mesh_remote/
unix_node.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Unix socket-based mesh node implementation.
//!
//! Each pair of nodes communicate using a single, bidirectional Unix socket. On
//! platforms that support it (Linux), a `SOCK_SEQPACKET` socket is used, which
//! provides message framing and atomic message sends. Otherwise, a
//! `SOCK_STREAM` packet is used, and the protocol includes a message size.
//!
//! File descriptors are sent between nodes using the `SCM_RIGHTS` functionality
//! of Unix sockets.

#![cfg(unix)]
// UNSAFETY: Calls to libc send/recvmsg fns and the work to prepare their inputs
// and handle their outputs (mem::zeroed, transmutes, from_raw_fds).
#![expect(unsafe_code)]

#[cfg(target_os = "linux")]
mod memfd;

use crate::common::InvitationAddress;
use crate::protocol;
use futures::FutureExt;
use futures::StreamExt;
use futures::channel::mpsc;
use futures::future;
use futures::future::BoxFuture;
use io::ErrorKind;
use mesh_channel::OneshotReceiver;
use mesh_channel::OneshotSender;
use mesh_channel::RecvError;
use mesh_channel::channel;
use mesh_channel::oneshot;
use mesh_node::common::Address;
use mesh_node::common::NodeId;
use mesh_node::common::PortId;
use mesh_node::local_node::Connect;
use mesh_node::local_node::LocalNode;
use mesh_node::local_node::OutgoingEvent;
use mesh_node::local_node::Port;
use mesh_node::local_node::RemoteNodeHandle;
use mesh_node::local_node::SendEvent;
use mesh_node::resource::OsResource;
use mesh_node::resource::Resource;
use mesh_protobuf::Protobuf;
use pal_async::driver::SpawnDriver;
use pal_async::interest::InterestSlot;
use pal_async::interest::PollEvents;
use pal_async::socket::PolledSocket;
use pal_async::task::Spawn;
use pal_async::task::Task;
use parking_lot::Mutex;
use socket2::Socket;
use std::collections::HashMap;
use std::collections::VecDeque;
use std::fmt::Debug;
use std::future::Future;
use std::future::poll_fn;
use std::io;
use std::io::IoSlice;
use std::io::IoSliceMut;
use std::os::unix::prelude::*;
use std::pin::pin;
use std::sync::Arc;
use thiserror::Error;
use tracing::instrument;
use unicycle::FuturesUnordered;
use zerocopy::FromBytes;
use zerocopy::FromZeros;
use zerocopy::IntoBytes;

/// If true, use a SOCK_SEQPACKET socket. Otherwise, use a SOCK_STREAM socket.
///
/// SOCK_SEQPACKET is preferred where available because it allows us to avoid
/// separately tracking message boundaries. Most importantly, this makes it
/// straightforward to support sending messages from multiple threads
/// simultaneously.
const USE_SEQPACKET: bool = cfg!(target_os = "linux");

/// The maximum packet size. Linux uses memfd to send data larger than this.
/// Other OSes just fail, so choose a larger size.
///
/// These values were chosen arbitrarily and have not been tested for
/// performance.
const MAX_PACKET_SIZE: usize = if cfg!(target_os = "linux") {
    0x4000
} else {
    0x40000
};

const MAX_SMALL_EVENT_SIZE: usize = MAX_PACKET_SIZE - size_of::<protocol::PacketHeader>();

/// A node within a mesh that uses Unix sockets to communicate.
///
/// Each pairwise connection between two nodes in the mesh communicates via a
/// pair of bidirectional sockets.
///
/// If one node needs to send data to another but does not have a connection, it
/// sends a request to the leader node to establish a connection. The leader
/// creates a new socket pair and sends one end to each of the nodes, which the
/// two nodes can use to communicate.
pub struct UnixNode {
    driver: Arc<dyn SpawnDriver>,
    local_node: Arc<LocalNode>,
    to_leader: Arc<mesh_channel::Sender<LeaderRequest>>,
    tasks: Arc<mesh_channel::Sender<SmallTask>>,
    io_task: Task<()>,
    // TODO: consider reducing type complexity?
    leader_resign_send:
        Mutex<Option<Arc<mesh_channel::Sender<(NodeId, mesh_channel::Sender<Followers>)>>>>,

    // meaningful drop
    _drop_send: OneshotSender<()>,
}

#[derive(Debug, Protobuf)]
#[mesh(resource = "Resource")]
enum LeaderRequest {
    Connect(NodeId),
    Invite(Port, mesh_channel::Sender<Invitation>),
}

#[derive(Debug, Protobuf)]
#[mesh(resource = "Resource")]
enum FollowerRequest {
    Connect(
        NodeId,
        #[mesh(
            encoding = "mesh_protobuf::encoding::OptionField<mesh_protobuf::encoding::ResourceField<OwnedFd>>"
        )]
        Option<Socket>,
    ),
}

#[derive(Debug, Protobuf)]
#[mesh(resource = "Resource")]
pub struct Followers {
    list: Vec<(
        NodeId,
        mesh_channel::Receiver<LeaderRequest>,
        mesh_channel::Sender<FollowerRequest>,
    )>,
}

#[derive(Debug, Protobuf)]
#[mesh(resource = "Resource")]
struct InitialMessage {
    leader_send: mesh_channel::Sender<LeaderRequest>,
    follower_recv: mesh_channel::Receiver<FollowerRequest>,
    user_port: Port,
}

/// Processes incoming requests from the leader to a follower. Currently the only
/// such request is to add a connection to another node.
#[instrument(skip_all, fields(local_id = ?local_node.id()))]
async fn run_follower(
    driver: &dyn SpawnDriver,
    local_node: &Arc<LocalNode>,
    mut recv: mesh_channel::Receiver<FollowerRequest>,
    pending_connections: Arc<Mutex<HashMap<NodeId, RemoteNodeHandle>>>,
    tasks: &mesh_channel::Sender<SmallTask>,
) {
    while let Ok(req) = recv.recv().await {
        match req {
            FollowerRequest::Connect(target_id, fd) => {
                tracing::debug!(?target_id, "got connection request from leader");
                let handle = pending_connections.lock().remove(&target_id);
                let handle = handle.unwrap_or_else(|| local_node.get_remote_handle(target_id));

                if let Some(fd) = fd {
                    start_connection(
                        tasks,
                        local_node,
                        target_id,
                        handle,
                        UnixSocket::new(driver, fd),
                    );
                } else {
                    tracing::warn!(?target_id, "leader provided failed connection");
                }
            }
        }
    }
}

