mesh_process/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Infrastructure to create a multi-process mesh and spawn child processes
//! within it.

// UNSAFETY: Needed to accept a raw Fd/Handle from our spawning process.
#![expect(unsafe_code)]

use anyhow::Context;
use base64::Engine;
use debug_ptr::DebugPtr;
use futures::FutureExt;
use futures::StreamExt;
use futures::executor::block_on;
use futures_concurrency::future::Race;
use inspect::Inspect;
use inspect::SensitivityLevel;
use mesh::MeshPayload;
use mesh::OneshotReceiver;
use mesh::message::MeshField;
use mesh::payload::Protobuf;
use mesh::rpc::Rpc;
use mesh::rpc::RpcSend;
use mesh_remote::InvitationAddress;
#[cfg(unix)]
use pal::unix::process::Builder as ProcessBuilder;
#[cfg(windows)]
use pal::windows::process;
#[cfg(windows)]
use pal::windows::process::Builder as ProcessBuilder;
use pal_async::DefaultPool;
use pal_async::task::Spawn;
use pal_async::task::Task;
use slab::Slab;
use std::borrow::Cow;
use std::ffi::OsString;
use std::fs::File;
#[cfg(unix)]
use std::os::unix::prelude::*;
#[cfg(windows)]
use std::os::windows::prelude::*;
use std::path::PathBuf;
use std::thread;
use tracing::Instrument;
use tracing::instrument;
use unicycle::FuturesUnordered;

#[cfg(windows)]
type IpcNode = mesh_remote::windows::AlpcNode;

#[cfg(unix)]
type IpcNode = mesh_remote::unix::UnixNode;

#[cfg(unix)]
const IPC_FD: i32 = 3;

/// The environment variable for passing the mesh IPC invitation information to
/// a child process. This is passed through the environment instead of a command
/// line argument so that other processes cannot steal the invitation details
/// and use it to break into the mesh.
const INVITATION_ENV_NAME: &str = "MESH_WORKER_INVITATION";

#[derive(Protobuf)]
struct Invitation {
    node_name: String,
    address: InvitationAddress,
    #[cfg(windows)]
    directory_handle: usize,
    #[cfg(unix)]
    socket_fd: i32,
}

static PROCESS_NAME: DebugPtr<String> = DebugPtr::new();

/// Runs a mesh host in the current thread, then exits the process, if this
/// process was launched by [`Mesh::launch_host`].
///
/// The mesh invitation is provided via environment variables. If a mesh
/// invitation is not available this function will return immediately with `Ok`.
/// If a mesh invitation is available, this function joins the mesh and runs the
/// future returned by `f` until `f` returns or the parent process shuts down
/// the mesh.
pub fn try_run_mesh_host<U, F, T>(base_name: &str, f: F) -> anyhow::Result<()>
where
    U: 'static + MeshPayload + Send,
    F: AsyncFnOnce(U) -> anyhow::Result<T>,
{
    block_on(async {
        if let Some(r) = node_from_environment().await? {
            let NodeResult {
                node_name,
                node,
                initial_port,
            } = r;
            PROCESS_NAME.store(&node_name);
            set_program_name(&format!("{base_name}-{node_name}"));
            let init = OneshotReceiver::<InitialMessage<U>>::from(initial_port)
                .await
                .context("failed to receive initial message")?;
            let _drop = (
                f(init.init_message).map(Some),
                handle_host_requests(init.requests).map(|()| None),
            )
                .race()
                .await
                .transpose()?;

            tracing::debug!("waiting to shut down node");
            node.shutdown().await;
            drop(_drop);
            std::process::exit(0);
        }
        Ok(())
    })
}

async fn handle_host_requests(mut recv: mesh::Receiver<HostRequest>) {
    while let Some(req) = recv.next().await {
        match req {
            HostRequest::Inspect(deferred) => {
                deferred.respond(inspect_host);
            }
            HostRequest::Crash => panic!("explicit panic request"),
        }
    }
}

fn set_program_name(name: &str) {
    let _ = name;
    #[cfg(target_os = "linux")]
    {
        let _ = std::fs::write("/proc/self/comm", name);
    }
}

struct NodeResult {
    node_name: String,
    node: IpcNode,
    initial_port: mesh::local_node::Port,
}

/// Create an IPC node from an invitation provided via the process environment.
///
/// Returns `None` if the invitation is not present in the environment.
async fn node_from_environment() -> anyhow::Result<Option<NodeResult>> {
    // return early with no node if the invitation is not present in the environment.
    let invitation_str = match std::env::var(INVITATION_ENV_NAME) {
        Ok(str) => str,
        Err(_) => return Ok(None),
    };

