mesh_channel_core/
deque.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implementation of a type-erased vector-based queue.

// UNSAFETY: Needed to erase types to avoid monomorphization overhead.
#![expect(unsafe_code)]

use core::fmt;
use std::alloc::Layout;
use std::marker::PhantomData;
use std::ptr::NonNull;
use std::ptr::drop_in_place;

/// A type-erased vector-based queue.
///
/// This is used instead of `VecDeque<T>` to avoid monomorphization overhead.
///
/// # Safety
/// The use of this type is precarious, because the various operations are not
/// type-checked with the element type. Use with care.
///
/// Additionally, this type is `Send` and `Sync` even though the underlying
/// element types may not be. It is the caller's responsibility to ensure that
/// this is wrapped in something with the appropriate `PhantomData` to prevent
/// it from being `Send` or `Sync` when it shouldn't be.
pub struct ErasedVecDeque {
    buf: NonNull<u8>,
    cap: usize,
    head: usize,
    len: usize,
    vtable: &'static ElementVtable,
}

impl fmt::Debug for ErasedVecDeque {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ErasedVecDeque")
            .field("cap", &self.cap)
            .field("head", &self.head)
            .field("len", &self.len)
            .finish()
    }
}

// SAFETY: `ErasedVecDeque` is `Send` and `Sync` even though the underlying
// element types may not be. It is the caller's responsibility to ensure that
// they don't send or share this across threads when it shouldn't be.
unsafe impl Send for ErasedVecDeque {}
// SAFETY: see above.
unsafe impl Sync for ErasedVecDeque {}

/// The vtable for a type-erased element type.
pub struct ElementVtable {
    layout: Layout,
    element_len: usize, // different from layout.size() for ZSTs
    drop: Option<unsafe fn(*mut ())>,
}

impl ElementVtable {
    /// Creates a new vtable for the given element type.
    pub const fn new<T>() -> Self {
        /// # Safety
        /// The caller must ensure that `p` is a valid pointer to a `T`, the type
        /// that this vtable was created with.
        unsafe fn drop_fn<T>(p: *mut ()) {
            // SAFETY: `p` is a valid owned pointer to a `T`.
            unsafe {
                drop_in_place(p.cast::<T>());
            }
        }

        Self {
            layout: Layout::new::<T>(),
            element_len: if size_of::<T>() == 0 {
                align_of::<T>()
            } else {
                assert!(size_of::<T>() >= align_of::<T>());
                size_of::<T>()
            },
            drop: if std::mem::needs_drop::<T>() {
                Some(drop_fn::<T>)
            } else {
                None
            },
        }
    }
}

/// A reference to a type-erased element in the queue.
///
/// This is used instead of a raw pointer to ensure the queue storage is not
/// reused while the element is still in use.
pub struct InPlaceElement<'a>(NonNull<()>, PhantomData<&'a mut ErasedVecDeque>);

impl InPlaceElement<'_> {
    pub fn as_ptr(&self) -> *mut () {
        self.0.as_ptr()
    }
}

/// An element reserved in the queue by [`ErasedVecDeque::reserve_one`].
pub struct ReservedElement<'a>(&'a mut ErasedVecDeque, usize);

impl ReservedElement<'_> {
    /// Returns a pointer to the reserved element.
    pub fn as_ptr(&self) -> *mut () {
        let Self(ref deque, offset) = *self;
        // SAFETY: `offset` is a valid offset into `buf`.
        let ptr = unsafe { deque.buf.add(offset).cast() };
        ptr.as_ptr()
    }

    /// Commits the reserved element.
    ///
    /// # Safety
    /// The caller must ensure that the element has been written to the buffer.
    pub unsafe fn commit(self) {
        let Self(deque, _) = self;
        deque.len += deque.vtable.element_len;
        debug_assert!(deque.len <= deque.cap);
    }
}

impl ErasedVecDeque {
    /// Creates a new empty `ErasedVecDeque` with the given element vtable.
    pub fn new(vtable: &'static ElementVtable) -> Self {
        Self {
            buf: NonNull::dangling(),
            cap: if vtable.layout.size() == 0 {
                isize::MAX as usize
            } else {
                0
            },
            head: 0,
            len: 0,
            vtable,
        }
    }

    /// Returns whether the queue is empty.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    fn offset(&self, i: usize) -> usize {
        if self.vtable.layout.size() == 0 {
            return 0;
        }
        let offset = self.head.wrapping_add(i);
        let offset = if offset >= self.cap {
            offset - self.cap
        } else {
            offset
        };
        debug_assert!(offset + self.vtable.layout.size() <= self.cap);
        offset
    }

    /// # Safety
    /// The caller must ensure that `i` is in bounds.
    unsafe fn buf_at(&mut self, i: usize) -> InPlaceElement<'_> {
        let offset = self.offset(i);
        // SAFETY: `i` is a valid index into `buf`.
        let ptr = unsafe { self.buf.add(offset).cast() };
        InPlaceElement(ptr, PhantomData)
    }

    /// Reserves space for one element and returns a reference to it.
    ///
    /// The caller must write the element to the returned pointer and then call
    /// [`ReservedElement::commit`] to commit the element.
    pub fn reserve_one(&mut self) -> ReservedElement<'_> {
        if self.len >= self.cap {
            self.grow();
        }
        let offset = self.offset(self.len);
        ReservedElement(self, offset)
    }

