1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
mod bidir;
pub mod cancel;
pub mod cell;
mod deadline;
pub mod error;
mod lazy;
pub mod pipe;
pub mod rpc;
use bidir::Channel;
use mesh_node::local_node::Port;
use mesh_node::message::MeshField;
use mesh_protobuf::Downcast;
use mesh_protobuf::Protobuf;
use mesh_protobuf::Upcast;
use std::fmt::Debug;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;
use thiserror::Error;
/// An error representing a failure of a channel.
#[derive(Debug, Error)]
#[error(transparent)]
pub struct ChannelError(Box<ChannelErrorInner>);
/// The kind of channel failure.
#[derive(Debug)]
#[non_exhaustive]
pub enum ChannelErrorKind {
/// The peer node failed.
NodeFailure,
/// The received message contents are invalid.
Corruption,
}
impl ChannelError {
/// Returns the kind of channel failure that occurred.
pub fn kind(&self) -> ChannelErrorKind {
match &*self.0 {
ChannelErrorInner::NodeFailure(_) => ChannelErrorKind::NodeFailure,
ChannelErrorInner::Corruption(_) => ChannelErrorKind::Corruption,
}
}
}
impl From<mesh_protobuf::Error> for ChannelError {
fn from(err: mesh_protobuf::Error) -> Self {
Self(Box::new(ChannelErrorInner::Corruption(err)))
}
}
impl From<mesh_node::local_node::NodeError> for ChannelError {
fn from(value: mesh_node::local_node::NodeError) -> Self {
Self(Box::new(ChannelErrorInner::NodeFailure(value)))
}
}
#[derive(Debug, Error)]
enum ChannelErrorInner {
#[error("node failure")]
NodeFailure(#[source] mesh_node::local_node::NodeError),
#[error("message corruption")]
Corruption(#[source] mesh_protobuf::Error),
}
#[derive(Debug, Error)]
pub enum TryRecvError {
#[error("channel empty")]
Empty,
#[error("channel closed")]
Closed,
#[error("channel failure")]
Error(#[from] ChannelError),
}
#[derive(Debug, Error)]
pub enum RecvError {
#[error("channel closed")]
Closed,
#[error("channel failure")]
Error(#[from] ChannelError),
}
/// The sending half of a channel returned by [`channel`].
#[derive(Protobuf)]
#[mesh(
no_upcast,
bound = "T: MeshField",
resource = "mesh_node::resource::Resource"
)]
pub struct Sender<T>(Channel<(T,), ()>);
impl<T> Debug for Sender<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Debug::fmt(&self.0, f)
}
}
/// The receiving half of a channel returned by [`channel`].
#[derive(Protobuf)]
#[mesh(
no_upcast,
bound = "T: MeshField",
resource = "mesh_node::resource::Resource"
)]
pub struct Receiver<T>(Channel<(), (T,)>);
impl<T> Debug for Receiver<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl<T: MeshField> From<Port> for Sender<T> {
fn from(port: Port) -> Self {
Self(port.into())
}
}
impl<T: MeshField> From<Sender<T>> for Port {
fn from(v: Sender<T>) -> Self {
v.0.into()
}
}
// Contravariance for senders, in analogy to functions being contravariant in
// their arguments.
//
// Wrap T and U in tuples for this bound since field types are implicitly
// wrapped in messages when serialized.
impl<T: MeshField, U: MeshField> Downcast<Sender<U>> for Sender<T> where (U,): Downcast<(T,)> {}
impl<T: MeshField> Sender<T> {
/// Upcasts this sender to one that can send values whose encoding is a
/// subset of `T`'s.
///
/// ```
/// # extern crate mesh_node;
/// # use mesh_channel::*;
/// # use futures::executor::block_on;
/// let (send, mut recv) = channel::<Option<mesh_node::message::Message>>();
/// let send = send.upcast::<Option<(u32, u16)>>();
/// send.send(None);
/// send.send(Some((5, 4)));
/// assert!(block_on(recv.recv()).unwrap().is_none());
/// assert!(block_on(recv.recv()).unwrap().is_some());
/// ```
pub fn upcast<U: MeshField>(self) -> Sender<U>
where
Self: Upcast<Sender<U>>,
{
Sender(self.0.change_types())
}
/// Downcasts this sender to one that can send values whose encoding is a
/// superset of `T`'s.
///
/// Although this is memory safe, it can cause the receiver to see message
/// decoding errors.
pub fn force_downcast<U: MeshField>(self) -> Sender<U>
where
Sender<U>: Upcast<Self>,
{
Sender(self.0.change_types())
}
}
impl<T: 'static + Send> Sender<T> {
/// Sends a message to the associated [`Receiver<T>`].
