mesh_channel_core/mpsc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Implementation of an async multi-producer, single-consumer (MPSC) channel
//! that can be used to communicate between mesh nodes.
//!
//! The main design requirements of this channel are:
//! * It roughly follows the semantics of the Rust standard library's
//! `std::sync::mpsc` channel, but with async support.
//! * It is efficient enough for single process use that it can be used as a
//! general purpose channel.
//! * It leverages `mesh_node` ports and `mesh_protobuf` serialization to allow
//! communication between mesh nodes, which can be on different processes or
//! machines.
//! * Its contribution to binary size is minimal.
//!
//! To achieve the binary size goal, this implementation avoids generics where
//! practical. This has the tradeoff of requiring a fair amount of unsafe code,
//! but this makes it practical to use this channel in space-constrained
//! environments.
// UNSAFETY: Needed to erase types to avoid monomorphization overhead.
#![expect(unsafe_code)]
use crate::deque::ElementVtable;
use crate::deque::ErasedVecDeque;
use crate::error::ChannelError;
use crate::error::RecvError;
use crate::error::TryRecvError;
use core::fmt::Debug;
use core::future::Future;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::mem::MaybeUninit;
use core::task::Context;
use core::task::Poll;
use core::task::Waker;
use mesh_node::local_node::HandleMessageError;
use mesh_node::local_node::HandlePortEvent;
use mesh_node::local_node::Port;
use mesh_node::local_node::PortField;
use mesh_node::local_node::PortWithHandler;
use mesh_node::message::MeshField;
use mesh_node::message::Message;
use mesh_node::message::OwnedMessage;
use mesh_protobuf::DefaultEncoding;
use mesh_protobuf::Protobuf;
use parking_lot::Mutex;
use parking_lot::MutexGuard;
use std::marker::PhantomPinned;
use std::sync::Arc;
use std::sync::OnceLock;
use std::task::ready;
/// Creates a new channel for sending messages of type `T`, returning the sender
/// and receiver ends.
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
fn channel_core(vtable: &'static ElementVtable) -> (SenderCore, ReceiverCore) {
let mut receiver = ReceiverCore::new(vtable);
let sender = receiver.sender();
(sender, receiver)
}
let (sender, receiver) = channel_core(const { &ElementVtable::new::<T>() });
(Sender(sender, PhantomData), Receiver(receiver, PhantomData))
}
/// The sending half of a channel returned by [`channel`].
///
/// The sender can be cloned to send messages from multiple threads or
/// processes.
//
// Note that the `PhantomData` here is necessary to ensure `Send/Sync` traits
// are only implemented when `T` is `Send`, since the `SenderCore` is always
// `Send+Sync`. This behavior is verified in the unit tests.
pub struct Sender<T>(SenderCore, PhantomData<Arc<Mutex<[T]>>>);
impl<T> Debug for Sender<T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl<T> Clone for Sender<T> {
fn clone(&self) -> Self {
Self(self.0.clone(), PhantomData)
}
}
impl<T> Sender<T> {
/// Sends a message to the associated [`Receiver<T>`].
///
/// Does not return a result, so messages can be silently dropped if the
/// receiver has closed or failed. To detect such conditions, include
/// another sender in the message you send so that the receiving thread can
/// use it to send a response.
///
/// ```rust
/// # use mesh_channel_core::*;
/// # futures::executor::block_on(async {
/// let (send, mut recv) = channel();
/// let (response_send, mut response_recv) = channel::<bool>();
/// send.send((3, response_send));
/// let (val, response_send) = recv.recv().await.unwrap();
/// response_send.send(val == 3);
/// assert_eq!(response_recv.recv().await.unwrap(), true);
/// # });
/// ```
pub fn send(&self, message: T) {
// SAFETY: the queue is for `T` and `message` is a valid owned `T`.
// Additionally, the sender/receiver is only `Send`/`Sync` if `T` is
// `Send`/`Sync`.
unsafe { self.0.send(message) }
}
/// Returns whether the receiving side of the channel is known to be closed
/// (or failed).