    // Clear the string to avoid leaking the invitation information into child
    // processes.
    //
    // TODO: this function will become unsafe in a future Rust edition because
    // it can cause UB if non-Rust code is concurrently accessing the
    // environment in another thread. To be completely sound (even in the
    // current edition), either this function and its callers need to become
    // `unsafe`, or we need to avoid using the environment to propagate the
    // invitation so that we can avoid this call.
    #[expect(deprecated_safe_2024)]
    std::env::remove_var(INVITATION_ENV_NAME);

    let invitation: Invitation = mesh::payload::decode(
        &base64::engine::general_purpose::STANDARD
            .decode(invitation_str)
            .context("failed to base64 decode invitation")?,
    )
    .context("failed to protobuf decode invitation")?;

    let (left, right) = mesh::local_node::Port::new_pair();

    let node;
    #[cfg(windows)]
    {
        // SAFETY: trusting the initiating process to pass a valid handle. A
        // malicious process could pass a bad handle here, but a malicious
        // process could also just corrupt our memory arbitrarily, so...
        let directory =
            unsafe { OwnedHandle::from_raw_handle(invitation.directory_handle as RawHandle) };

        let invitation = mesh_remote::windows::AlpcInvitation {
            address: invitation.address,
            directory,
        };

        // join the node w/ the provided invitation and the send port of the channel.
        node = mesh_remote::windows::AlpcNode::join(
            pal_async::windows::TpPool::system(),
            invitation,
            left,
        )
        .context("failed to join mesh")?;
    }

    #[cfg(unix)]
    {
        // SAFETY: trusting the initiating process to pass a valid fd. A
        // malicious process could pass a bad fd here, but a malicious
        // process could also just corrupt our memory arbitrarily, so...
        let fd = unsafe { OwnedFd::from_raw_fd(invitation.socket_fd) };
        let invitation = mesh_remote::unix::UnixInvitation {
            address: invitation.address,
            fd,
        };

        // FUTURE: use pool provided by the caller.
        let (_, driver) = DefaultPool::spawn_on_thread("mesh-worker-pool");
        node = mesh_remote::unix::UnixNode::join(driver, invitation, left)
            .await
            .context("failed to join mesh")?;
    }

    Ok(Some(NodeResult {
        node_name: invitation.node_name,
        node,
        initial_port: right,
    }))
}

/// Represents a mesh::Node with the ability to spawn new processes that can
/// communicate with any other process belonging to the same mesh.
///
/// # Process creation
/// A `Mesh` instance can spawn new processes with an initial communication
/// channel associated with the mesh. All processes originating from the same
/// mesh can potentially communicate and exchange channels with each other.
///
/// Each spawned process can be configured differently via [`ProcessConfig`].
/// Processes are created with [`Mesh::launch_host`].
///
/// ```no_run
/// # use mesh_process::{Mesh, ProcessConfig};
/// # futures::executor::block_on(async {
/// let mesh = Mesh::new("remote_mesh".to_string()).unwrap();
/// let (send, recv) = mesh::channel();
/// mesh.launch_host(ProcessConfig::new("test"), recv).await.unwrap();
/// send.send(String::from("message for new process"));
/// # })
/// ```
pub struct Mesh {
    mesh_name: String,
    request: mesh::Sender<MeshRequest>,
    task: Task<()>,
}

/// Sandbox profile trait used for mesh hosts.
pub trait SandboxProfile: Send {
    /// Apply executes in the parent context and configures any sandbox
    /// features that will be applied to the newly created process via
    /// the pal builder object.
    fn apply(&mut self, builder: &mut ProcessBuilder<'_>);

    /// Finalize is intended to execute in the child process context after
    /// application specific initialization is complete. It's optional as not
    /// every sandbox profile will need to perform additional sandboxing.
    /// In addition, the child will need to be aware enough to instantiate its
    /// sandbox profile and invoke this method.
    fn finalize(&mut self) -> anyhow::Result<()> {
        Ok(())
    }
}

/// Configuration for launching a new process in the mesh.
pub struct ProcessConfig {
    name: String,
    process_name: Option<PathBuf>,
    process_args: Vec<OsString>,
    stderr: Option<File>,
    skip_worker_arg: bool,
    sandbox_profile: Option<Box<dyn SandboxProfile + Sync>>,
}

impl ProcessConfig {
    /// Returns new process configuration using the current process as the
    /// process name.
    pub fn new(name: impl Into<String>) -> Self {
        Self {
            name: name.into(),
            process_name: None,
            process_args: Vec::new(),
            stderr: None,
            skip_worker_arg: false,
            sandbox_profile: None,
        }
    }

