mesh_process/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Infrastructure to create a multi-process mesh and spawn child processes
//! within it.
// UNSAFETY: Needed to accept a raw Fd/Handle from our spawning process.
#![expect(unsafe_code)]
use anyhow::Context;
use base64::Engine;
use debug_ptr::DebugPtr;
use futures::FutureExt;
use futures::StreamExt;
use futures::executor::block_on;
use futures_concurrency::future::Race;
use inspect::Inspect;
use inspect::SensitivityLevel;
use mesh::MeshPayload;
use mesh::OneshotReceiver;
use mesh::message::MeshField;
use mesh::payload::Protobuf;
use mesh::rpc::Rpc;
use mesh::rpc::RpcSend;
use mesh_remote::InvitationAddress;
#[cfg(unix)]
use pal::unix::process::Builder as ProcessBuilder;
#[cfg(windows)]
use pal::windows::process;
#[cfg(windows)]
use pal::windows::process::Builder as ProcessBuilder;
use pal_async::DefaultPool;
use pal_async::task::Spawn;
use pal_async::task::Task;
use slab::Slab;
use std::borrow::Cow;
use std::ffi::OsString;
use std::fs::File;
#[cfg(unix)]
use std::os::unix::prelude::*;
#[cfg(windows)]
use std::os::windows::prelude::*;
use std::path::PathBuf;
use std::thread;
use tracing::Instrument;
use tracing::instrument;
use unicycle::FuturesUnordered;
#[cfg(windows)]
type IpcNode = mesh_remote::windows::AlpcNode;
#[cfg(unix)]
type IpcNode = mesh_remote::unix::UnixNode;
#[cfg(unix)]
const IPC_FD: i32 = 3;
/// The environment variable for passing the mesh IPC invitation information to
/// a child process. This is passed through the environment instead of a command
/// line argument so that other processes cannot steal the invitation details
/// and use it to break into the mesh.
const INVITATION_ENV_NAME: &str = "MESH_WORKER_INVITATION";
#[derive(Protobuf)]
struct Invitation {
node_name: String,
address: InvitationAddress,
#[cfg(windows)]
directory_handle: usize,
#[cfg(unix)]
socket_fd: i32,
}
static PROCESS_NAME: DebugPtr<String> = DebugPtr::new();
/// Runs a mesh host in the current thread, then exits the process, if this
/// process was launched by [`Mesh::launch_host`].
///
/// The mesh invitation is provided via environment variables. If a mesh
/// invitation is not available this function will return immediately with `Ok`.
/// If a mesh invitation is available, this function joins the mesh and runs the
/// future returned by `f` until `f` returns or the parent process shuts down
/// the mesh.
pub fn try_run_mesh_host<U, F, T>(base_name: &str, f: F) -> anyhow::Result<()>
where
U: 'static + MeshPayload + Send,
F: AsyncFnOnce(U) -> anyhow::Result<T>,
{
block_on(async {
if let Some(r) = node_from_environment().await? {
let NodeResult {
node_name,
node,
initial_port,
} = r;
PROCESS_NAME.store(&node_name);
set_program_name(&format!("{base_name}-{node_name}"));
let init = OneshotReceiver::<InitialMessage<U>>::from(initial_port)
.await
.context("failed to receive initial message")?;
let _drop = (
f(init.init_message).map(Some),
handle_host_requests(init.requests).map(|()| None),
)
.race()
.await
.transpose()?;
tracing::debug!("waiting to shut down node");
node.shutdown().await;
drop(_drop);
std::process::exit(0);
}
Ok(())
})
}
async fn handle_host_requests(mut recv: mesh::Receiver<HostRequest>) {
while let Some(req) = recv.next().await {
match req {
HostRequest::Inspect(deferred) => {
deferred.respond(inspect_host);
}
HostRequest::Crash => panic!("explicit panic request"),
}
}
}
fn set_program_name(name: &str) {
let _ = name;
#[cfg(target_os = "linux")]
{
let _ = std::fs::write("/proc/self/comm", name);
}
}
struct NodeResult {
node_name: String,
node: IpcNode,
initial_port: mesh::local_node::Port,
}
/// Create an IPC node from an invitation provided via the process environment.