///
/// This is useful to determine if there is any point in sending more data
/// via this port. Note that even if this returns `false` messages may still
/// fail to reach the destination, for example if the receiver is closed
/// after this method is called but before the message is consumed.
pub fn is_closed(&self) -> bool {
self.0.is_closed()
}
}
struct MessagePtr(*mut ());
impl MessagePtr {
fn new<T>(message: &mut MaybeUninit<T>) -> Self {
Self(message.as_mut_ptr().cast())
}
/// # Safety
/// The caller must ensure that `self` is a valid owned `T`.
unsafe fn read<T>(self) -> T {
// SAFETY: The caller guarantees `self` is a valid owned `T`.
unsafe { self.0.cast::<T>().read() }
}
}
/// Sends a `ChannelPayload::Message(message)` to a port.
///
/// # Safety
/// The caller must ensure that `message` is a valid owned `T`.
unsafe fn send_message<T: MeshField>(port: &Port, message: MessagePtr) {
// SAFETY: The caller guarantees `message` is a valid owned `T`.
let m = unsafe { ChannelPayload::Message(message.read::<T>()) };
port.send_protobuf(m);
}
#[derive(Debug, Clone)]
struct SenderCore(ManuallyDrop<Arc<Queue>>);
impl SenderCore {
/// Sends `message`.
///
/// # Safety
/// The caller must ensure that the message is a valid owned `T` for the `T`
/// the queue was created with. It also must ensure that the queue is not
/// sent/shared across threads unless `T` is `Send`/`Sync`.
unsafe fn send<T>(&self, message: T) {
fn send(queue: &Queue, message: MessagePtr) -> bool {
match queue.access() {
QueueAccess::Local(mut local) => {
if local.receiver_gone {
return false;
}
// SAFETY: The caller guarantees `message` is a valid owned `T`,
// and that the queue will not be sent/shared across threads
// unless `T` is `Send`/`Sync`.
unsafe { local.messages.push_back(message.0) };
if let Some(waker) = local.waker.take() {
drop(local);
waker.wake();
}
}
QueueAccess::Remote(remote) => {
// SAFETY: The caller guarantees `message` is a valid owned `T`.
unsafe { (remote.send)(&remote.port, message) };
}
}
true
}
let mut message = MaybeUninit::new(message);
let sent = send(&self.0, MessagePtr::new(&mut message));
if !sent {
// SAFETY: `message` was not dropped.
unsafe { message.assume_init_drop() };
}
}
fn is_closed(&self) -> bool {
match self.0.access() {
QueueAccess::Local(local) => local.receiver_gone,
QueueAccess::Remote(remote) => remote.port.is_closed().unwrap_or(true),
}
}
fn into_queue(self) -> Arc<Queue> {
let Self(ref queue) = *ManuallyDrop::new(self);
// SAFETY: copying from a field that won't be dropped.
unsafe { <*const _>::read(&**queue) }
}
/// Creates a new queue with element type `T` for sending to `port`.
fn from_port<T: MeshField>(port: Port) -> Self {
fn from_port(port: Port, vtable: &'static ElementVtable, send: SendFn) -> SenderCore {
SenderCore(ManuallyDrop::new(Arc::new(Queue {
local: Mutex::new(LocalQueue {
remote: true,
..LocalQueue::new(vtable)
}),
remote: OnceLock::from(RemoteQueueState { port, send }),
})))
}
from_port(
port,
const { &ElementVtable::new::<T>() },
send_message::<T>,
)
}
/// Converts this sender into a port.
///
/// # Safety
/// The caller must ensure that the queue has element type `T`.
unsafe fn into_port<T: MeshField>(self) -> Port {
fn into_port(this: SenderCore, new_handler: NewHandlerFn) -> Port {
match Arc::try_unwrap(this.into_queue()) {
Ok(mut queue) => {
if let Some(remote) = queue.remote.into_inner() {
// This is the unique owner of the port.
remote.port
} else {
assert!(queue.local.get_mut().receiver_gone);
let (send, _recv) = Port::new_pair();
send
}
}
Err(queue) => {
// There is a receiver or at least one other sender.