///
/// Does not return a result, so messages can be silently dropped if the
/// receiver has closed or failed. To detect such conditions, include
/// another sender in the message you send so that the receiving thread can
/// use it to send a response.
///
/// ```rust
/// # use mesh_channel::*;
/// # futures::executor::block_on(async {
/// let (send, mut recv) = channel();
/// let (response_send, mut response_recv) = channel::<bool>();
/// send.send((3, response_send));
/// let (val, response_send) = recv.recv().await.unwrap();
/// response_send.send(val == 3);
/// assert_eq!(response_recv.recv().await.unwrap(), true);
/// # });
/// ```
pub fn send(&self, msg: T) {
self.0.send((msg,));
}
/// Bridges this and `recv` together, consuming both `self` and `recv`. This
/// makes it so that anything sent to `recv` will be directly sent to this
/// channel's peer receiver, without a separate relay step. This includes
/// any data that was previously sent but not yet consumed.
///
/// ```rust
/// # use mesh_channel::*;
/// let (outer_send, inner_recv) = channel::<u32>();
/// let (inner_send, mut outer_recv) = channel::<u32>();
///
/// outer_send.send(2);
/// inner_send.send(1);
/// inner_send.bridge(inner_recv);
/// assert_eq!(outer_recv.try_recv().unwrap(), 1);
/// assert_eq!(outer_recv.try_recv().unwrap(), 2);
/// ```
pub fn bridge(self, recv: Receiver<T>) {
self.0.bridge(recv.0)
}
/// Returns whether the receiving side of the channel is known to be closed
/// (or failed).
///
/// This is useful to determine if there is any point in sending more data
/// via this port. But even if this returns `false` messages may still fail
/// to reach the destination.
pub fn is_closed(&self) -> bool {
self.0.is_peer_closed()
}
}
impl<T: MeshField> From<Port> for Receiver<T> {
fn from(port: Port) -> Self {
Self(port.into())
}
}
impl<T: MeshField> From<Receiver<T>> for Port {
fn from(v: Receiver<T>) -> Self {
v.0.into()
}
}
// Covariance for receivers, in analogy to functions being covariant in their
// return values.
//
// Wrap T and U in tuples for this bound since field types are implicitly
// wrapped in messages when serialized.
impl<T: MeshField, U: MeshField> Downcast<Receiver<U>> for Receiver<T> where (T,): Downcast<(U,)> {}
impl<T: MeshField> Receiver<T> {
/// Upcasts this receiver to one that can receive values whose encoding is a
/// superset of `T`'s.
///
/// ```
/// # extern crate mesh_node;
/// # use mesh_channel::*;
/// # use futures::executor::block_on;
/// let (send, recv) = channel::<Option<(u32, u16)>>();
/// let mut recv = recv.upcast::<Option<mesh_node::message::Message>>();
/// send.send(None);
/// send.send(Some((5, 4)));
/// assert!(block_on(recv.recv()).unwrap().is_none());
/// assert!(block_on(recv.recv()).unwrap().is_some());
/// ```
pub fn upcast<U: MeshField>(self) -> Receiver<U>
where
Self: Upcast<Receiver<U>>,
{
Receiver(self.0.change_types())
}
/// Downcasts this receiver to one that can receive values whose encoding is
/// a subset of `T`'s.
///
/// Although this is memory safe, it can cause decoding failures if the
/// associated sender sends values that don't decode to `U`.
pub fn force_downcast<U: MeshField>(self) -> Receiver<U>
where
Receiver<U>: Upcast<Self>,
{
Receiver(self.0.change_types())
}
}
impl<T: 'static + Send> Receiver<T> {
/// Consumes and returns the next message, if there is one.
///
/// Otherwise, returns whether the channel is empty, closed, or failed.
///
/// ```rust
/// # use mesh_channel::*;
/// let (send, mut recv) = channel();
/// send.send(5u32);
/// drop(send);
/// assert_eq!(recv.try_recv().unwrap(), 5);
/// assert!(matches!(recv.try_recv().unwrap_err(), TryRecvError::Closed));
/// ```
pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
Ok(self.0.try_recv()?.0)
}
/// Consumes and returns the next message, waiting until one is available.
///
/// Returns immediately when the channel is closed or failed.