///
/// Returns `None` if the invitation is not present in the environment.
async fn node_from_environment() -> anyhow::Result<Option<NodeResult>> {
// return early with no node if the invitation is not present in the environment.
let invitation_str = match std::env::var(INVITATION_ENV_NAME) {
Ok(str) => str,
Err(_) => return Ok(None),
};
// Clear the string to avoid leaking the invitation information into child
// processes.
//
// TODO: this function will become unsafe in a future Rust edition because
// it can cause UB if non-Rust code is concurrently accessing the
// environment in another thread. To be completely sound (even in the
// current edition), either this function and its callers need to become
// `unsafe`, or we need to avoid using the environment to propagate the
// invitation so that we can avoid this call.
#[expect(deprecated_safe_2024)]
std::env::remove_var(INVITATION_ENV_NAME);
let invitation: Invitation = mesh::payload::decode(
&base64::engine::general_purpose::STANDARD
.decode(invitation_str)
.context("failed to base64 decode invitation")?,
)
.context("failed to protobuf decode invitation")?;
let (left, right) = mesh::local_node::Port::new_pair();
let node;
#[cfg(windows)]
{
// SAFETY: trusting the initiating process to pass a valid handle. A
// malicious process could pass a bad handle here, but a malicious
// process could also just corrupt our memory arbitrarily, so...
let directory =
unsafe { OwnedHandle::from_raw_handle(invitation.directory_handle as RawHandle) };
let invitation = mesh_remote::windows::AlpcInvitation {
address: invitation.address,
directory,
};
// join the node w/ the provided invitation and the send port of the channel.
node = mesh_remote::windows::AlpcNode::join(
pal_async::windows::TpPool::system(),
invitation,
left,
)
.context("failed to join mesh")?;
}
#[cfg(unix)]
{
// SAFETY: trusting the initiating process to pass a valid fd. A
// malicious process could pass a bad fd here, but a malicious
// process could also just corrupt our memory arbitrarily, so...
let fd = unsafe { OwnedFd::from_raw_fd(invitation.socket_fd) };
let invitation = mesh_remote::unix::UnixInvitation {
address: invitation.address,
fd,
};
// FUTURE: use pool provided by the caller.
let (_, driver) = DefaultPool::spawn_on_thread("mesh-worker-pool");
node = mesh_remote::unix::UnixNode::join(driver, invitation, left)
.await
.context("failed to join mesh")?;
}
Ok(Some(NodeResult {
node_name: invitation.node_name,
node,
initial_port: right,
}))
}
/// Represents a mesh::Node with the ability to spawn new processes that can
/// communicate with any other process belonging to the same mesh.
///
/// # Process creation
/// A `Mesh` instance can spawn new processes with an initial communication
/// channel associated with the mesh. All processes originating from the same
/// mesh can potentially communicate and exchange channels with each other.
///
/// Each spawned process can be configured differently via [`ProcessConfig`].
/// Processes are created with [`Mesh::launch_host`].
///
/// ```no_run
/// # use mesh_process::{Mesh, ProcessConfig};
/// # futures::executor::block_on(async {
/// let mesh = Mesh::new("remote_mesh".to_string()).unwrap();
/// let (send, recv) = mesh::channel();
/// mesh.launch_host(ProcessConfig::new("test"), recv).await.unwrap();
/// send.send(String::from("message for new process"));
/// # })
/// ```
pub struct Mesh {
mesh_name: String,
request: mesh::Sender<MeshRequest>,
task: Task<()>,
}
/// Sandbox profile trait used for mesh hosts.
pub trait SandboxProfile: Send {
/// Apply executes in the parent context and configures any sandbox
/// features that will be applied to the newly created process via
/// the pal builder object.
fn apply(&mut self, builder: &mut ProcessBuilder<'_>);
/// Finalize is intended to execute in the child process context after
/// application specific initialization is complete. It's optional as not
/// every sandbox profile will need to perform additional sandboxing.