let (send, recv) = Port::new_pair();
match queue.access() {
QueueAccess::Local(mut local) => {
if !local.receiver_gone {
local.new_handler = new_handler;
local.ports.push(recv);
if let Some(waker) = local.waker.take() {
drop(local);
waker.wake();
}
}
}
QueueAccess::Remote(remote) => {
remote.port.send_protobuf(ChannelPayload::<()>::Port(recv));
}
}
send
}
}
}
into_port(self, RemotePortHandler::new::<T>)
}
}
impl Drop for SenderCore {
fn drop(&mut self) {
// SAFETY: the queue won't be referenced after this.
let queue = unsafe { ManuallyDrop::take(&mut self.0) };
let waker = if queue.remote.get().is_some() {
None
} else {
let mut local = queue.local.lock();
// TODO: keep a sender count to avoid needing to wake.
local.waker.take()
};
// Drop the queue so that the receiver will see the sender is gone.
drop(queue);
if let Some(waker) = waker {
waker.wake();
}
}
}
impl<T> DefaultEncoding for Sender<T> {
type Encoding = PortField;
}
impl<T: MeshField> From<Port> for Sender<T> {
fn from(port: Port) -> Self {
Self(SenderCore::from_port::<T>(port), PhantomData)
}
}
impl<T: MeshField> From<Sender<T>> for Port {
fn from(sender: Sender<T>) -> Self {
// SAFETY: the queue has element type `T`.
unsafe { sender.0.into_port::<T>() }
}
}
impl<T: MeshField> Sender<T> {
/// Bridges this and `recv` together, consuming both `self` and `recv`. This
/// makes it so that anything sent to `recv` will be directly sent to this
/// channel's peer receiver, without a separate relay step. This includes
/// any data that was previously sent but not yet consumed.
///
/// ```rust
/// # use mesh_channel_core::*;
/// let (outer_send, inner_recv) = channel::<u32>();
/// let (inner_send, mut outer_recv) = channel::<u32>();
///
/// outer_send.send(2);
/// inner_send.send(1);
/// inner_send.bridge(inner_recv);
/// assert_eq!(outer_recv.try_recv().unwrap(), 1);
/// assert_eq!(outer_recv.try_recv().unwrap(), 2);
/// ```
pub fn bridge(self, receiver: Receiver<T>) {
let sender = Port::from(self);
let receiver = Port::from(receiver);
sender.bridge(receiver);
}
}
/// The receiving half of a channel returned by [`channel`].
//
// Note that the `PhantomData` here is necessary to ensure `Send/Sync` traits
// are only implemented when `T` is `Send`, since the `ReceiverCore` is always
// `Send+Sync`. This behavior is verified in the unit tests.
pub struct Receiver<T>(ReceiverCore, PhantomData<Arc<Mutex<[T]>>>);
impl<T> Debug for Receiver<T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl<T> Default for Receiver<T> {
fn default() -> Self {
Self::new()
}
}
#[derive(Debug)]
struct ReceiverCore {
queue: ReceiverQueue,
ports: PortHandlerList,
terminated: bool,
}
#[derive(Debug)]
struct ReceiverQueue(Arc<Queue>);
impl Drop for ReceiverQueue {
fn drop(&mut self) {
let mut local = self.0.local.lock();
local.receiver_gone = true;
let _waker = std::mem::take(&mut local.waker);
local.messages.clear_and_shrink();
let _ports = std::mem::take(&mut local.ports);
}
}
impl<T> Receiver<T> {
/// Creates a new receiver with no senders.
///
/// Receives will fail with [`RecvError::Closed`] until [`Self::sender`] is
/// called.
pub fn new() -> Self {
Self(
ReceiverCore::new(const { &ElementVtable::new::<T>() }),
PhantomData,
)
}
/// Consumes and returns the next message, waiting until one is available.
///
/// Returns immediately when the channel is closed or failed.
///
/// ```rust
/// # use mesh_channel_core::*;
/// # futures::executor::block_on(async {
/// let (send, mut recv) = channel();
/// send.send(5u32);
/// drop(send);
/// assert_eq!(recv.recv().await.unwrap(), 5);
/// assert!(matches!(recv.recv().await.unwrap_err(), RecvError::Closed));
/// # });
/// ```
pub fn recv(&mut self) -> Recv<'_, T> {
Recv(self, PhantomPinned)
}
/// Consumes and returns the next message, if there is one.
///
/// Otherwise, returns whether the channel is empty, closed, or failed.