///
/// ```rust
/// # use mesh_channel::*;
/// # futures::executor::block_on(async {
/// let (send, mut recv) = channel();
/// send.send(5u32);
/// drop(send);
/// assert_eq!(recv.recv().await.unwrap(), 5);
/// assert!(matches!(recv.recv().await.unwrap_err(), RecvError::Closed));
/// # });
/// ```
pub fn recv(&mut self) -> impl Future<Output = Result<T, RecvError>> + Unpin + '_ {
// This is implemented manually instead of using an async fn to allow
// the result to be Unpin, which is more flexible for callers.
core::future::poll_fn(|cx| self.poll_recv(cx))
}
/// Polls for the next message.
pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
self.0.poll_recv(cx).map_ok(|x| x.0)
}
/// See [`Sender::bridge`].
pub fn bridge(self, send: Sender<T>) {
self.0.bridge(send.0)
}
}
/// `Stream` implementation for a channel.
///
/// Note that the output item from this throws away the distinction between the
/// channel being closed and the channel failing due to a node error or decoding
/// error. This simplifies most code that does not care about this distinction.
///
/// If you need to distinguish between these cases, use [`Receiver::recv`] or
/// [`Receiver::poll_recv`].
impl<T: 'static + Send> futures_core::stream::Stream for Receiver<T> {
type Item = T;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
Poll::Ready(match std::task::ready!(self.0.poll_recv(cx)) {
Ok((t,)) => Some(t),
Err(RecvError::Closed) => None,
Err(RecvError::Error(err)) => {
tracing::error!(
error = &err as &dyn std::error::Error,
"channel closed due to error"
);
None
}
})
}
}
impl<T: 'static + Send> futures_core::stream::FusedStream for Receiver<T> {
fn is_terminated(&self) -> bool {
self.0.is_queue_drained()
}
}
/// Creates a unidirectional channel for sending objects of type `T`.
///
/// Use [`Sender::send`] and [`Receiver::recv`] to communicate between the ends
/// of the channel.
///
/// Both channel endpoints are initially local to this process, but either or
/// both endpoints may be sent to other processes via a cross-process channel
/// that has already been established.
///
/// ```rust
/// # use mesh_channel::*;
/// # futures::executor::block_on(async {
/// let (send, mut recv) = channel::<u32>();
/// send.send(5);
/// let n = recv.recv().await.unwrap();
/// assert_eq!(n, 5);
/// # });
/// ```
pub fn channel<T: 'static + Send>() -> (Sender<T>, Receiver<T>) {
let (left, right) = Channel::new_pair();
(Sender(left), Receiver(right))
}
/// The sending half of a channel returned by [`oneshot`].
#[derive(Protobuf)]
#[mesh(
no_upcast,
bound = "T: MeshField",
resource = "mesh_node::resource::Resource"
)]
pub struct OneshotSender<T>(Channel<(T,), ()>);
impl<T> Debug for OneshotSender<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl<T: MeshField> From<Port> for OneshotSender<T> {
fn from(port: Port) -> Self {
Self(port.into())
}
}
impl<T: MeshField> From<OneshotSender<T>> for Port {
fn from(v: OneshotSender<T>) -> Self {
v.0.into()
}
}
impl<T: MeshField, U: MeshField> Downcast<OneshotSender<U>> for OneshotSender<T> where
Sender<T>: Downcast<Sender<U>>
{
}
impl<T: MeshField> OneshotSender<T> {
/// Upcasts this sender to one that can send values whose encoding is a
/// subset of `T`'s.
pub fn upcast<U: MeshField>(self) -> OneshotSender<U>
where
Self: Upcast<OneshotSender<U>>,
{
OneshotSender(self.0.change_types())
}
/// Downcasts this sender to one that can send values whose encoding is a
/// superset of `T`'s.
///
/// Although this is memory safe, it can cause the receiver to see message
/// decoding errors.
pub fn force_downcast<U: MeshField>(self) -> OneshotSender<U>
where
OneshotSender<U>: Upcast<Self>,
{
OneshotSender(self.0.change_types())
}
}
impl<T: 'static + Send> OneshotSender<T> {
/// Sends `value` to the receiving endpoint of the channel.
pub fn send(self, value: T) {
self.0.send_and_close((value,));
}
}
/// The receiving half of a channel returned by [`oneshot`].
///
/// A value is received by `poll`ing or `await`ing the channel.
