;
                        }
                        self.stats.interrupts.increment();
                    }
                    self.sq.commit(registers);
                    self.cq.commit(registers);
                    Poll::Pending
                })
                .await
            } else {
                // Only process in-flight completions.
                poll_fn(|cx| {
                    while !self.commands.is_empty() {
                        if let Some(completion) = self.cq.read() {
                            return Event::Completion(completion).into();
                        }
                        if interrupt.poll(cx).is_pending() {
                            break;
                        }
                        self.stats.interrupts.increment();
                    }
                    self.cq.commit(registers);
                    Poll::Pending
                })
                .await
            };

            match event {
                Event::Request(req) => match req {
                    Req::Command(rpc) => {
                        let (mut command, respond) = rpc.split();
                        self.commands.insert(&mut command, respond);
                        self.sq.write(command).unwrap();
                        self.stats.issued.increment();
                    }
                    Req::Inspect(deferred) => deferred.inspect(&self),
                    Req::Save(queue_state) => {
                        queue_state.complete(self.save().await);
                        // Do not allow any more processing after save completed.
                        break;
                    }
                },
                Event::Completion(completion) => {
                    assert_eq!(completion.sqid, self.sq.id());
                    let respond = self.commands.remove(completion.cid);
                    if self.drain_after_restore && self.commands.is_empty() {
                        // Switch to normal processing mode once all in-flight commands completed.
                        self.drain_after_restore = false;
                    }
                    self.sq.update_head(completion.sqhd);
                    respond.complete(completion);
                    self.stats.completed.increment();
                }
            }
        }
    }

    /// Save queue data for servicing.
    pub async fn save(&self) -> anyhow::Result<QueueHandlerSavedState> {
        // The data is collected from both QueuePair and QueueHandler.
        Ok(QueueHandlerSavedState {
            sq_state: self.sq.save(),
            cq_state: self.cq.save(),
            pending_cmds: self.commands.save(),
        })
    }

    /// Restore queue data after servicing.
    pub fn restore(
        sq_mem_block: MemoryBlock,
        cq_mem_block: MemoryBlock,
        saved_state: &QueueHandlerSavedState,
    ) -> anyhow::Result<Self> {
        let QueueHandlerSavedState {
            sq_state,
            cq_state,
            pending_cmds,
        } = saved_state;

        Ok(Self {
            sq: SubmissionQueue::restore(sq_mem_block, sq_state)?,
            cq: CompletionQueue::restore(cq_mem_block, cq_state)?,
            commands: PendingCommands::restore(pending_cmds)?,
            stats: Default::default(),
            // Only drain pending commands for I/O queues.
            // Admin queue is expected to have pending Async Event requests.
            drain_after_restore: sq_state.sqid != 0 && !pending_cmds.commands.is_empty(),
        })
    }
}

pub(crate) fn admin_cmd(opcode: spec::AdminOpcode) -> spec::Command {
    spec::Command {
        cdw0: spec::Cdw0::new().with_opcode(opcode.0),
        ..FromZeros::new_zeroed()
    }
}