///
/// ```rust
/// # use mesh_channel_core::*;
/// let (send, mut recv) = channel();
/// send.send(5u32);
/// drop(send);
/// assert_eq!(recv.try_recv().unwrap(), 5);
/// assert!(matches!(recv.try_recv().unwrap_err(), TryRecvError::Closed));
/// ```
pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
// SAFETY: the queue type is `T`.
let r = unsafe { self.0.try_poll_recv::<T>(None) };
match r {
Poll::Ready(Ok(v)) => Ok(v),
Poll::Ready(Err(RecvError::Closed)) => Err(TryRecvError::Closed),
Poll::Ready(Err(RecvError::Error(e))) => Err(TryRecvError::Error(e)),
Poll::Pending => Err(TryRecvError::Empty),
}
}
/// Polls for the next message.
///
/// If one is available, consumes and returns it. If the
/// channel is closed or failed, fails. Otherwise, registers the current task to wake
/// when a message is available or the channel is closed or fails.
pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
// SAFETY: the queue type is `T`.
unsafe { self.0.try_poll_recv(Some(cx)) }
}
/// Creates a new sender for sending data to this receiver.
///
/// Note that this may transition the channel from the closed to open state.
pub fn sender(&mut self) -> Sender<T> {
Sender(self.0.sender(), PhantomData)
}
}
/// The future returned by [`Receiver::recv`].
//
// Force `!Unpin` to allow for future optimizations.
pub struct Recv<'a, T>(&'a mut Receiver<T>, PhantomPinned);
impl<T> Future for Recv<'_, T> {
type Output = Result<T, RecvError>;
fn poll(self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
// SAFETY: there are no actual pinning invariants.
let this = unsafe { self.get_unchecked_mut() };
this.0.poll_recv(cx)
}
}
impl ReceiverCore {
fn new(vtable: &'static ElementVtable) -> Self {
Self {
queue: ReceiverQueue(Arc::new(Queue {
local: Mutex::new(LocalQueue::new(vtable)),
remote: OnceLock::new(),
})),
ports: PortHandlerList::new(),
terminated: true,
}
}
// Polls for a message.
//
// # Safety
// The queue must have element type `T`.
unsafe fn try_poll_recv<T>(
&mut self,
cx: Option<&mut Context<'_>>,
) -> Poll<Result<T, RecvError>> {
fn try_poll_recv<'a>(
this: &'a mut ReceiverCore,
cx: Option<&mut Context<'_>>,
) -> Poll<Result<MutexGuard<'a, LocalQueue>, RecvError>> {
loop {
debug_assert!(this.queue.0.remote.get().is_none());
let mut local = this.queue.0.local.lock();
if local.remove_closed {
local.remove_closed = false;
drop(local);
if let Err(err) = this.ports.remove_closed() {
// Propagate the error to the caller only if there
// are no more senders. Otherwise, the caller might
// stop receiving messages from the remaining
// senders.
let local = this.queue.0.local.lock();
if local.messages.is_empty() && local.ports.is_empty() && this.is_closed() {
this.terminated = true;
return Poll::Ready(Err(RecvError::Error(err)));
} else {
trace_channel_error(&err);
}
}
} else if !local.ports.is_empty() {
let new_handler = local.new_handler;
let ports = std::mem::take(&mut local.ports);
drop(local);
this.ports.0.extend(ports.into_iter().map(|port| {
// SAFETY: `new_handler` has been set to a function whose
// element type matches the queue's element type.
let handler = unsafe { new_handler(this.queue.0.clone()) };
port.set_handler(handler)
}));
continue;
} else if local.messages.is_empty() {
if let Some(cx) = cx {
if !local
.waker
.as_ref()
.is_some_and(|waker| waker.will_wake(cx.waker()))
&& !this.is_closed()
{
local.waker = Some(cx.waker().clone());
}
}
if this.is_closed() {
this.terminated = true;
return Poll::Ready(Err(RecvError::Closed));
} else {
return Poll::Pending;
}
} else {
return Poll::Ready(Ok(local));
}
}
}
ready!(try_poll_recv(self, cx))
.map(|mut local| {
let message = local.messages.pop_front_in_place().unwrap();
// SAFETY: `message` is a valid owned `T`.
unsafe { message.as_ptr().cast::<T>().read() }
})
.into()
}
fn is_closed(&self) -> bool {
Arc::strong_count(&self.queue.0) == 1
}
fn sender(&mut self) -> SenderCore {
self.terminated = false;
SenderCore(ManuallyDrop::new(self.queue.0.clone()))
}
/// Converts this receiver into a port.