/// Processes incoming requests from a follower to the leader. Runs until there
/// are no more followers or until the leader is asked to transfer power to
/// another node via `resign_recv`.
#[instrument(skip_all, fields(local_id = ?local_node.id()))]
async fn run_leader(
    driver: &dyn SpawnDriver,
    local_node: &Arc<LocalNode>,
    mut resign_recv: mesh_channel::Receiver<(NodeId, mesh_channel::Sender<Followers>)>,
    followers: Followers,
    tasks: &mesh_channel::Sender<SmallTask>,
) {
    let mut senders = HashMap::new();
    let mut receivers = Vec::new();
    for (remote_id, recv, send) in followers.list {
        receivers.push((remote_id, recv));
        senders.insert(remote_id, send);
    }

    let new_leader_info = loop {
        if receivers.is_empty() {
            return;
        }
        let recvs = receivers
            .iter_mut()
            .map(|(_, recv)| poll_fn(|cx| recv.poll_recv(cx)));
        let (req, index, _) = futures::select! { // merge semantics
            r = resign_recv.next() => break r,
            r = future::select_all(recvs).fuse() => r,
        };
        let remote_id = receivers[index].0;
        match req {
            Ok(req) => match req {
                LeaderRequest::Connect(target_id) => {
                    tracing::debug!(?target_id, ?remote_id, "connection request");
                    let remote = senders
                        .get(&remote_id)
                        .expect("sender must exist to receive from it");
                    let mut fd = None;
                    if let Some(target) = senders.get(&target_id) {
                        match new_socket_pair() {
                            Ok((left, right)) => {
                                tracing::trace!(?target, "send to");
                                target.send(FollowerRequest::Connect(remote_id, Some(left)));
                                fd = Some(right);
                            }
                            Err(err) => {
                                tracing::warn!(
                                    ?target_id,
                                    ?remote_id,
                                    error = &err as &dyn std::error::Error,
                                    "failed to create socket pair for connection request"
                                );
                            }
                        }
                    } else {
                        tracing::warn!(?target_id, ?remote_id, "could not find target for remote");
                    }
                    remote.send(FollowerRequest::Connect(target_id, fd));
                }
                LeaderRequest::Invite(port, send) => {
                    tracing::debug!(?remote_id, "invitation request");
                    match new_socket_pair() {
                        Ok((left, right)) => {
                            let (leader_send, leader_recv) = channel();
                            let (follower_send, follower_recv) = channel();
                            let remote_addr = Address {
                                node: NodeId::new(),
                                port: PortId::new(),
                            };
                            let local_port_id = PortId::new();
                            let handle = local_node.add_remote(remote_addr.node);
                            start_connection(
                                tasks,
                                local_node,
                                remote_addr.node,
                                handle,
                                UnixSocket::new(driver, left),
                            );
                            let init_send = OneshotSender::<InitialMessage>::from(
                                local_node.add_port(local_port_id, remote_addr),
                            );
                            init_send.send(InitialMessage {
                                leader_send,
                                follower_recv,
                                user_port: port,
                            });
                            let invitation = Invitation {
                                address: InvitationAddress {
                                    local_addr: remote_addr,
                                    remote_addr: Address {
                                        node: local_node.id(),
                                        port: local_port_id,
                                    },
                                },
                                fd: right.into(),
                            };
                            tracing::debug!(
                                invite_id = ?invitation.address.local_addr.node,
                                ?remote_id,
                                "inviting",
                            );
                            send.send(invitation);
                            senders.insert(remote_addr.node, follower_send);
                            receivers.push((remote_addr.node, leader_recv));
                        }
                        Err(err) => {
                            tracing::error!(
                                error = &err as &dyn std::error::Error,
                                "failed to create socket pair",
                            );
                        }
                    }
                }
            },
            Err(err) => {
                if let RecvError::Error(err) = err {
                    tracing::debug!(
                        ?remote_id,
                        error = &err as &dyn std::error::Error,
                        "leader connection to remote failed"
                    );
                }
                senders.remove(&remote_id);
                receivers.swap_remove(index);
            }
        }
    };

    if let Some((new_leader_id, new_leader_followers_sink)) = new_leader_info {
        if let Some(new_leader_send) = senders.get(&new_leader_id) {
            tracing::debug!(?new_leader_id, "resigning leadership");
            // Ensure there is a connection between every follower and the new
            // leader.
            for (remote_id, send) in senders.iter() {
                if new_leader_id != *remote_id {
                    match new_socket_pair() {
                        Ok((left, right)) => {
                            send.send(FollowerRequest::Connect(new_leader_id, Some(left)));
                            new_leader_send.send(FollowerRequest::Connect(*remote_id, Some(right)));
                        }
                        Err(err) => {
                            tracing::error!(
                                ?new_leader_id,
                                error = &err as &dyn std::error::Error,
                                "failed to connect node to new leader, mesh is leaderless",
                            );
                            return;
                        }
                    }
                }
            }

            // Send all the followers to the new leader.
            let mut followers = Vec::new();
            for (remote_id, recv) in receivers {
                let send = senders
                    .remove(&remote_id)
                    .expect("should be in sync with receivers");
                followers.push((remote_id, recv, send));
            }
            new_leader_followers_sink.send(Followers { list: followers });
        } else {
            tracing::error!(?new_leader_id, "new leader is unknown, mesh is leaderless");
        }
    }
}

