nvme/
queue.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! NVMe submission and completion queue types.

use crate::spec;
use guestmem::GuestMemory;
use guestmem::GuestMemoryError;
use inspect::Inspect;
use std::sync::Arc;
use std::sync::atomic::AtomicU32;
use std::sync::atomic::Ordering;
use thiserror::Error;
use vmcore::interrupt::Interrupt;

pub const ILLEGAL_DOORBELL_VALUE: u32 = 0xffffffff;

#[derive(Default, Inspect)]
#[inspect(transparent)]
pub struct DoorbellRegister {
    #[inspect(with = "|x| inspect::AsHex(x.load(Ordering::Relaxed))")]
    value: AtomicU32,
    #[inspect(skip)]
    event: event_listener::Event,
}

impl DoorbellRegister {
    pub fn new() -> Self {
        Self::default()
    }

    pub fn write(&self, value: u32) {
        self.value.store(value, Ordering::SeqCst);
        self.event.notify(usize::MAX);
    }

    pub fn read(&self) -> u32 {
        self.value.load(Ordering::SeqCst)
    }

    pub async fn wait_read(&self, value: u32) -> u32 {
        let v = self.read();
        if value != v {
            return v;
        }
        loop {
            let listener = self.event.listen();
            let v = self.read();
            if value != v {
                break v;
            }
            listener.await;
        }
    }
}

#[derive(Copy, Clone, Default, Inspect, Debug)]
pub struct ShadowDoorbell {
    #[inspect(hex)]
    pub shadow_db_gpa: u64,
    #[inspect(hex)]
    pub event_idx_gpa: u64,
}

impl ShadowDoorbell {
    // See NVMe Spec version 2.0a, Section 5.8 -- Doorbell Buffer Config Command for
    // an explanation of this math.
    pub fn new(
        shadow_db_evt_idx_base: ShadowDoorbell,
        qid: u16,
        is_sq: bool,
        doorbell_stride_bits: usize,
    ) -> ShadowDoorbell {
        let offset = match is_sq {
            true => 0u64,
            false => 1u64,
        };
        let shadow_db_gpa = shadow_db_evt_idx_base.shadow_db_gpa
            + (qid as u64 * 2 + offset) * (4 << (doorbell_stride_bits - 2));
        let event_idx_gpa = shadow_db_evt_idx_base.event_idx_gpa
            + (qid as u64 * 2 + offset) * (4 << (doorbell_stride_bits - 2));
        ShadowDoorbell {
            shadow_db_gpa,
            event_idx_gpa,
        }
    }
}

#[derive(Inspect)]
pub struct SubmissionQueue {
    #[inspect(hex)]
    cached_tail: u32,
    tail: Arc<DoorbellRegister>,
    #[inspect(hex)]
    head: u32,
    #[inspect(hex)]
    gpa: u64,
    #[inspect(hex)]
    len: u32,
    #[inspect(with = "Option::is_some")]
    shadow_db_evt_idx: Option<ShadowDoorbell>,
    #[inspect(hex)]
    evt_idx: u32,
}

#[derive(Debug, Error)]
pub enum QueueError {
    #[error("invalid doorbell tail {0:#x}")]
    InvalidTail(u32),
    #[error("invalid doorbell head {0:#x}")]
    InvalidHead(u32),
    #[error("queue access error")]
    Memory(#[source] GuestMemoryError),
}

impl SubmissionQueue {
    pub fn new(
        tail: Arc<DoorbellRegister>,
        gpa: u64,
        len: u16,
        shadow_db_evt_idx: Option<ShadowDoorbell>,
    ) -> Self {
        tail.write(0);
        Self {
            cached_tail: 0,
            tail,
            head: 0,
            gpa,
            len: len.into(),
            shadow_db_evt_idx,
            evt_idx: 0,
        }
    }

    /// This function returns a future for the next entry in the submission queue.  It also
    /// has a side effect of updating the tail.
    ///
    /// Note that this function returns a future that must be cancellable, which means that the
    /// parts after an await may never run.  The tail update side effect is benign, so
    /// that can happen before the await.
    pub async fn next(&mut self, mem: &GuestMemory) -> Result<spec::Command, QueueError> {
        // If shadow doorbells are in use, use that instead of what was written to the doorbell
        // register, as it may be more current.
        if let Some(shadow_db_evt_idx) = self.shadow_db_evt_idx {
            let shadow_tail = mem
                .read_plain(shadow_db_evt_idx.shadow_db_gpa)
                .map_err(QueueError::Memory)?;

            // ILLEGAL_DOORBELL_VALUE is the initial state.  The guest will overwrite
            // it when it first uses the shadow.
            if shadow_tail != ILLEGAL_DOORBELL_VALUE {
                self.cached_tail = shadow_tail;
                self.tail.write(self.cached_tail);
            }
        }
        while self.cached_tail == self.head {
            self.cached_tail = self.tail.wait_read(self.cached_tail).await;
        }
        if self.cached_tail >= self.len {
            return Err(QueueError::InvalidTail(self.cached_tail));
        }
        let command: spec::Command = mem
            .read_plain(self.gpa.wrapping_add(self.head as u64 * 64))
            .map_err(QueueError::Memory)?;

        self.head = advance(self.head, self.len);
        Ok(command)
    }

    pub fn sqhd(&self) -> u16 {
        self.head as u16
    }

    /// This function lets the driver know what doorbell value we consumed, allowing
    /// it to elide the next ring, maybe.
    pub fn advance_evt_idx(&mut self, mem: &GuestMemory) -> Result<(), QueueError> {
        self.evt_idx = advance(self.evt_idx, self.len);
        if let Some(shadow_db_evt_idx) = self.shadow_db_evt_idx {
            mem.write_plain(shadow_db_evt_idx.event_idx_gpa, &self.evt_idx)
                .map_err(QueueError::Memory)?;
        }
        Ok(())
    }