/// In addition, the child will need to be aware enough to instantiate its
/// sandbox profile and invoke this method.
fn finalize(&mut self) -> anyhow::Result<()> {
Ok(())
}
}
/// Configuration for launching a new process in the mesh.
pub struct ProcessConfig {
name: String,
process_name: Option<PathBuf>,
process_args: Vec<OsString>,
stderr: Option<File>,
skip_worker_arg: bool,
sandbox_profile: Option<Box<dyn SandboxProfile + Sync>>,
}
impl ProcessConfig {
/// Returns new process configuration using the current process as the
/// process name.
pub fn new(name: impl Into<String>) -> Self {
Self {
name: name.into(),
process_name: None,
process_args: Vec::new(),
stderr: None,
skip_worker_arg: false,
sandbox_profile: None,
}
}
/// Returns a new process configuration using the current process as the
/// process name.
pub fn new_with_sandbox(
name: impl Into<String>,
sandbox_profile: Box<dyn SandboxProfile + Sync>,
) -> Self {
Self {
name: name.into(),
process_name: None,
process_args: Vec::new(),
stderr: None,
skip_worker_arg: false,
sandbox_profile: Some(sandbox_profile),
}
}
/// Sets the process name.
pub fn process_name(mut self, name: impl Into<PathBuf>) -> Self {
self.process_name = Some(name.into());
self
}
/// Specifies whether to appending `<node name>` to the process's command
/// line.
///
/// This is done by default to make it easier to identify the process in
/// task lists, but if your process parses the command line then this may
/// get in the way.
pub fn skip_worker_arg(mut self, skip: bool) -> Self {
self.skip_worker_arg = skip;
self
}
/// Adds arguments to the process command line.
pub fn args<I>(mut self, args: I) -> Self
where
I: IntoIterator,
I::Item: Into<OsString>,
{
self.process_args.extend(args.into_iter().map(|x| x.into()));
self
}
/// Sets the process's stderr to `file`.
pub fn stderr(mut self, file: Option<File>) -> Self {
self.stderr = file;
self
}
}
struct MeshInner {
requests: mesh::Receiver<MeshRequest>,
hosts: Slab<MeshHostInner>,
/// Handles for spawned host processes.
waiters: FuturesUnordered<OneshotReceiver<usize>>,
/// Mesh node for host process communication.
node: IpcNode,
/// Name for this mesh instance, used for tracing/debugging.
mesh_name: String,
/// Job object. When closed, it will terminate all the child processes. This
/// is used to ensure the child processes don't outlive the parent.
#[cfg(windows)]
job: pal::windows::job::Job,
}
struct MeshHostInner {
name: String,
pid: i32,
node_id: mesh::NodeId,
send: mesh::Sender<HostRequest>,
}
enum MeshRequest {
NewHost(Rpc<NewHostParams, anyhow::Result<()>>),
Inspect(inspect::Deferred),
Crash(i32),
}
struct NewHostParams {
config: ProcessConfig,
recv: mesh::local_node::Port,
request_send: mesh::Sender<HostRequest>,
}
impl Inspect for Mesh {
fn inspect(&self, req: inspect::Request<'_>) {
self.request.send(MeshRequest::Inspect(req.defer()));
}
}
impl Mesh {
/// Creates a new mesh with the given name.
pub fn new(mesh_name: String) -> anyhow::Result<Self> {
#[cfg(windows)]
let job = {
let job = pal::windows::job::Job::new().context("failed to create job object")?;
job.set_terminate_on_close()
.context("failed to set job object terminate on close")?;
job
};
#[cfg(windows)]
let node = mesh_remote::windows::AlpcNode::new(pal_async::windows::TpPool::system())
.context("AlpcNode creation failure")?;
#[cfg(unix)]
let node = {
// FUTURE: use pool provided by the caller.
let (_, driver) = DefaultPool::spawn_on_thread("mesh-worker-pool");
mesh_remote::unix::UnixNode::new(driver)
};
let (request, requests) = mesh::channel();
let mut inner = MeshInner {
requests,
hosts: Default::default(),
waiters: Default::default(),
node,
mesh_name: mesh_name.clone(),
#[cfg(windows)]
job,
};
// Spawn a separate thread for launching mesh processes to avoid bad
// interactions with any other pools.
let (_, driver) = DefaultPool::spawn_on_thread("mesh");
let task = driver.spawn(
format!("mesh-{}", &mesh_name),
async move { inner.run().await },
);
Ok(Self {
request,
mesh_name,
task,
})
}
/// Spawns a new host in the mesh with the provided configuration and
/// initial message.