/// A task initiator, implementing by a function returning a future. This is
/// used to send work to the node's IO thread.
struct SmallTask {
    name: &'static str,
    future: BoxFuture<'static, ()>,
}

impl Debug for SmallTask {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.pad("SmallTask")
    }
}

impl SmallTask {
    fn new(name: &'static str, f: impl 'static + Send + Future<Output = ()>) -> Self {
        Self {
            name,
            future: Box::pin(f),
        }
    }
}

/// An invitation allowing another process to join the mesh.
///
/// Created by [`UnixNode::invite`].
#[derive(Debug, Protobuf)]
#[mesh(resource = "Resource")]
pub struct Invitation {
    /// The common invitation addresses.
    pub address: InvitationAddress,
    /// The Unix socket used to initiate communications with the mesh.
    pub fd: OwnedFd,
}

#[derive(Debug)]
enum SenderCommand {
    Send {
        packet: Vec<u8>,
        fds: Vec<OsResource>,
    },
    ReleaseFds {
        count: usize,
    },
}

#[derive(Clone)]
struct PacketSender {
    send: mpsc::UnboundedSender<SenderCommand>,
    socket: Arc<UnixSocket>,
}

impl SendEvent for PacketSender {
    fn event(&self, event: OutgoingEvent<'_>) {
        let (packet, fds) = match serialize_event(event) {
            Ok(r) => r,
            Err(err) => {
                // FUTURE: fail the port or connection instead?
                tracing::error!(
                    error = &err as &dyn std::error::Error,
                    "failed to serialize event"
                );
                return;
            }
        };

        // If using SOCK_SEQPACKET, try to send the packet immediately. If this
        // fails (likely due to EAGAIN), send the packet to the asynchronous
        // task for deferred processing.
        //
        // When SOCK_STREAM is in use, this optimization cannot be tried,
        // because for stream sockets we may need to issue multiple writes to
        // send the whole message, and those writes cannot be interleaved
        // correctly.
        //
        // N.B. This can lead to out of order messages. The event protocol is
        //      responsible for handling this condition.
        if !USE_SEQPACKET
            || try_send(
                self.socket.socket.lock().get(),
                &[IoSlice::new(&packet)],
                &fds,
            )
            .is_err()
        {
            let _ = self
                .send
                .unbounded_send(SenderCommand::Send { packet, fds });
        }
    }
}

fn serialize_event(event: OutgoingEvent<'_>) -> io::Result<(Vec<u8>, Vec<OsResource>)> {
    // Serialize the event to a memfd if it's too large to send inline.
    if event.len() > MAX_SMALL_EVENT_SIZE {
        return serialize_large_event(event);
    }

    // Serialize the event to a byte vector.
    let cap = size_of::<protocol::PacketHeader>() + event.len();
    let mut packet = Vec::with_capacity(cap);
    packet.extend_from_slice(
        protocol::PacketHeader {
            packet_type: protocol::PacketType::EVENT,
            reserved: [0; 7],
        }
        .as_bytes(),
    );
    let mut fds = Vec::new();
    event.write_to(&mut packet, &mut fds);
    assert_eq!(packet.len(), cap);
    Ok((packet, fds))
}

#[cfg(target_os = "linux")]
fn serialize_large_event(event: OutgoingEvent<'_>) -> io::Result<(Vec<u8>, Vec<OsResource>)> {
    let packet = protocol::PacketHeader {
        packet_type: protocol::PacketType::LARGE_EVENT,
        ..FromZeros::new_zeroed()
    }
    .as_bytes()
    .to_vec();

    let mut fds = Vec::new();

    let mut memfd = memfd::MemfdBuilder::new(event.len())?;
    event.write_to(&mut io::Cursor::new(&mut *memfd), &mut fds);
    fds.insert(0, OsResource::Fd(memfd.seal()?.into()));

    Ok((packet, fds))
}

#[cfg(not(target_os = "linux"))]
fn serialize_large_event(_event: OutgoingEvent<'_>) -> io::Result<(Vec<u8>, Vec<OsResource>)> {
    Err(io::Error::new(
        ErrorKind::Unsupported,
        "event too large for this OS",
    ))
}

impl Drop for PacketSender {
    fn drop(&mut self) {
        // Explicitly close the send channel so that the send task returns, even
        // though the send channel is also in use by the receive task.
        self.send.close_channel();
    }
}

/// Starts a connection processing task.
fn start_connection(
    tasks: &mesh_channel::Sender<SmallTask>,
    local_node: &Arc<LocalNode>,
    remote_id: NodeId,
    handle: RemoteNodeHandle,
    socket: UnixSocket,
) {
    #[expect(clippy::disallowed_methods)] // TODO
    let (send, recv) = mpsc::unbounded();
    let socket = Arc::new(socket);
    let sender = PacketSender {
        send: send.clone(),
        socket: socket.clone(),
    };
    if handle.connect(sender) {
        let task = SmallTask::new("run_connection", {
            let local_node = local_node.clone();
            run_connection(local_node, remote_id, send, recv, socket, handle)
        });
        tasks.send(task);
        tracing::debug!(?remote_id, "connected");
    } else {
        // N.B. This is an expected condition in many scenarios, since the
        //      leader does not track which connections have already been
        //      made and so will often send duplicate connection requests.
        tracing::debug!(?remote_id, "duplicate connection");
    }
}

