mesh_remote/
point_to_point.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Point-to-point mesh implementation.

use futures::AsyncBufReadExt;
use futures::AsyncRead;
use futures::AsyncReadExt;
use futures::AsyncWrite;
use futures::AsyncWriteExt;
use futures::StreamExt;
use futures::TryFutureExt;
use futures::future::try_join;
use futures::io::BufReader;
use futures_concurrency::future::Race;
use mesh_channel::cancel::Cancel;
use mesh_channel::cancel::CancelContext;
use mesh_channel::cancel::CancelReason;
use mesh_node::common::Address;
use mesh_node::common::NodeId;
use mesh_node::common::PortId;
use mesh_node::common::Uuid;
use mesh_node::local_node::Connect;
use mesh_node::local_node::LocalNode;
use mesh_node::local_node::OutgoingEvent;
use mesh_node::local_node::Port;
use mesh_node::local_node::SendEvent;
use pal_async::task::Spawn;
use pal_async::task::Task;
use std::io;
use std::pin::pin;
use thiserror::Error;
use tracing::Instrument;
use zerocopy::FromBytes;
use zerocopy::FromZeros;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

/// A mesh that consists of exactly two nodes, communicating over an arbitrary
/// bidirectional byte stream.
///
/// This byte stream could be a stream socket, a Windows named pipe, or a serial
/// port, for example.
///
/// There is no support for OS resources (handles or file descriptors) in this
/// mesh implementation. Any attempt to send OS resources will fail the
/// underlying channel.
#[must_use]
pub struct PointToPointMesh {
    task: Task<()>,
    cancel: Cancel,
}

impl PointToPointMesh {
    /// Makes a new mesh over the connection `conn`, with initial port `port`.
    ///
    /// ```rust
    /// # use mesh_remote::PointToPointMesh;
    /// # use mesh_channel::channel;
    /// # use unix_socket::UnixStream;
    /// # use pal_async::socket::PolledSocket;
    /// # pal_async::DefaultPool::run_with(async |driver| {
    /// let (left, right) = UnixStream::pair().unwrap();
    /// let (a, ax) = channel::<u32>();
    /// let (bx, mut b) = channel::<u32>();
    /// let left = PointToPointMesh::new(&driver, PolledSocket::new(&driver, left).unwrap(), ax.into());
    /// let right = PointToPointMesh::new(&driver, PolledSocket::new(&driver, right).unwrap(), bx.into());
    /// a.send(5);
    /// assert_eq!(b.recv().await.unwrap(), 5);
    /// # })
    /// ```
    pub fn new(
        spawn: impl Spawn,
        conn: impl 'static + AsyncRead + AsyncWrite + Send + Unpin,
        port: Port,
    ) -> Self {
        let local_address = Address {
            node: NodeId::new(),
            port: PortId::new(),
        };
        let (mut ctx, cancel) = CancelContext::new().with_cancel();
        let task = spawn.spawn(
            format!("mesh-point-to-point-{:?}", local_address.node),
            async move {
                if let Err(err) = handle_comms(&mut ctx, Box::new(conn), local_address, port).await
                {
                    tracing::error!(error = &err as &dyn std::error::Error, "io failure");
                }
            }
            .instrument(tracing::info_span!("mesh-point-to-point", node = ?local_address.node)),
        );

        Self { task, cancel }
    }

    /// Shuts down the mesh. Any pending messages are dropped.
    pub async fn shutdown(mut self) {
        self.cancel.cancel();
        self.task.await;
    }
}

trait AsyncReadWrite: AsyncRead + AsyncWrite + Unpin + Send {}
impl<T: AsyncRead + AsyncWrite + Unpin + Send> AsyncReadWrite for T {}

#[derive(Debug, Error)]
enum TaskError {
    #[error("cancelled")]
    Cancelled(#[from] CancelReason),
    #[error("failed to change addresses")]
    Exchange(#[source] io::Error),
    #[error("failed to send data")]
    Send(#[source] io::Error),
    #[error("failed to receive data")]
    Recv(#[source] io::Error),
}

async fn handle_comms(
    ctx: &mut CancelContext,
    conn: Box<dyn AsyncReadWrite>,
    local_address: Address,
    port: Port,
) -> Result<(), TaskError> {
    let (mut read, mut write) = conn.split();
    let node = LocalNode::with_id(local_address.node, Box::new(NullConnector));

    tracing::debug!("exchanging addresses");
    let remote_address = ctx
        .until_cancelled(exchange_addresses(local_address, &mut write, &mut read))
        .await?
        .map_err(TaskError::Exchange)?;

    tracing::debug!(?local_address, ?remote_address, "connected to remote node");

    let remote = node.add_remote(remote_address.node);
    let (send_event, recv_event) = mesh_channel::channel();
    remote.connect(PointToPointConnection(send_event));
    let init_port = node.add_port(local_address.port, remote_address);
    init_port.bridge(port);

    let recv_loop = recv_loop(&remote_address.node, read, &node).map_err(TaskError::Recv);
    let send_loop = send_loop(recv_event, write).map_err(TaskError::Send);