///
/// The initial message will be provided to the closure passed to
/// [`try_run_mesh_host()`].
pub async fn launch_host<T: 'static + MeshField + Send>(
&self,
config: ProcessConfig,
initial_message: T,
) -> anyhow::Result<()> {
let (request_send, request_recv) = mesh::channel();
let (init_send, init_recv) = mesh::oneshot::<InitialMessage<T>>();
init_send.send(InitialMessage {
requests: request_recv,
init_message: initial_message,
});
self.request
.call(
MeshRequest::NewHost,
NewHostParams {
config,
recv: init_recv.into(),
request_send,
},
)
.await
.context("mesh failed")?
}
/// Shutdown the mesh and wait for any spawned processes to exit.
///
/// The `Mesh` instance is no longer usable after `shutdown`.
pub async fn shutdown(self) {
let span = tracing::span!(
tracing::Level::INFO,
"mesh_shutdown",
name = self.mesh_name.as_str(),
);
async {
drop(self.request);
self.task.await;
}
.instrument(span)
.await;
}
/// Crashes the child process with the given process ID.
pub fn crash(&self, pid: i32) {
self.request.send(MeshRequest::Crash(pid));
}
}
#[derive(MeshPayload)]
struct InitialMessage<T> {
requests: mesh::Receiver<HostRequest>,
init_message: T,
}
#[derive(Debug, MeshPayload)]
enum HostRequest {
#[mesh(transparent)]
Inspect(inspect::Deferred),
Crash,
}
fn inspect_host(resp: &mut inspect::Response<'_>) {
resp.field("tasks", inspect_task::inspect_task_list());
}
#[derive(Inspect)]
struct HostInspect<'a> {
#[inspect(safe)]
name: &'a str,
#[inspect(debug, safe)]
node_id: mesh::NodeId,
#[cfg(target_os = "linux")]
#[inspect(safe)]
rlimit: inspect_rlimit::InspectRlimit,
}
impl MeshInner {
async fn run(&mut self) {
enum Event {
Request(MeshRequest),
Done(usize),
}
loop {
let event = futures::select! { // merge semantics
request = self.requests.select_next_some() => Event::Request(request),
n = self.waiters.select_next_some() => Event::Done(n.unwrap()),
complete => break,
};
match event {
Event::Request(request) => match request {
MeshRequest::NewHost(rpc) => {
rpc.handle(async |params| self.spawn_process(params).await)
.await
}
MeshRequest::Inspect(deferred) => {
deferred.respond(|resp| {
resp.sensitivity_child("hosts", SensitivityLevel::Safe, |req| {
let mut resp = req.respond();
for host in self.hosts.iter().map(|(_, host)| host) {
resp.sensitivity_field_mut(
&host.pid.to_string(),
SensitivityLevel::Safe,
&mut inspect::adhoc(|req| {
let mut resp = req.respond();
resp.merge(&HostInspect {
name: &host.name,
node_id: host.node_id,
#[cfg(target_os = "linux")]
rlimit: inspect_rlimit::InspectRlimit::for_pid(
host.pid,
),
});
host.send
.send(HostRequest::Inspect(resp.request().defer()));
}),
);
}
})
.sensitivity_field_mut(
&format!("hosts/{}", std::process::id()),
SensitivityLevel::Safe,
&mut inspect::adhoc(|req| {
let mut resp = req.respond();
resp.merge(&HostInspect {
name: &self.mesh_name,
node_id: self.node.id(),
#[cfg(target_os = "linux")]
rlimit: inspect_rlimit::InspectRlimit::new(),
});
inspect_host(&mut resp);
}),
);
});
}
MeshRequest::Crash(pid) => {
if pid == std::process::id() as i32 {
panic!("explicit panic request");
}
let mut found = false;
for (_, host) in &self.hosts {
if host.pid == pid {
host.send.send(HostRequest::Crash);
found = true;
break;
}
}
if !found {
tracing::error!("failed to crash process, pid {pid} not found");
}
}
},
Event::Done(id) => {
self.hosts.remove(id);
}
}
}
}
/// Spawns a new process with a mesh channel associated with this `Mesh` instance.