    /// Returns a new process configuration using the current process as the
    /// process name.
    pub fn new_with_sandbox(
        name: impl Into<String>,
        sandbox_profile: Box<dyn SandboxProfile + Sync>,
    ) -> Self {
        Self {
            name: name.into(),
            process_name: None,
            process_args: Vec::new(),
            stderr: None,
            skip_worker_arg: false,
            sandbox_profile: Some(sandbox_profile),
        }
    }

    /// Sets the process name.
    pub fn process_name(mut self, name: impl Into<PathBuf>) -> Self {
        self.process_name = Some(name.into());
        self
    }

    /// Specifies whether to  appending `<node name>` to the process's command
    /// line.
    ///
    /// This is done by default to make it easier to identify the process in
    /// task lists, but if your process parses the command line then this may
    /// get in the way.
    pub fn skip_worker_arg(mut self, skip: bool) -> Self {
        self.skip_worker_arg = skip;
        self
    }

    /// Adds arguments to the process command line.
    pub fn args<I>(mut self, args: I) -> Self
    where
        I: IntoIterator,
        I::Item: Into<OsString>,
    {
        self.process_args.extend(args.into_iter().map(|x| x.into()));
        self
    }

    /// Sets the process's stderr to `file`.
    pub fn stderr(mut self, file: Option<File>) -> Self {
        self.stderr = file;
        self
    }
}

struct MeshInner {
    requests: mesh::Receiver<MeshRequest>,
    hosts: Slab<MeshHostInner>,
    /// Handles for spawned host processes.
    waiters: FuturesUnordered<OneshotReceiver<usize>>,
    /// Mesh node for host process communication.
    node: IpcNode,
    /// Name for this mesh instance, used for tracing/debugging.
    mesh_name: String,
    /// Job object. When closed, it will terminate all the child processes. This
    /// is used to ensure the child processes don't outlive the parent.
    #[cfg(windows)]
    job: pal::windows::job::Job,
}

struct MeshHostInner {
    name: String,
    pid: i32,
    node_id: mesh::NodeId,
    send: mesh::Sender<HostRequest>,
}

enum MeshRequest {
    NewHost(Rpc<NewHostParams, anyhow::Result<()>>),
    Inspect(inspect::Deferred),
    Crash(i32),
}

struct NewHostParams {
    config: ProcessConfig,
    recv: mesh::local_node::Port,
    request_send: mesh::Sender<HostRequest>,
}

impl Inspect for Mesh {
    fn inspect(&self, req: inspect::Request<'_>) {
        self.request.send(MeshRequest::Inspect(req.defer()));
    }
}

impl Mesh {
    /// Creates a new mesh with the given name.
    pub fn new(mesh_name: String) -> anyhow::Result<Self> {
        #[cfg(windows)]
        let job = {
            let job = pal::windows::job::Job::new().context("failed to create job object")?;
            job.set_terminate_on_close()
                .context("failed to set job object terminate on close")?;
            job
        };

        #[cfg(windows)]
        let node = mesh_remote::windows::AlpcNode::new(pal_async::windows::TpPool::system())
            .context("AlpcNode creation failure")?;
        #[cfg(unix)]
        let node = {
            // FUTURE: use pool provided by the caller.
            let (_, driver) = DefaultPool::spawn_on_thread("mesh-worker-pool");
            mesh_remote::unix::UnixNode::new(driver)
        };

        let (request, requests) = mesh::channel();
        let mut inner = MeshInner {
            requests,
            hosts: Default::default(),
            waiters: Default::default(),
            node,
            mesh_name: mesh_name.clone(),
            #[cfg(windows)]
            job,
        };

        // Spawn a separate thread for launching mesh processes to avoid bad
        // interactions with any other pools.
        let (_, driver) = DefaultPool::spawn_on_thread("mesh");
        let task = driver.spawn(
            format!("mesh-{}", &mesh_name),
            async move { inner.run().await },
        );

        Ok(Self {
            request,
            mesh_name,
            task,
        })
    }

    /// Spawns a new host in the mesh with the provided configuration and
    /// initial message.
    ///
    /// The initial message will be provided to the closure passed to
    /// [`try_run_mesh_host()`].
    pub async fn launch_host<T: 'static + MeshField + Send>(
        &self,
        config: ProcessConfig,
        initial_message: T,
    ) -> anyhow::Result<()> {
        let (request_send, request_recv) = mesh::channel();

        let (init_send, init_recv) = mesh::oneshot::<InitialMessage<T>>();
        init_send.send(InitialMessage {
            requests: request_recv,
            init_message: initial_message,
        });

        self.request
            .call(
                MeshRequest::NewHost,
                NewHostParams {
                    config,
                    recv: init_recv.into(),
                    request_send,
                },
            )
            .await
            .context("mesh failed")?
    }

