mesh_protobuf/
buffer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Types to support writing to a contiguous byte buffer.
//!
//! This is different from `bytes::BufMut` in that the buffer is required to be
//! contiguous, which allows for more efficient use with type erasure.

use alloc::vec::Vec;
use core::mem::MaybeUninit;

/// Models a partially written, contiguous byte buffer.
pub trait Buffer {
    /// Returns the unwritten portion of the buffer. The returned data may or
    /// may not be initialized.
    ///
    /// # Safety
    /// The caller must ensure that no uninitialized bytes are written to the
    /// slice.
    ///
    /// An astute reader might note that the `Vec<u8>` implementation does not
    /// require the unsafe bound on this function, as those bytes returned by
    /// are truly `MaybeUninit`. However, based on the backing storage of [Buffer]
    /// this is not always the case.
    ///
    /// For example, a `Buffer` implementation on a `Cursor<&[u8]>` could be used
    /// to _uninitialize_ a portion of the slice, by doing the following:
    ///
    /// ```ignore
    /// // some_cursor contains a Cursor based implementation of Buffer which is
    /// // backed by storage that is always initialized.
    /// let foo = some_cursor.unwritten();
    /// foo[0].write(MaybeUninit::uninit()) // This is UB!! ⚠️
    /// ```
    ///
    /// Thus the caller must ensure that uninitialize bytes are _never_
    /// written to the returned slice, and why this function is unsafe.
    unsafe fn unwritten(&mut self) -> &mut [MaybeUninit<u8>];

    /// Extends the initialized region of the buffer.
    ///
    /// # Safety
    /// The caller must ensure that the next `len` bytes have been initialized.
    unsafe fn extend_written(&mut self, len: usize);
}

impl Buffer for Vec<u8> {
    unsafe fn unwritten(&mut self) -> &mut [MaybeUninit<u8>] {
        self.spare_capacity_mut()
    }

    unsafe fn extend_written(&mut self, len: usize) {
        // SAFETY: The caller guarantees that `len` bytes have been written.
        unsafe {
            self.set_len(self.len() + len);
        }
    }
}

impl Buffer for Buf<'_> {
    unsafe fn unwritten(&mut self) -> &mut [MaybeUninit<u8>] {
        &mut self.buf[*self.filled..]
    }

    unsafe fn extend_written(&mut self, len: usize) {
        *self.filled += len;
    }
}

#[cfg(feature = "std")]
impl Buffer for std::io::Cursor<&mut [u8]> {
    unsafe fn unwritten(&mut self) -> &mut [MaybeUninit<u8>] {
        let slice = self.get_mut();
        // SAFETY: the caller promises not to uninitialize any initialized data.
        unsafe { core::slice::from_raw_parts_mut(slice.as_mut_ptr().cast(), slice.len()) }
    }

    unsafe fn extend_written(&mut self, len: usize) {
        self.set_position(self.position() + len as u64);
    }
}

/// An accessor for writing to a partially-initialized byte buffer.
pub struct Buf<'a> {
    buf: &'a mut [MaybeUninit<u8>],
    filled: &'a mut usize,
}

impl Buf<'_> {
    /// Returns the remaining bytes that fit.
    #[inline(always)]
    pub fn remaining(&self) -> usize {
        self.buf.len() - *self.filled
    }

    /// Returns the number of bytes that have been written.
    #[inline(always)]
    pub fn len(&self) -> usize {
        *self.filled
    }

    /// Extends the initialized portion of the buffer with `b`. Panics if it
    /// doesn't fit.
    #[inline(always)]
    pub fn push(&mut self, b: u8) {
        self.buf[*self.filled] = MaybeUninit::new(b);
        *self.filled += 1;
    }

    /// Extends the initialized portion of the buffer with `buf`. Panics if the
    /// data does not fit.
    #[inline(always)]
    pub fn append(&mut self, buf: &[u8]) {
        assert!(buf.len() <= self.remaining());
        // SAFETY: copying into self.buf with bounds checked above.
        unsafe {
            self.buf
                .as_mut_ptr()
                .add(*self.filled)
                .cast::<u8>()
                .copy_from_nonoverlapping(buf.as_ptr(), buf.len());
        }
        *self.filled += buf.len();
    }

    /// Extends the initialized portion of the buffer with `len` bytes equal to
    /// `val`. Panics if the data does not fit.
    #[inline(always)]
    pub fn fill(&mut self, val: u8, len: usize) {
        self.buf[*self.filled..][..len].fill(MaybeUninit::new(val));
        *self.filled += len;
    }

    /// Splits this buffer into two at `split_at` and calls `f` to fill out each
    /// part.
    ///
    /// If the left buffer is not filled in full but the right buffer is
    /// partially initialized, then the remainder of the left buffer will be
    /// zero-initialized.
    #[track_caller]
    pub fn write_split<R>(&mut self, split_at: usize, f: impl FnOnce(Buf<'_>, Buf<'_>) -> R) -> R {
        let (left, right) = self.buf[*self.filled..].split_at_mut(split_at);
        let mut left_filled = 0;
        let mut right_filled = 0;
        let r = f(
            Buf {
                buf: left,
                filled: &mut left_filled,
            },
            Buf {
                buf: right,
                filled: &mut right_filled,
            },
        );
        assert!(left_filled <= left.len());
        assert!(right_filled <= right.len());
        *self.filled += left_filled;
        if right_filled > 0 {
            let to_zero = left.len() - left_filled;
            self.fill(0, to_zero);
            *self.filled += right_filled;
        }
        r
    }
}

/// Calls `f` with a [`Buf`], which provides safe methods for
/// extending the initialized portion of the buffer.
pub fn write_with<T, F, R>(buffer: &mut T, f: F) -> R
where
    T: Buffer + ?Sized,
    F: FnOnce(Buf<'_>) -> R,
{
    let mut filled = 0;
    // SAFETY: Buf will only write initialized bytes to the buffer.
    let buf = unsafe { buffer.unwritten() };

    let r = f(Buf {
        buf,
        filled: &mut filled,
    });
    // SAFETY: `filled` bytes are known to have been written.
    unsafe {
        buffer.extend_written(filled);
    }
    r
}

#[cfg(test)]
mod tests {
    use super::write_with;
    use alloc::vec;

    #[test]
    #[should_panic]
    fn test_append_vec_panic() {
        let mut v = vec![1, 2, 3];
        write_with(&mut v, |mut buf| {
            buf.append(&vec![0; buf.remaining() + 1]);
        });
    }

    #[test]
    fn test_append_vec() {
        let mut v = vec![1, 2, 3, 4];
        v.reserve(3);

        write_with(&mut v, |mut buf| {
            buf.append(&[5, 6]);
            buf.push(7);
        });
        assert_eq!(&v, &[1, 2, 3, 4, 5, 6, 7]);
    }
}