/// Runs the packet processing loop.
#[instrument(skip_all, fields(local_id = ?local_node.id(), remote_id = ?remote_id))]
async fn run_connection(
    local_node: Arc<LocalNode>,
    remote_id: NodeId,
    send_send: mpsc::UnboundedSender<SenderCommand>,
    send_recv: mpsc::UnboundedReceiver<SenderCommand>,
    socket: Arc<UnixSocket>,
    handle: RemoteNodeHandle,
) {
    let mut retained_fds = VecDeque::new();
    let mut recv = pin!(
        async {
            let r = run_receive(&local_node, &remote_id, &socket, &send_send).await;
            match &r {
                Ok(_) => {
                    tracing::debug!("incoming socket disconnected");
                }
                Err(err) => {
                    tracing::error!(error = err as &dyn std::error::Error, "error receiving");
                }
            }
            r
        }
        .fuse()
    );
    let mut send = pin!(
        async {
            match run_send(send_recv, &socket, &mut retained_fds).await {
                Ok(_) => {
                    tracing::debug!("sending is done");
                }
                Err(err) => {
                    tracing::error!(error = &err as &dyn std::error::Error, "failed send");
                }
            }
        }
        .fuse()
    );
    let r = futures::select! { // race semantics
        r = recv => {
            // Notify the remote node that no more data will be sent.
            tracing::trace!("read complete, shutting down writes");
            let _ = socket.close_write().await;
            r
        }
        _ = send => {
            match socket.close_write().await {
                Ok(()) => {
                    tracing::trace!("shutdown writes, waiting for reads");
                    recv.await
                }
                Err(err) => {
                    tracing::error!(
                        error = &err as &dyn std::error::Error,
                        "failed to shutdown writes, aborting connection",
                    );
                    Err(ReceiveError::Io(err))
                }
            }
        }
    };
    tracing::trace!("connection done");
    match r {
        Ok(()) => handle.disconnect(),
        Err(err) => handle.fail(err),
    }
}

#[derive(Debug, Error)]
enum ReceiveError {
    #[error("i/o error")]
    Io(#[from] io::Error),
    #[error("missing packet header")]
    NoHeader,
    #[error("release fds packet too small")]
    BadReleaseFds,
    #[error("unknown packet type {0:?}")]
    UnknownPacketType(protocol::PacketType),
    #[cfg(target_os = "linux")]
    #[error("memfd file descriptor not sent for large event")]
    MissingMemfd,
    #[cfg(target_os = "linux")]
    #[error("failed to map memfd")]
    Memfd(#[source] io::Error),
}

/// Handles receive processing for the socket.
async fn run_receive(
    local_node: &LocalNode,
    remote_id: &NodeId,
    socket: &UnixSocket,
    send: &mpsc::UnboundedSender<SenderCommand>,
) -> Result<(), ReceiveError> {
    let mut buf = vec![0; MAX_PACKET_SIZE];
    let mut fds = Vec::new();
    loop {
        let len = socket.recv(&mut buf, &mut fds).await?;
        if len == 0 {
            break;
        }
        if cfg!(target_os = "macos") && !fds.is_empty() {
            // Tell the opposite endpoint to release the fds it sent.
            let _ = send.unbounded_send(SenderCommand::Send {
                packet: protocol::ReleaseFds {
                    header: protocol::PacketHeader {
                        packet_type: protocol::PacketType::RELEASE_FDS,
                        ..FromZeros::new_zeroed()
                    },
                    count: fds.len() as u64,
                }
                .as_bytes()
                .to_vec(),
                fds: Vec::new(),
            });
        }

        let buf = &buf[..len];
        let header = protocol::PacketHeader::read_from_prefix(buf)
            .map_err(|_| ReceiveError::NoHeader)?
            .0; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)
        match header.packet_type {
            protocol::PacketType::EVENT => {
                local_node.event(remote_id, &buf[size_of_val(&header)..], &mut fds);
                fds.clear();
            }
            protocol::PacketType::RELEASE_FDS => {
                let release_fds = protocol::ReleaseFds::read_from_prefix(buf)
                    .map_err(|_| ReceiveError::BadReleaseFds)?
                    .0; // TODO: zerocopy: map_err (https://github.com/microsoft/openvmm/issues/759)
                let _ = send.unbounded_send(SenderCommand::ReleaseFds {
                    count: release_fds.count as usize,
                });
            }
            #[cfg(target_os = "linux")]
            protocol::PacketType::LARGE_EVENT => {
                if fds.is_empty() {
                    return Err(ReceiveError::MissingMemfd);
                }
                let OsResource::Fd(fd) = fds.remove(0);
                let memfd = memfd::SealedMemfd::new(fd.into()).map_err(ReceiveError::Memfd)?;
                local_node.event(remote_id, &memfd, &mut fds);
                fds.clear();
            }
            ty => {
                return Err(ReceiveError::UnknownPacketType(ty));
            }
        }
    }
    Ok(())
}

#[derive(Debug, Error)]
enum ProtocolError {
    #[error("request to release too many fds")]
    ReleasingTooManyFds,
}

/// Handles send processing for the socket.
async fn run_send(
    mut recv: mpsc::UnboundedReceiver<SenderCommand>,
    socket: &UnixSocket,
    retained_fds: &mut VecDeque<OsResource>,
) -> io::Result<()> {
    while let Some(command) = recv.next().await {
        match command {
            SenderCommand::Send { packet, fds } => {
                match socket.send(&packet, &fds).await {
                    Ok(_) => (),
                    Err(err) => {
                        tracing::error!(
                            fd_count = fds.len(),
                            packet_len = packet.len(),
                            "failed to send packet"
                        );
                        return Err(err);
                    }
                }
                if cfg!(target_os = "macos") {
                    // MacOS has a bug where it prematurely closes Unix sockets
                    // if a file descriptor to one is closed while it is also in
                    // the process of being sent across another Unix socket.
                    // Retain the fds until the opposite endpoint sends a reply
                    // message.
                    if !fds.is_empty() {
                        retained_fds.extend(fds);
                    }
                }
            }
            SenderCommand::ReleaseFds { count } => {
                if retained_fds.len() < count {
                    return Err(io::Error::new(
                        ErrorKind::Other,
                        ProtocolError::ReleasingTooManyFds,
                    ));
                }
                retained_fds.drain(..count);
            }
        }
    }
    Ok(())
}

/// An offer to take over as leader of the mesh. One trusted process must be the
/// leader at all times or the mesh will fail.
#[derive(Debug, Protobuf)]
#[mesh(resource = "Resource")]
pub struct LeadershipOffer {
    send: mesh_channel::Sender<(NodeId, mesh_channel::Sender<Followers>)>,
}

impl UnixNode {
    /// Creates a new Unix node mesh with this node as the leader.
    pub fn new(driver: impl SpawnDriver) -> Self {
        let (to_leader_send, to_leader_recv) = channel();
        let (from_leader_send, from_leader_recv) = channel();
        let this = Self::with_id(
            Arc::new(driver),
            NodeId::new(),
            to_leader_send,
            from_leader_recv,
        );