    /// Shutdown the mesh and wait for any spawned processes to exit.
    ///
    /// The `Mesh` instance is no longer usable after `shutdown`.
    pub async fn shutdown(self) {
        let span = tracing::span!(
            tracing::Level::INFO,
            "mesh_shutdown",
            name = self.mesh_name.as_str(),
        );

        async {
            drop(self.request);
            self.task.await;
        }
        .instrument(span)
        .await;
    }

    /// Crashes the child process with the given process ID.
    pub fn crash(&self, pid: i32) {
        self.request.send(MeshRequest::Crash(pid));
    }
}

#[derive(MeshPayload)]
struct InitialMessage<T> {
    requests: mesh::Receiver<HostRequest>,
    init_message: T,
}

#[derive(Debug, MeshPayload)]
enum HostRequest {
    #[mesh(transparent)]
    Inspect(inspect::Deferred),
    Crash,
}

fn inspect_host(resp: &mut inspect::Response<'_>) {
    resp.field("tasks", inspect_task::inspect_task_list());
}

#[derive(Inspect)]
struct HostInspect<'a> {
    #[inspect(safe)]
    name: &'a str,
    #[inspect(debug, safe)]
    node_id: mesh::NodeId,
    #[cfg(target_os = "linux")]
    #[inspect(safe)]
    rlimit: inspect_rlimit::InspectRlimit,
}

impl MeshInner {
    async fn run(&mut self) {
        enum Event {
            Request(MeshRequest),
            Done(usize),
        }

        loop {
            let event = futures::select! { // merge semantics
                request = self.requests.select_next_some() => Event::Request(request),
                n = self.waiters.select_next_some() => Event::Done(n.unwrap()),
                complete => break,
            };

            match event {
                Event::Request(request) => match request {
                    MeshRequest::NewHost(rpc) => {
                        rpc.handle(async |params| self.spawn_process(params).await)
                            .await
                    }
                    MeshRequest::Inspect(deferred) => {
                        deferred.respond(|resp| {
                            resp.sensitivity_child("hosts", SensitivityLevel::Safe, |req| {
                                let mut resp = req.respond();
                                for host in self.hosts.iter().map(|(_, host)| host) {
                                    resp.sensitivity_field_mut(
                                        &host.pid.to_string(),
                                        SensitivityLevel::Safe,
                                        &mut inspect::adhoc(|req| {
                                            let mut resp = req.respond();
                                            resp.merge(&HostInspect {
                                                name: &host.name,
                                                node_id: host.node_id,
                                                #[cfg(target_os = "linux")]
                                                rlimit: inspect_rlimit::InspectRlimit::for_pid(
                                                    host.pid,
                                                ),
                                            });
                                            host.send
                                                .send(HostRequest::Inspect(resp.request().defer()));
                                        }),
                                    );
                                }
                            })
                            .sensitivity_field_mut(
                                &format!("hosts/{}", std::process::id()),
                                SensitivityLevel::Safe,
                                &mut inspect::adhoc(|req| {
                                    let mut resp = req.respond();
                                    resp.merge(&HostInspect {
                                        name: &self.mesh_name,
                                        node_id: self.node.id(),
                                        #[cfg(target_os = "linux")]
                                        rlimit: inspect_rlimit::InspectRlimit::new(),
                                    });
                                    inspect_host(&mut resp);
                                }),
                            );
                        });
                    }
                    MeshRequest::Crash(pid) => {
                        if pid == std::process::id() as i32 {
                            panic!("explicit panic request");
                        }

                        let mut found = false;
                        for (_, host) in &self.hosts {
                            if host.pid == pid {
                                host.send.send(HostRequest::Crash);
                                found = true;
                                break;
                            }
                        }

                        if !found {
                            tracing::error!("failed to crash process, pid {pid} not found");
                        }
                    }
                },
                Event::Done(id) => {
                    self.hosts.remove(id);
                }
            }
        }
    }

    /// Spawns a new process with a mesh channel associated with this `Mesh` instance.
    #[instrument(name = "mesh_spawn_process", skip(self, params), fields(mesh_name = self.mesh_name.as_str(), pid = tracing::field::Empty))]
    async fn spawn_process(&mut self, params: NewHostParams) -> anyhow::Result<()> {
        let NewHostParams {
            config,
            recv,
            request_send,
        } = params;

        let pid;
        let node_id;