///
/// # Safety
/// The caller must ensure that the queue has element type `T`.
unsafe fn into_port<T: MeshField>(self) -> Port {
fn into_port(mut this: ReceiverCore, send: SendFn) -> Port {
let ports = this.ports.into_ports();
if ports.len() == 1 {
if let Some(queue) = Arc::get_mut(&mut this.queue.0) {
let local = queue.local.get_mut();
if local.messages.is_empty() && local.ports.is_empty() {
return ports.into_iter().next().unwrap();
}
}
}
let (sender, recv) = Port::new_pair();
for port in ports {
sender.send_protobuf(ChannelPayload::<()>::Port(port));
}
let mut local = this.queue.0.local.lock();
for port in local.ports.drain(..) {
sender.send_protobuf(ChannelPayload::<()>::Port(port));
}
while let Some(message) = local.messages.pop_front_in_place() {
// SAFETY: `message` is a valid owned `T`.
unsafe { send(&sender, MessagePtr(message.as_ptr())) };
}
local.remote = true;
this.queue
.0
.remote
.set(RemoteQueueState { port: sender, send })
.ok()
.unwrap();
recv
}
into_port(self, send_message::<T>)
}
/// Creates a new queue with element type `T` for receiving from `port`.
fn from_port<T: MeshField>(port: Port) -> Self {
fn from_port(
port: Port,
vtable: &'static ElementVtable,
new_handler: NewHandlerFn,
) -> ReceiverCore {
let queue = Arc::new(Queue {
local: Mutex::new(LocalQueue {
ports: vec![port],
new_handler,
..LocalQueue::new(vtable)
}),
remote: OnceLock::new(),
});
ReceiverCore {
queue: ReceiverQueue(queue),
ports: PortHandlerList::new(),
terminated: false,
}
}
from_port(
port,
const { &ElementVtable::new::<T>() },
RemotePortHandler::new::<T>,
)
}
}
fn trace_channel_error(err: &ChannelError) {
tracing::error!(
error = err as &dyn std::error::Error,
"channel closed due to error"
);
}
impl<T> futures_core::Stream for Receiver<T> {
type Item = T;
fn poll_next(self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
Poll::Ready(match std::task::ready!(self.get_mut().poll_recv(cx)) {
Ok(t) => Some(t),
Err(RecvError::Closed) => None,
Err(RecvError::Error(err)) => {
trace_channel_error(&err);
None
}
})
}
}
impl<T> futures_core::FusedStream for Receiver<T> {
fn is_terminated(&self) -> bool {
self.0.terminated
}
}
#[derive(Debug)]
struct PortHandlerList(Vec<PortWithHandler<RemotePortHandler>>);
impl PortHandlerList {
fn new() -> Self {
Self(Vec::new())
}
fn remove_closed(&mut self) -> Result<(), ChannelError> {
let mut r = Ok(());
self.0.retain(|port| match port.is_closed() {
Ok(true) => false,
Ok(false) => true,
Err(err) => {
let err = ChannelError::from(err);
if r.is_ok() {
r = Err(err);
} else {
trace_channel_error(&err);
}
false
}
});
r
}
fn into_ports(self) -> Vec<Port> {
self.0
.into_iter()
.map(|port| port.remove_handler().0)
.collect()
}
}
impl<T: MeshField> DefaultEncoding for Receiver<T> {
type Encoding = PortField;
}
impl<T: MeshField> From<Port> for Receiver<T> {
fn from(port: Port) -> Self {
Self(ReceiverCore::from_port::<T>(port), PhantomData)
}
}
impl<T: MeshField> From<Receiver<T>> for Port {
fn from(receiver: Receiver<T>) -> Self {
// SAFETY: the queue has element type `T`.
unsafe { receiver.0.into_port::<T>() }
}
}
impl<T: MeshField> Receiver<T> {
/// Bridges this and `sender` together, consuming both `self` and `sender`.