#[instrument(name = "mesh_spawn_process", skip(self, params), fields(mesh_name = self.mesh_name.as_str(), pid = tracing::field::Empty))]
async fn spawn_process(&mut self, params: NewHostParams) -> anyhow::Result<()> {
let NewHostParams {
config,
recv,
request_send,
} = params;
let pid;
let node_id;
// If no process name was passed, use the current executable path to
// ensure we get the right file, but set arg0 to match how this process
// was launched.
let (arg0, process_name) = if let Some(n) = &config.process_name {
(None, Cow::Borrowed(n))
} else {
(
std::env::args_os().next(),
Cow::Owned(std::env::current_exe().context("failed to get current exe path")?),
)
};
let name = config.name.clone();
#[cfg(windows)]
let wait = {
let (invitation, handle) = self.node.invite(recv).context("mesh node invite error")?;
node_id = invitation.address.local_addr.node;
let invitation_env = base64::engine::general_purpose::STANDARD.encode(
mesh::payload::encode(Invitation {
node_name: name.clone(),
address: invitation.address,
directory_handle: invitation.directory.as_raw_handle() as usize,
}),
);
let mut args = config.process_args;
if !config.skip_worker_arg {
args.push(name.clone().into());
}
let mut builder = process::Builder::from_args(
arg0.as_ref()
.map_or_else(|| process_name.as_os_str(), |x| x.as_os_str()),
&args,
);
if arg0.is_some() {
builder.application_name(process_name.as_path());
}
builder
.stdin(process::Stdio::Null)
.stdout(process::Stdio::Null)
.handle(&invitation.directory)
.env(INVITATION_ENV_NAME, invitation_env)
.job(self.job.as_handle());
if let Some(log_file) = config.stderr.as_ref() {
builder.stderr(process::Stdio::Handle(log_file.as_handle()));
}
if let Some(mut sandbox_profile) = config.sandbox_profile {
sandbox_profile.apply(&mut builder);
}
let child = builder.spawn().context("failed to launch mesh process")?;
// Wait for the child to connect to the mesh. TODO: timeout
handle.await;
pid = child.id() as i32;
tracing::Span::current().record("pid", pid);
move || {
child.wait();
let code = child.exit_code();
if code == 0 {
tracing::info!(pid, name = name.as_str(), "mesh child exited successfully");
} else {
tracing::error!(pid, name = name.as_str(), code, "mesh child abnormal exit");
}
}
};
#[cfg(unix)]
let mut wait = {
use pal::unix::process;
let invitation = self
.node
.invite(recv)
.await
.context("mesh node invite error")?;
node_id = invitation.address.local_addr.node;
let invitation_env = base64::engine::general_purpose::STANDARD.encode(
mesh::payload::encode(Invitation {
node_name: name.clone(),
address: invitation.address,
socket_fd: IPC_FD,
}),
);
let mut command = process::Builder::new(process_name.into_owned());
if let Some(arg0) = arg0 {
command.arg0(arg0);
}
command
.args(&config.process_args)
.stdin(process::Stdio::Null)
.stdout(process::Stdio::Null)
.dup_fd(invitation.fd.as_fd(), IPC_FD)
.env(INVITATION_ENV_NAME, invitation_env);
if !config.skip_worker_arg {
command.arg(&name);
}
if let Some(log_file) = config.stderr.as_ref() {
command.stderr(process::Stdio::Fd(log_file.as_fd()));
}
if let Some(mut sandbox_profile) = config.sandbox_profile {
sandbox_profile.apply(&mut command);
}
let mut child = command.spawn().context("failed to launch mesh process")?;
pid = child.id();
tracing::Span::current().record("pid", pid);
move || {
let exit_status = child.wait().expect("mesh child wait failure");
if let Some(0) = exit_status.code() {
tracing::info!(pid, name = name.as_str(), "mesh child exited successfully");
} else {
tracing::error!(
pid,
name = name.as_str(),
%exit_status,
"mesh child abnormal exit"
);
}
}
};
let (wait_send, wait_recv) = mesh::oneshot();
let id = self.hosts.insert(MeshHostInner {
name: config.name,
pid,
node_id,
send: request_send,
});
thread::Builder::new()
.name(format!("wait-mesh-child-{}", pid))
.spawn(move || {
wait();
wait_send.send(id);
})
.unwrap();
self.waiters.push(wait_recv);
Ok(())
}
}