        // If no process name was passed, use the current executable path to
        // ensure we get the right file, but set arg0 to match how this process
        // was launched.
        let (arg0, process_name) = if let Some(n) = &config.process_name {
            (None, Cow::Borrowed(n))
        } else {
            (
                std::env::args_os().next(),
                Cow::Owned(std::env::current_exe().context("failed to get current exe path")?),
            )
        };

        let name = config.name.clone();

        #[cfg(windows)]
        let wait = {
            let (invitation, handle) = self.node.invite(recv).context("mesh node invite error")?;
            node_id = invitation.address.local_addr.node;

            let invitation_env = base64::engine::general_purpose::STANDARD.encode(
                mesh::payload::encode(Invitation {
                    node_name: name.clone(),
                    address: invitation.address,
                    directory_handle: invitation.directory.as_raw_handle() as usize,
                }),
            );

            let mut args = config.process_args;
            if !config.skip_worker_arg {
                args.push(name.clone().into());
            }

            let mut builder = process::Builder::from_args(
                arg0.as_ref()
                    .map_or_else(|| process_name.as_os_str(), |x| x.as_os_str()),
                &args,
            );
            if arg0.is_some() {
                builder.application_name(process_name.as_path());
            }
            builder
                .stdin(process::Stdio::Null)
                .stdout(process::Stdio::Null)
                .handle(&invitation.directory)
                .env(INVITATION_ENV_NAME, invitation_env)
                .job(self.job.as_handle());

            if let Some(log_file) = config.stderr.as_ref() {
                builder.stderr(process::Stdio::Handle(log_file.as_handle()));
            }

            if let Some(mut sandbox_profile) = config.sandbox_profile {
                sandbox_profile.apply(&mut builder);
            }

            let child = builder.spawn().context("failed to launch mesh process")?;
            // Wait for the child to connect to the mesh. TODO: timeout
            handle.await;
            pid = child.id() as i32;
            tracing::Span::current().record("pid", pid);
            move || {
                child.wait();
                let code = child.exit_code();
                if code == 0 {
                    tracing::info!(pid, name = name.as_str(), "mesh child exited successfully");
                } else {
                    tracing::error!(pid, name = name.as_str(), code, "mesh child abnormal exit");
                }
            }
        };
        #[cfg(unix)]
        let mut wait = {
            use pal::unix::process;

            let invitation = self
                .node
                .invite(recv)
                .await
                .context("mesh node invite error")?;

            node_id = invitation.address.local_addr.node;

            let invitation_env = base64::engine::general_purpose::STANDARD.encode(
                mesh::payload::encode(Invitation {
                    node_name: name.clone(),
                    address: invitation.address,
                    socket_fd: IPC_FD,
                }),
            );

            let mut command = process::Builder::new(process_name.into_owned());
            if let Some(arg0) = arg0 {
                command.arg0(arg0);
            }
            command
                .args(&config.process_args)
                .stdin(process::Stdio::Null)
                .stdout(process::Stdio::Null)
                .dup_fd(invitation.fd.as_fd(), IPC_FD)
                .env(INVITATION_ENV_NAME, invitation_env);

            if !config.skip_worker_arg {
                command.arg(&name);
            }

            if let Some(log_file) = config.stderr.as_ref() {
                command.stderr(process::Stdio::Fd(log_file.as_fd()));
            }

            if let Some(mut sandbox_profile) = config.sandbox_profile {
                sandbox_profile.apply(&mut command);
            }

            let mut child = command.spawn().context("failed to launch mesh process")?;
            pid = child.id();
            tracing::Span::current().record("pid", pid);
            move || {
                let exit_status = child.wait().expect("mesh child wait failure");
                if let Some(0) = exit_status.code() {
                    tracing::info!(pid, name = name.as_str(), "mesh child exited successfully");
                } else {
                    tracing::error!(
                        pid,
                        name = name.as_str(),
                        %exit_status,
                        "mesh child abnormal exit"
                    );
                }
            }
        };

        let (wait_send, wait_recv) = mesh::oneshot();

        let id = self.hosts.insert(MeshHostInner {
            name: config.name,
            pid,
            node_id,
            send: request_send,
        });

        thread::Builder::new()
            .name(format!("wait-mesh-child-{}", pid))
            .spawn(move || {
                wait();
                wait_send.send(id);
            })
            .unwrap();

        self.waiters.push(wait_recv);
        Ok(())
    }
}