    /// This function updates the shadow doorbell values of a queue that is
    /// potentially already in use.
    pub fn update_shadow_db(&mut self, mem: &GuestMemory, sdb: ShadowDoorbell) {
        self.shadow_db_evt_idx = Some(sdb);
        self.evt_idx = self.cached_tail;
        // Write the illegal value out to the buffer, so that we can tell
        // if Linux has ever written a valid value.
        let _ = mem.write_plain(sdb.shadow_db_gpa, &ILLEGAL_DOORBELL_VALUE);
    }
}

#[derive(Inspect)]
pub struct CompletionQueue {
    #[inspect(hex)]
    tail: u32,
    #[inspect(hex)]
    cached_head: u32,
    head: Arc<DoorbellRegister>,
    phase: bool,
    #[inspect(hex)]
    gpa: u64,
    #[inspect(hex)]
    len: u32,
    #[inspect(with = "Option::is_some")]
    interrupt: Option<Interrupt>,
    shadow_db_evt_idx: Option<ShadowDoorbell>,
}

impl CompletionQueue {
    pub fn new(
        head: Arc<DoorbellRegister>,
        interrupt: Option<Interrupt>,
        gpa: u64,
        len: u16,
        shadow_db_evt_idx: Option<ShadowDoorbell>,
    ) -> Self {
        head.write(0);
        Self {
            tail: 0,
            cached_head: 0,
            head,
            phase: true,
            gpa,
            len: len.into(),
            interrupt,
            shadow_db_evt_idx,
        }
    }

    /// Wait for free completions.
    pub async fn wait_ready(&mut self, mem: &GuestMemory) -> Result<(), QueueError> {
        let next_tail = advance(self.tail, self.len);
        // If shadow doorbells are in use, use that instead of what was written to the doorbell
        // register, as it may be more current.
        if let Some(shadow_db_evt_idx) = self.shadow_db_evt_idx {
            let shadow_head = mem
                .read_plain(shadow_db_evt_idx.shadow_db_gpa)
                .map_err(QueueError::Memory)?;

            // ILLEGAL_DOORBELL_VALUE is the initial state.  The guest will overwrite
            // it when it first uses the shadow.
            if shadow_head != ILLEGAL_DOORBELL_VALUE {
                self.cached_head = shadow_head;
                self.head.write(self.cached_head);
            }
        }
        while self.cached_head == next_tail {
            self.cached_head = self.head.wait_read(self.cached_head).await;
        }
        if self.cached_head >= self.len {
            return Err(QueueError::InvalidHead(self.cached_head));
        }
        Ok(())
    }

    pub fn write(
        &mut self,
        mem: &GuestMemory,
        mut data: spec::Completion,
    ) -> Result<bool, QueueError> {
        if self.cached_head == advance(self.tail, self.len) {
            return Ok(false);
        }
        data.status.set_phase(self.phase);

        // Atomically write the low part of the completion entry first, then the
        // high part, using release fences to ensure ordering.
        //
        // This is necessary to ensure the guest can observe the full completion
        // once it observes the phase bit change (which is in the high part).
        let [low, high]: [u64; 2] = zerocopy::transmute!(data);
        let gpa = self.gpa.wrapping_add(self.tail as u64 * 16);
        mem.write_plain(gpa, &low).map_err(QueueError::Memory)?;
        std::sync::atomic::fence(Ordering::Release);
        mem.write_plain(gpa + 8, &high)
            .map_err(QueueError::Memory)?;
        std::sync::atomic::fence(Ordering::Release);

        if let Some(interrupt) = &self.interrupt {
            interrupt.deliver();
        }
        self.tail = advance(self.tail, self.len);
        if self.tail == 0 {
            self.phase = !self.phase;
        }
        Ok(true)
    }

    /// This method updates the EVT_IDX field to match the shadow doorbell
    /// value, thus signalling to the guest driver that the next completion
    /// removed should involve a doorbell ring.  In this emulator, such
    /// a thing (the ring) is only necessary when the number of un-spoken-for
    /// completion queue entries is getting small.  (Completion queue entries
    /// are spoken for when a command is removed from the SQ).
    pub fn catch_up_evt_idx(
        &mut self,
        force: bool,
        io_outstanding: u32,
        mem: &GuestMemory,
    ) -> Result<(), QueueError> {
        if let Some(shadow_db_evt_idx) = self.shadow_db_evt_idx {
            if force | (io_outstanding >= self.len - 3) {
                mem.write_plain(shadow_db_evt_idx.event_idx_gpa, &self.cached_head)
                    .map_err(QueueError::Memory)?;
            }
        }
        Ok(())
    }

    /// This function updates the shadow doorbell values of a queue that is
    /// potentially already in use.
    pub fn update_shadow_db(&mut self, mem: &GuestMemory, sdb: ShadowDoorbell) {
        self.shadow_db_evt_idx = Some(sdb);
        // Write the illegal value out to the buffer, so that we can tell
        // if Linux has ever written a valid value.
        let _ = mem.write_plain(sdb.shadow_db_gpa, &ILLEGAL_DOORBELL_VALUE);
    }
}

fn advance(n: u32, l: u32) -> u32 {
    if n + 1 < l { n + 1 } else { 0 }
}