    // Run until either send or receive finishes. If sending is done, then the
    // remote node has been disconnected from `LocalNode`, so no more events
    // need to be received. If receiving is done, then the remote node has
    // disconnected its pipe, so it will not be accepting any more events.
    let mut fut = pin!((recv_loop, send_loop).race());

    let r = match ctx.until_cancelled(fut.as_mut()).await {
        Ok(r) => r,
        Err(_) => {
            let shutdown = async {
                node.wait_for_ports(false).await;
                node.fail_all_nodes();
                Ok(())
            };
            try_join(shutdown, fut).await.map(|((), ())| ())
        }
    };
    match r {
        Ok(()) => remote.disconnect(),
        Err(err) => remote.fail(err),
    }
    Ok(())
}

async fn exchange_addresses(
    local_address: Address,
    write: &mut (impl AsyncWrite + Unpin),
    read: &mut (impl AsyncRead + Unpin),
) -> io::Result<Address> {
    #[repr(C)]
    #[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
    struct Message {
        magic: [u8; 4],
        node: [u8; 16],
        port: [u8; 16],
    }

    const MAGIC: [u8; 4] = *b"mesh";
    let local_msg = Message {
        magic: MAGIC,
        node: (local_address.node.0).0,
        port: (local_address.port.0).0,
    };

    let mut remote_msg = Message::new_zeroed();
    try_join(
        write.write_all(local_msg.as_bytes()),
        read.read_exact(remote_msg.as_mut_bytes()),
    )
    .await?;

    if remote_msg.magic != MAGIC {
        return Err(io::Error::new(
            io::ErrorKind::InvalidData,
            "invalid address header",
        ));
    }

    Ok(Address::new(
        NodeId(Uuid(remote_msg.node)),
        PortId(Uuid(remote_msg.port)),
    ))
}

async fn recv_loop(
    remote_id: &NodeId,
    read: impl AsyncRead + Unpin,
    node: &LocalNode,
) -> io::Result<()> {
    let mut read = BufReader::new(read);
    loop {
        let mut b = [0; 8];
        if read.fill_buf().await?.is_empty() {
            break;
        }
        read.read_exact(&mut b).await?;
        let len = u64::from_le_bytes(b) as usize;
        let buf = read.buffer();
        if buf.len() >= len {
            // Parse the event directly from the buffer.
            node.event(remote_id, buf, &mut Vec::new());
            read.consume_unpin(len);
        } else {
            // Read the whole event into a new buffer.
            let mut b = vec![0; len];
            read.read_exact(&mut b).await?;
            node.event(remote_id, &b, &mut Vec::new());
        }
    }
    tracing::debug!("recv loop done");
    Ok(())
}

async fn send_loop(
    mut recv_event: mesh_channel::Receiver<Vec<u8>>,
    mut write: impl AsyncWrite + Unpin,
) -> io::Result<()> {
    while let Some(event) = recv_event.next().await {
        write.write_all(&(event.len() as u64).to_le_bytes()).await?;
        write.write_all(&event).await?;
    }
    tracing::debug!("send loop done");
    Ok(())
}

#[derive(Debug)]
struct PointToPointConnection(mesh_channel::Sender<Vec<u8>>);

impl SendEvent for PointToPointConnection {
    fn event(&self, event: OutgoingEvent<'_>) {
        let len = event.len();
        let mut v = Vec::with_capacity(len);
        let mut resources = Vec::new();
        event.write_to(&mut v, &mut resources);
        if !resources.is_empty() {
            // Still send the message so that the receiving side gets an error
            // when decoding. Otherwise, the only other option at this point is
            // to fail the whole connection, which is probably not what you
            // want.
            tracing::warn!("cannot send OS resources across a point-to-point connection");
        }
        self.0.send(v);
    }
}

#[derive(Debug)]
struct NullConnector;

impl Connect for NullConnector {
    fn connect(&self, _node_id: NodeId, handle: mesh_node::local_node::RemoteNodeHandle) {
        handle.fail(NoMesh);
    }
}

#[derive(Debug, Error)]
#[error("no extra connections allowed in point-to-point mesh")]
struct NoMesh;

#[cfg(test)]
mod tests {
    use super::PointToPointMesh;
    use mesh_channel::channel;
    use pal_async::DefaultDriver;
    use pal_async::async_test;
    use pal_async::socket::PolledSocket;
    use test_with_tracing::test;
    use unix_socket::UnixStream;

    #[async_test]
    async fn test_point_to_point(driver: DefaultDriver) {
        let (left, right) = UnixStream::pair().unwrap();
        let left = PolledSocket::new(&driver, left).unwrap();
        let right = PolledSocket::new(&driver, right).unwrap();
        let (a, ax) = channel::<u32>();
        let (bx, mut b) = channel::<u32>();
        let left = PointToPointMesh::new(&driver, left, ax.into());
        let right = PointToPointMesh::new(&driver, right, bx.into());
        a.send(5);
        assert_eq!(b.recv().await.unwrap(), 5);
        left.shutdown().await;
        right.shutdown().await;
    }
}