        // Start a leader task. At this point the leader has only one follower, itself.
        let (resign_send, resign_recv) = channel();
        let resign_send = Arc::new(resign_send);
        let followers = Followers {
            list: vec![(this.local_node.id(), to_leader_recv, from_leader_send)],
        };
        let task = SmallTask::new("run_leader", {
            let local_node = this.local_node.clone();
            let tasks = this.tasks.clone();
            let driver = this.driver.clone();
            async move { run_leader(driver.as_ref(), &local_node, resign_recv, followers, &tasks).await }
        });
        this.tasks.send(task);
        *this.leader_resign_send.lock() = Some(resign_send);

        this
    }

    /// Gets the node ID. This is mostly useful for diagnostics.
    pub fn id(&self) -> NodeId {
        self.local_node.id()
    }

    /// Creates a node with `id` using `to_leader` and `from_leader` to
    /// communicate with the leader node.
    fn with_id(
        driver: Arc<dyn SpawnDriver>,
        id: NodeId,
        to_leader: mesh_channel::Sender<LeaderRequest>,
        from_leader: mesh_channel::Receiver<FollowerRequest>,
    ) -> Self {
        let to_leader = Arc::new(to_leader);
        let pending_connections: Arc<Mutex<HashMap<NodeId, RemoteNodeHandle>>> = Default::default();
        let local_node = Arc::new(LocalNode::with_id(
            id,
            Box::new(Connector {
                local_id: id,
                conn_req_send: to_leader.clone(),
                pending_connections: pending_connections.clone(),
            }),
        ));
        let (task_send, mut task_recv) = channel::<SmallTask>();
        let task_send = Arc::new(task_send);
        let (drop_send, drop_recv) = oneshot();

        // Start a thread to run IO tasks.
        let io_task = driver.spawn("unix-mesh-io", async move {
            let process = async {
                let mut futs = FuturesUnordered::new();
                loop {
                    futures::select! { // merge semantics
                        _ = futs.next() => {},
                        task = task_recv.select_next_some() => {
                            futs.push(async move {
                                tracing::trace!(?id, name = task.name, "task start");
                                task.future.await;
                                tracing::trace!(?id, name = task.name, "task end");
                            });
                        },
                        complete => break,
                    };
                }
            };
            future::select(pin!(process), drop_recv).await;
        });

        task_send.send(SmallTask::new("run_follower", {
            let local_node = local_node.clone();
            let tasks = task_send.clone();
            let driver = driver.clone();
            async move {
                run_follower(
                    driver.as_ref(),
                    &local_node,
                    from_leader,
                    pending_connections,
                    &tasks,
                )
                .await
            }
        }));

        Self {
            driver,
            local_node,
            tasks: task_send,
            io_task,
            to_leader,
            leader_resign_send: Mutex::new(None),

            _drop_send: drop_send,
        }
    }

    /// Returns an offer to hand the leadership to another node in the mesh.
    ///
    /// The offer should be sent over a channel and passed to
    /// `accept_leadership` in the receiving node.
    pub fn offer_leadership(&self) -> LeadershipOffer {
        let (send, mut recv) = channel();
        if let Some(leader_send) = self.leader_resign_send.lock().clone() {
            // Start a task to wait for the offer to be acknowledged, then send
            // the offer details to the leader thread.
            let task = SmallTask::new("offer_leadership", async move {
                if let Ok(r) = recv.recv().await {
                    leader_send.send(r);
                }
            });
            self.tasks.send(task);
        }
        LeadershipOffer { send }
    }

    /// Accepts a leadership offer, making this node the current leader.
    pub fn accept_leadership(&self, offer: LeadershipOffer) {
        let (send, mut recv) = channel();
        offer.send.send((self.local_node.id(), send));

        let (resign_send, resign_recv) = channel();
        let resign_send = Arc::new(resign_send);
        let task = SmallTask::new("accept_and_run_leader", {
            let local_node = self.local_node.clone();
            let tasks = self.tasks.clone();
            let driver = self.driver.clone();
            async move {
                if let Ok(followers) = recv.recv().await {
                    drop(recv);
                    run_leader(driver.as_ref(), &local_node, resign_recv, followers, &tasks).await
                }
            }
        });
        self.tasks.send(task);
        *self.leader_resign_send.lock() = Some(resign_send);
    }

    /// Invites another process to join the mesh, with `port` bridged with the
    /// original port.
    #[instrument(skip_all, fields(local_id = ?self.local_node.id()))]
    pub async fn invite(&self, port: Port) -> io::Result<Invitation> {
        let (invitation_send, mut invitation_recv) = channel();
        self.to_leader
            .send(LeaderRequest::Invite(port, invitation_send));
        let invitation = invitation_recv
            .recv()
            .await
            .map_err(|_| ErrorKind::ConnectionReset)?;
        tracing::debug!(
            invite_id = ?invitation.address.local_addr.node,
            "received invitation",
        );
        Ok(invitation)
    }

    /// Joins an existing mesh via an invitation, briding `port` with the
    /// initial port.
    pub async fn join(
        driver: impl SpawnDriver,
        invitation: Invitation,
        port: Port,
    ) -> Result<Self, JoinError> {
        Self::join_generic(Arc::new(driver), invitation, port).await
    }