///
/// See [`Sender::bridge`] for more details.
pub fn bridge(self, sender: Sender<T>) {
sender.bridge(self)
}
}
#[derive(Debug)]
struct Queue {
remote: OnceLock<RemoteQueueState>,
local: Mutex<LocalQueue>,
}
enum QueueAccess<'a> {
Local(MutexGuard<'a, LocalQueue>),
Remote(&'a RemoteQueueState),
}
impl Queue {
fn access(&self) -> QueueAccess<'_> {
loop {
// Check if the queue is remote first to avoid taking the lock.
if let Some(remote) = self.remote.get() {
break QueueAccess::Remote(remote);
} else {
let local = self.local.lock();
if local.remote {
// The queue was made remote between our check above and
// taking the lock.
continue;
}
break QueueAccess::Local(local);
}
}
}
}
#[derive(Debug)]
struct LocalQueue {
messages: ErasedVecDeque,
ports: Vec<Port>,
waker: Option<Waker>,
remote: bool,
receiver_gone: bool,
remove_closed: bool,
new_handler: NewHandlerFn,
}
type NewHandlerFn = unsafe fn(Arc<Queue>) -> RemotePortHandler;
impl LocalQueue {
fn new(vtable: &'static ElementVtable) -> Self {
Self {
messages: ErasedVecDeque::new(vtable),
ports: Vec::new(),
waker: None,
remote: false,
receiver_gone: false,
remove_closed: false,
new_handler: missing_handler,
}
}
}
fn missing_handler(_: Arc<Queue>) -> RemotePortHandler {
unreachable!("handler function not set")
}
#[derive(Debug)]
struct RemoteQueueState {
port: Port,
send: SendFn,
}
type SendFn = unsafe fn(&Port, MessagePtr);
#[derive(Protobuf)]
#[mesh(bound = "T: MeshField", resource = "mesh_node::resource::Resource")]
enum ChannelPayload<T> {
#[mesh(transparent)]
Message(T),
#[mesh(transparent)]
Port(Port),
}
struct RemotePortHandler {
queue: Arc<Queue>,
parse: unsafe fn(Message<'_>, *mut ()) -> Result<Option<Port>, ChannelError>,
}
impl RemotePortHandler {
/// Creates a new handler for a queue with element type `T`.
///
/// # Safety
/// The caller must ensure that `queue` has element type `T`.
unsafe fn new<T: MeshField>(queue: Arc<Queue>) -> Self {
Self {
queue,
parse: Self::parse::<T>,
}
}
/// Parses a message into a `T` or a `Port`.
///
/// # Safety
/// The caller must ensure that `p` is valid for writing a `T`.
unsafe fn parse<T: MeshField>(
message: Message<'_>,
p: *mut (),
) -> Result<Option<Port>, ChannelError> {
match message.parse_non_static::<ChannelPayload<T>>() {
Ok(ChannelPayload::Message(message)) => {
// SAFETY: The caller guarantees `p` is valid for writing a `T`.
unsafe { p.cast::<T>().write(message) };
Ok(None)
}
Ok(ChannelPayload::Port(port)) => Ok(Some(port)),
Err(err) => Err(err.into()),
}
}
}
impl HandlePortEvent for RemotePortHandler {
fn message(
&mut self,
control: &mut mesh_node::local_node::PortControl<'_, '_>,
message: Message<'_>,
) -> Result<(), HandleMessageError> {
let mut local = self.queue.local.lock();
assert!(!local.receiver_gone);
assert!(!local.remote);
// Decode directly into the queue.
let p = local.messages.reserve_one();
// SAFETY: `p` is valid for writing a `T`, the element type of the
// queue.
let r = unsafe { (self.parse)(message, p.as_ptr()) };
let port = r.map_err(HandleMessageError::new)?;
match port {
None => {
// SAFETY: `p` has been written to.