    /// Pushes a new element to the back of the queue.
    ///
    /// # Safety
    /// The caller must ensure that `value` is a valid owned pointer to the
    /// element type that this queue was created with.
    ///
    /// Additionally, once at least one element has been pushed to this
    /// queue, the caller must ensure that the queue is not sent/shared across
    /// threads unless the element type is `Send` and `Sync`.
    pub unsafe fn push_back(&mut self, value: *const ()) {
        let len = self.vtable.layout.size();
        let dst = self.reserve_one();
        // SAFETY: the caller ensures that `value` is a valid owned pointer to the
        // element type.
        unsafe {
            std::ptr::copy_nonoverlapping(value.cast(), dst.as_ptr().cast::<u8>(), len);
        }
        // SAFETY: the value has been written.
        unsafe { dst.commit() };
    }

    /// Pops the front element from the queue and returns a pointer to it.
    ///
    /// The caller is responsible for taking ownership of the element to ensure
    /// that it is properly dropped.
    pub fn pop_front_in_place(&mut self) -> Option<InPlaceElement<'_>> {
        if self.len == 0 {
            return None;
        };
        let head = self.head;
        self.head = self.offset(self.vtable.layout.size());
        self.len -= self.vtable.element_len;
        // SAFETY: `head` is a valid index into `buf`.
        let ptr = unsafe { self.buf.add(head).cast() };
        Some(InPlaceElement(ptr, PhantomData))
    }

    /// Clears the queue of elements.
    pub fn clear(&mut self) {
        let mut i = 0;
        if let Some(drop_fn) = self.vtable.drop {
            while i < self.len {
                // SAFETY: the element at `i` is valid.
                unsafe {
                    drop_fn(self.buf_at(i).as_ptr());
                }
                i += self.vtable.layout.size();
            }
        }
        self.len = 0;
    }

    /// Clears the queue and frees the underlying buffer.
    pub fn clear_and_shrink(&mut self) {
        self.clear();
        if self.cap > 0 && self.vtable.layout.size() != 0 {
            // SAFETY: `buf` contains a valid unaliased allocation with the
            // given size and alignment.
            unsafe {
                std::alloc::dealloc(
                    self.buf.as_ptr(),
                    Layout::from_size_align_unchecked(self.cap, self.vtable.layout.align()),
                );
            }
            self.cap = 0;
        }
    }

    fn grow(&mut self) {
        assert!(self.vtable.layout.size() != 0, "zst overflow");
        let align = self.vtable.layout.align();
        let (new_cap, buf) = if self.cap == 0 {
            let element_size = self.vtable.layout.size();
            // Start with 4 elements, but only if the element size is not too
            // big (these constants are arbitrary).
            let new_cap = if element_size >= 256 {
                element_size
            } else {
                element_size * 4
            };
            // SAFETY: `new_cap` is non-zero and at least as big as `align`,
            // which is a power of 2.
            let buf =
                unsafe { std::alloc::alloc(Layout::from_size_align_unchecked(new_cap, align)) };
            (new_cap, buf)
        } else {
            // Double the capacity (geometric growth) to ensure amortized O(1)
            // push_back.
            let new_cap = self.cap.checked_mul(2).unwrap();
            // SAFETY: `buf` is a valid allocation with the given layout, and
            // `new_cap` is non-zero.
            let buf = unsafe {
                std::alloc::realloc(
                    self.buf.as_ptr(),
                    Layout::from_size_align_unchecked(self.cap, align),
                    new_cap,
                )
            };
            (new_cap, buf)
        };
        let Some(buf) = NonNull::new(buf) else {
            // SAFETY: these layout parameters were validated above.
            let layout = unsafe { Layout::from_size_align_unchecked(new_cap, align) };
            std::alloc::handle_alloc_error(layout);
        };
        // Move the trailing elements to the end of the new buffer.
        if self.len > 0 && self.head + self.len > self.cap {
            let n = self.cap - self.head;
            let new_head = new_cap - n;
            // SAFETY: `buf` is valid for reads and writes at the given offsets.
            unsafe {
                std::ptr::copy(buf.as_ptr().add(self.head), buf.as_ptr().add(new_head), n);
            }
            self.head = new_head;
        }
        self.buf = buf;
        self.cap = new_cap;
    }
}

impl Drop for ErasedVecDeque {
    fn drop(&mut self) {
        self.clear_and_shrink();
    }
}

#[cfg(test)]
mod tests {
    use super::ElementVtable;
    use super::ErasedVecDeque;
    use std::mem::MaybeUninit;

    #[test]
    fn test_erased_vecdeque() {
        let mut deque = ErasedVecDeque::new(const { &ElementVtable::new::<String>() });
        assert!(deque.is_empty());
        for _ in 0..1000 {
            for _ in 0..7 {
                // SAFETY: providing a valid owned pointer to the element type.
                unsafe {
                    deque.push_back(MaybeUninit::new(String::from("foo")).as_ptr().cast());
                }
            }
            for _ in 0..3 {
                // SAFETY: casting to the correct type and reading the value.
                let result = unsafe {
                    deque
                        .pop_front_in_place()
                        .unwrap()
                        .as_ptr()
                        .cast::<String>()
                        .read()
                };
                assert_eq!(&result, "foo");
            }
        }
        drop(deque);
    }

    #[test]
    fn test_zst() {
        let mut deque = ErasedVecDeque::new(const { &ElementVtable::new::<()>() });
        assert!(deque.is_empty());
        for _ in 0..1000 {
            for _ in 0..7 {
                // SAFETY: providing a valid owned pointer to the element type.
                unsafe {
                    deque.push_back(MaybeUninit::new(()).as_ptr().cast());
                }
            }
            for _ in 0..3 {
                // SAFETY: the values are of type `()`.
                unsafe { deque.pop_front_in_place().unwrap().as_ptr().read() };
            }
        }
        drop(deque);
    }
}