    #[instrument(skip_all, fields(local_id = ?invitation.address.local_addr.node, remote_id = ?invitation.address.remote_addr.node))]
    async fn join_generic(
        driver: Arc<dyn SpawnDriver>,
        invitation: Invitation,
        port: Port,
    ) -> Result<Self, JoinError> {
        let (to_leader_send, to_leader_recv) = channel();
        let (from_leader_send, from_leader_recv) = channel();
        let this = Self::with_id(
            driver,
            invitation.address.local_addr.node,
            to_leader_send,
            from_leader_recv,
        );

        let handle = this
            .local_node
            .add_remote(invitation.address.remote_addr.node);
        let init_recv = OneshotReceiver::<InitialMessage>::from(this.local_node.add_port(
            invitation.address.local_addr.port,
            invitation.address.remote_addr,
        ));

        start_connection(
            &this.tasks,
            &this.local_node,
            invitation.address.remote_addr.node,
            handle,
            UnixSocket::new(this.driver.as_ref(), invitation.fd.into()),
        );

        let init_message = init_recv.await.map_err(JoinError)?;
        to_leader_recv.bridge(init_message.leader_send);
        from_leader_send.bridge(init_message.follower_recv);
        port.bridge(init_message.user_port);

        Ok(this)
    }

    /// Shuts down the node, waiting for any sent messages to be sent to their
    /// destination.
    ///
    /// After this call, any active ports will no longer be able to receive
    /// messages.
    ///
    /// It is essential to call this before exiting a mesh process; until this
    /// returns, data loss could occur for other mesh nodes.
    pub async fn shutdown(mut self) {
        // Wait for any proxy ports to disassociate.
        self.local_node.wait_for_ports(false).await;
        // Drop all connections to the leader.
        drop(self.to_leader);
        self.local_node.drop_connector();
        // Terminate the leader task.
        self.leader_resign_send.get_mut().take();
        // Fail all nodes so that the send threads are dropped.
        self.local_node.fail_all_nodes();
        // Signal the IO task to tear down.
        drop(self.tasks);
        // Wait for the IO task.
        self.io_task.await;
    }
}

/// An error returned by [`UnixNode::join`].
#[derive(Debug, Error)]
#[error("failed to accept invitation")]
pub struct JoinError(#[source] RecvError);

/// The connector used when the mesh needs to connect to a previously-recognized
/// node. Sends a message to the leader node to get a new socket to communicate
/// over.
#[derive(Debug)]
struct Connector {
    local_id: NodeId,
    conn_req_send: Arc<mesh_channel::Sender<LeaderRequest>>,
    pending_connections: Arc<Mutex<HashMap<NodeId, RemoteNodeHandle>>>,
}

impl Connect for Connector {
    fn connect(&self, node_id: NodeId, handle: RemoteNodeHandle) {
        tracing::trace!(local_id = ?self.local_id, remote_id = ?node_id, "connecting");
        let old_request = self.pending_connections.lock().insert(node_id, handle);
        if old_request.is_some() {
            panic!("duplicate connection request for {:?}", node_id);
        }
        self.conn_req_send.send(LeaderRequest::Connect(node_id))
    }
}

/// Creates an AF_UNIX socket pair of the appropriate type.
fn new_socket_pair() -> Result<(Socket, Socket), io::Error> {
    let ty = if USE_SEQPACKET {
        socket2::Type::SEQPACKET
    } else {
        socket2::Type::STREAM
    };
    Socket::pair(socket2::Domain::UNIX, ty, None)
}

/// An AF_UNIX SOCK_SEQPACKET connection.
struct UnixSocket {
    socket: Mutex<PolledSocket<Socket>>,
}

#[repr(C)]
struct CmsgScmRights {
    hdr: libc::cmsghdr,
    fds: [RawFd; 64],
}

// TODO: replace this copy+paste of IoSlice::advance_slices with std's
// implementation once stabilized.
fn advance_slices(bufs: &mut &mut [IoSlice<'_>], n: usize) {
    // Number of buffers to remove.
    let mut remove = 0;
    // Total length of all the to be removed buffers.
    let mut accumulated_len = 0;
    for buf in bufs.iter() {
        if accumulated_len + buf.len() > n {
            break;
        } else {
            accumulated_len += buf.len();
            remove += 1;
        }
    }

    *bufs = &mut std::mem::take(bufs)[remove..];
    if !bufs.is_empty() {
        let buf = bufs[0];
        // SAFETY: this transmute extends the lifetime, which is necessary
        // because IoSlice<'a> does not have a method to get the inner slice
        // with lifetime 'a, even though this is perfectly safe and is necessary
        // to implement this function.
        bufs[0] = unsafe {
            std::mem::transmute::<IoSlice<'_>, IoSlice<'_>>(IoSlice::new(
                &buf[n - accumulated_len..],
            ))
        };
    }
}

impl UnixSocket {
    fn new(driver: &dyn SpawnDriver, fd: Socket) -> Self {
        let socket = PolledSocket::new(driver, fd).unwrap();
        UnixSocket {
            socket: Mutex::new(socket),
        }
    }

    async fn send(&self, msg: &[u8], fds: &[OsResource]) -> io::Result<()> {
        if USE_SEQPACKET {
            self.send_raw(&mut [IoSlice::new(msg)], fds).await?;
        } else {
            let len = (msg.len() as u32).to_le_bytes();
            let mut iov = [IoSlice::new(&len), IoSlice::new(msg)];
            self.send_all_raw(&mut iov, fds).await?;
        }
        Ok(())
    }

    async fn send_raw(
        &self,
        iov: &mut [IoSlice<'_>],
        fds: &[OsResource],
    ) -> Result<usize, io::Error> {
        let n = poll_fn(|cx| {
            self.socket
                .lock()
                .poll_io(cx, InterestSlot::Write, PollEvents::OUT, |socket| {
                    try_send(socket.get(), iov, fds)
                })
        })
        .await?;
        Ok(n)
    }

    async fn send_all_raw(
        &self,
        mut iov: &mut [IoSlice<'_>],
        mut fds: &[OsResource],
    ) -> Result<(), io::Error> {
        while !iov.is_empty() || !fds.is_empty() {
            let n = self.send_raw(iov, fds).await?;
            advance_slices(&mut iov, n);
            fds = &[];
        }
        Ok(())
    }