unsafe { p.commit() };
}
Some(port) => {
local.ports.push(port);
}
}
let waker = local.waker.take();
drop(local);
if let Some(waker) = waker {
control.wake(waker);
}
Ok(())
}
fn close(&mut self, control: &mut mesh_node::local_node::PortControl<'_, '_>) {
let waker = {
let mut local = self.queue.local.lock();
local.remove_closed = true;
local.waker.take()
};
if let Some(waker) = waker {
control.wake(waker);
}
}
fn fail(
&mut self,
control: &mut mesh_node::local_node::PortControl<'_, '_>,
_err: mesh_node::local_node::NodeError,
) {
self.close(control);
}
fn drain(&mut self) -> Vec<OwnedMessage> {
Vec::new()
}
}
#[cfg(test)]
mod tests {
use super::channel;
use super::Receiver;
use super::Sender;
use crate::RecvError;
use futures::executor::block_on;
use futures::StreamExt;
use futures_core::FusedStream;
use mesh_node::local_node::Port;
use mesh_protobuf::Protobuf;
use std::cell::Cell;
use std::marker::PhantomData;
use test_with_tracing::test;
// Ensure `Send` and `Sync` are implemented correctly.
static_assertions::assert_impl_all!(Sender<i32>: Send, Sync);
static_assertions::assert_impl_all!(Receiver<i32>: Send, Sync);
static_assertions::assert_impl_all!(Sender<Cell<i32>>: Send, Sync);
static_assertions::assert_impl_all!(Receiver<Cell<i32>>: Send, Sync);
static_assertions::assert_not_impl_any!(Sender<*const ()>: Send, Sync);
static_assertions::assert_not_impl_any!(Receiver<*const ()>: Send, Sync);
#[test]
fn test_basic() {
block_on(async {
let (sender, mut receiver) = channel();
sender.send(String::from("test"));
assert_eq!(receiver.next().await.as_deref(), Some("test"));
drop(sender);
assert_eq!(receiver.next().await, None);
})
}
#[test]
fn test_convert_sender_port() {
block_on(async {
let (sender, mut receiver) = channel::<String>();
let sender = Sender::<String>::from(Port::from(sender));
sender.send(String::from("test"));
assert_eq!(receiver.next().await.as_deref(), Some("test"));
drop(sender);
assert_eq!(receiver.next().await, None);
})
}
#[test]
fn test_convert_receiver_port() {
block_on(async {
let (sender, receiver) = channel();
let mut receiver = Receiver::<String>::from(Port::from(receiver));
sender.send(String::from("test"));
assert_eq!(receiver.next().await.as_deref(), Some("test"));
drop(sender);
assert_eq!(receiver.next().await, None);
})
}
#[test]
fn test_non_port_and_port_sender() {
block_on(async {
let (sender, mut receiver) = channel();
let sender2 = Sender::<String>::from(Port::from(sender.clone()));
sender.send(String::from("test"));
sender2.send(String::from("tset"));
assert_eq!(receiver.next().await.as_deref(), Some("test"));
assert_eq!(receiver.next().await.as_deref(), Some("tset"));
drop(sender);
drop(sender2);
assert_eq!(receiver.next().await, None);
})
}
#[test]
fn test_port_receiver_with_senders_and_messages() {
block_on(async {
let (sender, receiver) = channel();
let sender2 = Sender::<String>::from(Port::from(sender.clone()));
sender.send(String::from("test"));
sender2.send(String::from("tset"));
let mut receiver = Receiver::<String>::from(Port::from(receiver));
assert_eq!(receiver.next().await.as_deref(), Some("test"));
assert_eq!(receiver.next().await.as_deref(), Some("tset"));
drop(sender);
drop(sender2);
assert_eq!(receiver.next().await, None);
})
}
#[test]
fn test_message_corruption() {
block_on(async {
let (sender, receiver) = channel();
let mut receiver = Receiver::<i32>::from(Port::from(receiver));
sender.send("text".to_owned());
let RecvError::Error(err) = receiver.recv().await.unwrap_err() else {
panic!()
};
tracing::info!(error = &err as &dyn std::error::Error, "expected error");
assert!(receiver.is_terminated());
})
}
#[test]
fn test_no_send() {
block_on(async {
#[derive(Protobuf)]
struct NoSend(String, PhantomData<*mut ()>);
let (sender, receiver) = channel::<NoSend>();
let mut receiver = Receiver::<NoSend>::from(Port::from(receiver));
sender.send(NoSend(String::from("test"), PhantomData));
assert_eq!(
receiver.next().await.as_ref().map(|v| v.0.as_str()),
Some("test")
);
})
}
}