    async fn recv(&self, buf: &mut [u8], fds: &mut Vec<OsResource>) -> io::Result<usize> {
        if USE_SEQPACKET {
            self.recv_raw(buf, fds).await
        } else {
            let mut len = [0; 4];
            if !self.recv_all_raw(&mut len, fds).await? {
                return Ok(0);
            }
            let len = u32::from_le_bytes(len) as usize;
            let buf = buf
                .get_mut(..len)
                .ok_or_else(|| io::Error::from_raw_os_error(libc::EMSGSIZE))?;
            if !self.recv_all_raw(buf, fds).await? {
                return Err(ErrorKind::UnexpectedEof.into());
            }
            Ok(len)
        }
    }

    async fn recv_all_raw(
        &self,
        buf: &mut [u8],
        fds: &mut Vec<OsResource>,
    ) -> Result<bool, io::Error> {
        let mut read = 0;
        while read < buf.len() {
            let n = self.recv_raw(&mut buf[read..], fds).await?;
            if n == 0 {
                if read != 0 {
                    return Err(ErrorKind::UnexpectedEof.into());
                } else {
                    return Ok(false);
                }
            }
            read += n;
        }
        Ok(true)
    }

    async fn recv_raw(
        &self,
        buf: &mut [u8],
        fds: &mut Vec<OsResource>,
    ) -> Result<usize, io::Error> {
        let n = poll_fn(|cx| {
            self.socket
                .lock()
                .poll_io(cx, InterestSlot::Read, PollEvents::IN, |socket| {
                    try_recv(socket.get(), buf, fds)
                })
        })
        .await?;
        Ok(n)
    }

    async fn close_write(&self) -> io::Result<()> {
        self.socket.lock().get().shutdown(std::net::Shutdown::Write)
    }
}

/// Sends a packet, including the specified file descriptors. May fail with
/// ErrorKind::WouldBlock.
// x86_64-unknown-linux-musl targets have a different type defn for
// `libc::cmsghdr`, hence why these lints are being suppressed.
#[allow(clippy::needless_update, clippy::useless_conversion)]
fn try_send(socket: &Socket, msg: &[IoSlice<'_>], fds: &[OsResource]) -> io::Result<usize> {
    let mut cmsg = CmsgScmRights {
        hdr: libc::cmsghdr {
            cmsg_level: libc::SOL_SOCKET,
            cmsg_type: libc::SCM_RIGHTS,
            cmsg_len: (size_of::<libc::cmsghdr>() + size_of_val(fds))
                .try_into()
                .unwrap(),

            ..{
                // SAFETY: type has no invariants
                unsafe { std::mem::zeroed() }
            }
        },
        fds: [0; 64],
    };
    for (fdi, fdo) in fds.iter().zip(cmsg.fds.iter_mut()) {
        *fdo = match fdi {
            OsResource::Fd(fd) => fd.as_raw_fd(),
        }
    }

    // SAFETY: type has no invariants
    let mut hdr: libc::msghdr = unsafe { std::mem::zeroed() };
    hdr.msg_iov = msg.as_ptr() as *mut libc::iovec;
    hdr.msg_iovlen = msg.len().try_into().unwrap();
    hdr.msg_control = if fds.is_empty() {
        std::ptr::null_mut()
    } else {
        std::ptr::from_mut(&mut cmsg).cast::<libc::c_void>()
    };
    hdr.msg_controllen = if fds.is_empty() { 0 } else { cmsg.hdr.cmsg_len };
    // SAFETY: calling with appropriately initialized buffers.
    let n = unsafe { libc::sendmsg(socket.as_raw_fd(), &hdr, 0) };
    if n < 0 {
        return Err(io::Error::last_os_error());
    }
    Ok(n as usize)
}

/// Receives the next packet. Returns the number of bytes read and any file
/// descriptors that were associated with the packet. May fail with
/// ErrorKind::WouldBlock.
fn try_recv(socket: &Socket, buf: &mut [u8], fds: &mut Vec<OsResource>) -> io::Result<usize> {
    assert!(!buf.is_empty());
    let mut iov = IoSliceMut::new(buf);
    // SAFETY: type has no invariants
    let mut cmsg: CmsgScmRights = unsafe { std::mem::zeroed() };
    // SAFETY: type has no invariants
    let mut hdr: libc::msghdr = unsafe { std::mem::zeroed() };
    hdr.msg_iov = std::ptr::from_mut(&mut iov).cast::<libc::iovec>();
    hdr.msg_iovlen = 1;
    hdr.msg_control = std::ptr::from_mut(&mut cmsg).cast::<libc::c_void>();
    hdr.msg_controllen = size_of_val(&cmsg) as _;

    // On Linux, automatically set O_CLOEXEC on incoming fds.
    #[cfg(target_os = "linux")]
    let flags = libc::MSG_CMSG_CLOEXEC;
    #[cfg(not(target_os = "linux"))]
    let flags = 0;

    // SAFETY: calling with properly initialized buffers.
    let n = unsafe { libc::recvmsg(socket.as_raw_fd(), &mut hdr, flags) };
    if n < 0 {
        return Err(io::Error::last_os_error());
    }
    if n == 0 {
        assert_eq!(hdr.msg_controllen, 0);
        return Ok(0);
    }

    let fd_count = if hdr.msg_controllen > 0 {
        if cmsg.hdr.cmsg_level != libc::SOL_SOCKET || cmsg.hdr.cmsg_type != libc::SCM_RIGHTS {
            // BUGBUG: need to loop: possible to leak fds
            return Err(ErrorKind::InvalidData.into());
        }
        #[allow(clippy::unnecessary_cast)] // cmsg_len is u32 on musl and usize on gnu.
        {
            (cmsg.hdr.cmsg_len as usize - size_of_val(&cmsg.hdr)) / size_of::<RawFd>()
        }
    } else {
        0
    };

    let start = fds.len();
    fds.extend(cmsg.fds[..fd_count].iter().map(|x| {
        // SAFETY: according to the contract with the kernel, this
        // fd is now owned by the process.
        OsResource::Fd(unsafe { OwnedFd::from_raw_fd(*x) })
    }));

    // Set O_CLOEXEC on all received fds on platforms that don't support
    // MSG_CMSG_CLOEXEC (set above).
    if !cfg!(target_os = "linux") {
        for OsResource::Fd(fd) in &fds[start..] {
            set_cloexec(fd);
        }
    }

    // Check for truncation only after taking ownership of the fds.
    if hdr.msg_flags & (libc::MSG_TRUNC | libc::MSG_CTRUNC) != 0 {
        return Err(io::Error::from_raw_os_error(libc::EMSGSIZE));
    }
    Ok(n as usize)
}

fn set_cloexec(fd: impl AsFd) {
    // SAFETY: using fcntl as documented.
    unsafe {
        let flags = libc::fcntl(fd.as_fd().as_raw_fd(), libc::F_GETFD);
        assert!(flags >= 0);
        let r = libc::fcntl(
            fd.as_fd().as_raw_fd(),
            libc::F_SETFD,
            flags | libc::FD_CLOEXEC,
        );
        assert!(r >= 0);
    }
}

#[cfg(test)]
mod tests {
    use crate::unix::UnixNode;
    use mesh_channel::RecvError;
    use mesh_channel::channel;
    use pal_async::DefaultDriver;
    use pal_async::async_test;
    use test_with_tracing::test;

    #[async_test]
    async fn test_basic(driver: DefaultDriver) {
        let leader = UnixNode::new(driver.clone());
        let (send, recv) = channel::<u32>();
        let invitation = leader.invite(recv.into()).await.unwrap();
        let (send2, mut recv2) = channel::<u32>();
        let follower = UnixNode::join(driver, invitation, send2.into())
            .await
            .unwrap();
        send.send(5);
        assert_eq!(recv2.recv().await.unwrap(), 5);
        drop(send);
        drop(recv2);
        follower.shutdown().await;
        leader.shutdown().await;
    }

    #[cfg(target_os = "linux")]
    #[async_test]
    async fn test_huge_message(driver: DefaultDriver) {
        let leader = UnixNode::new(driver.clone());
        let (send, recv) = channel::<Vec<u8>>();
        let invitation = leader.invite(recv.into()).await.unwrap();
        let (send2, mut recv2) = channel::<Vec<u8>>();
        let follower = UnixNode::join(driver, invitation, send2.into())
            .await
            .unwrap();

        let v = vec![0xcc; 16 << 20];
        send.send(v.clone());
        let v2 = recv2.recv().await.unwrap();
        assert_eq!(v, v2);
        follower.shutdown().await;
        leader.shutdown().await;
    }

    #[async_test]
    async fn test_dropped_shutdown(driver: DefaultDriver) {
        let leader = UnixNode::new(driver.clone());
        {
            let (_send, recv) = channel::<u32>();
            let invitation = leader.invite(recv.into()).await.unwrap();
            let (send2, _recv2) = channel::<u32>();
            let _follower = UnixNode::join(driver, invitation, send2.into())
                .await
                .unwrap();
        }
        leader.shutdown().await;
    }

    #[async_test]
    async fn test_send_shutdown(driver: DefaultDriver) {
        let leader = UnixNode::new(driver.clone());
        let (send, mut recv) = channel::<u32>();
        let invitation = leader.invite(send.into()).await.unwrap();
        let (send2, recv2) = channel::<u32>();
        let follower = UnixNode::join(driver, invitation, recv2.into())
            .await
            .unwrap();
        send2.send(5);
        drop(send2);
        follower.shutdown().await;
        assert_eq!(recv.recv().await.unwrap(), 5);
    }

    #[async_test]
    async fn test_failed_invitation(driver: DefaultDriver) {
        let leader = UnixNode::new(driver);
        let (send, mut recv) = channel::<()>();
        leader.invite(send.into()).await.unwrap();
        assert!(matches!(
            recv.recv().await.unwrap_err(),
            RecvError::Error(_)
        ));
        drop(recv);
        leader.shutdown().await;
    }

    #[async_test]
    async fn test_three(driver: DefaultDriver) {
        let (p1, p2) = channel::<u32>();
        let (p3, mut p4) = channel::<u32>();
        let (p5, p6) = channel::<u32>();
        let (p7, p8) = channel::<u32>();

        let node1 = UnixNode::new(driver.clone());

        let invitation = node1.invite(p2.into()).await.unwrap();
        let node2 = UnixNode::join(driver.clone(), invitation, p3.into())
            .await
            .unwrap();

        let invitation = node1.invite(p5.into()).await.unwrap();
        let node3 = UnixNode::join(driver, invitation, p8.into()).await.unwrap();

        p1.bridge(p6);

        p7.send(5);

        assert_eq!(p4.recv().await.unwrap(), 5);
        drop(p4);
        drop(p7);
        futures::join!(node2.shutdown(), node3.shutdown());
        node1.shutdown().await;
    }

    #[async_test]
    async fn test_handoff_leader(driver: DefaultDriver) {
        let (p1, p2) = channel::<u32>();
        let (p3, p4) = channel::<u32>();
        let (p5, p6) = channel::<u32>();
        let (p7, p8) = channel::<u32>();
        let (p9, p10) = channel();
        let (p11, mut p12) = channel();

        let node1 = UnixNode::new(driver.clone());

        let invitation = node1.invite(p2.into()).await.unwrap();
        let node2 = UnixNode::join(driver.clone(), invitation, p3.into())
            .await
            .unwrap();

        let invitation = node1.invite(p5.into()).await.unwrap();
        let node3 = UnixNode::join(driver.clone(), invitation, p8.into())
            .await
            .unwrap();

        let invitation = node1.invite(p10.into()).await.unwrap();
        let node4 = UnixNode::join(driver, invitation, p11.into())
            .await
            .unwrap();

        p9.send(node1.offer_leadership());
        node4.accept_leadership(p12.recv().await.unwrap());
        drop(p9);
        drop(p12);
        p1.bridge(p6);

        std::thread::sleep(std::time::Duration::from_millis(200));

        node1.shutdown().await;
        drop(p4);
        drop(p7);
        node2.shutdown().await;
        node3.shutdown().await;

        std::thread::sleep(std::time::Duration::from_millis(200));

        node4.shutdown().await;
    }
}