#[derive(Protobuf)]
#[mesh(
no_upcast,
bound = "T: MeshField",
resource = "mesh_node::resource::Resource"
)]
pub struct OneshotReceiver<T>(Channel<(), (T,)>);
impl<T> Debug for OneshotReceiver<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Debug::fmt(&self.0, f)
}
}
impl<T: 'static + Send> Future for OneshotReceiver<T> {
type Output = Result<T, RecvError>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let (message,) = std::task::ready!(self.0.poll_recv(cx))?;
Poll::Ready(Ok(message))
}
}
impl<T: MeshField> From<Port> for OneshotReceiver<T> {
fn from(port: Port) -> Self {
Self(port.into())
}
}
impl<T: MeshField> From<OneshotReceiver<T>> for Port {
fn from(v: OneshotReceiver<T>) -> Self {
v.0.into()
}
}
impl<T: MeshField, U: MeshField> Downcast<OneshotReceiver<U>> for OneshotReceiver<T> where
Receiver<T>: Downcast<Receiver<U>>
{
}
impl<T: MeshField> OneshotReceiver<T> {
/// Upcasts this receiver to one that can receive values whose encoding is a
/// superset of `T`'s.
pub fn upcast<U: MeshField>(self) -> OneshotReceiver<U>
where
Self: Upcast<OneshotReceiver<U>>,
{
OneshotReceiver(self.0.change_types())
}
/// Downcasts this receiver to one that can receive values whose encoding is
/// a subset of `T`'s.
///
/// Although this is memory safe, it can cause decoding failures if the
/// associated sender sends values that don't decode to `U`.
pub fn force_downcast<U: MeshField>(self) -> OneshotReceiver<U>
where
OneshotReceiver<U>: Upcast<Self>,
{
OneshotReceiver(self.0.change_types())
}
}
/// Creates a unidirection channel for sending a single value of type `T`.
///
/// The channel is automatically closed after the value is sent. Use this
/// instead of [`channel`] when only one value ever needs to be sent to avoid
/// programming errors where the channel is left open longer than necessary.
/// This is also more efficient.
///
/// Use [`OneshotSender::send`] and [`OneshotReceiver`] (directly as a future)
/// to communicate between the ends of the channel.
///
/// `T` must implement [`MeshField`]. Most typically this is done by
/// deriving [`MeshPayload`](mesh_node::message::MeshPayload).
///
/// Both channel endpoints are initially local to this process, but either or
/// both endpoints may be sent to other processes via a cross-process channel
/// that has already been established.
///
/// ```rust
/// # use mesh_channel::*;
/// # futures::executor::block_on(async {
/// let (send, recv) = oneshot::<u32>();
/// send.send(5);
/// let n = recv.await.unwrap();
/// assert_eq!(n, 5);
/// # });
/// ```
pub fn oneshot<T: 'static + Send>() -> (OneshotSender<T>, OneshotReceiver<T>) {
let (left, right) = Channel::new_pair();
(OneshotSender(left), OneshotReceiver(right))
}
/// Creates a multi-producer, single-consumer channel for sending objects of
/// type `T`.
///
/// The main difference between these channels and those returned by [`channel`]
/// is that the sender can be cloned and sent to remote processes. This is
/// useful when you are collating data from multiple sources.
///
/// # Performance
///
/// Care must be taken to avoid scaling problems with this type. Internally this
/// uses multiple ports between the receiving end and the sending ends, and
/// receiving is linear in the number of ports.
///
/// An ordinary call to `clone` won't allocate a new port, nor will sending a
/// clone within a process. But sending a clone to a different process will
/// allocate a new port.
pub fn mpsc_channel<T: 'static + Send>() -> (MpscSender<T>, MpscReceiver<T>) {
let (send, recv) = Channel::new_pair();
(
MpscSender(Arc::new(MpscSenderInner(send))),
MpscReceiver {
receivers: vec![recv],
},
)
}
#[derive(Debug, Protobuf)]
#[mesh(
no_upcast,
bound = "T: MeshField",
resource = "mesh_node::resource::Resource"
)]
enum MpscMessage<T> {
Data(T),
Clone(Channel<(), MpscMessage<T>>),
}
/// Receiver type for [`mpsc_channel()`].
#[derive(Protobuf)]
#[mesh(
no_upcast,
bound = "T: MeshField",
resource = "mesh_node::resource::Resource"
)]
pub struct MpscReceiver<T> {
receivers: Vec<Channel<(), MpscMessage<T>>>,
}
impl<T> Debug for MpscReceiver<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("MpscReceiver")
.field("receivers", &self.receivers)
.finish()
}
}
impl<T, U> Downcast<MpscReceiver<U>> for MpscReceiver<T> where T: Downcast<U> {}
impl<T: MeshField> MpscReceiver<T> {
/// Upcasts this receiver to one that can receive values whose encoding is a
/// superset of `T`'s.
pub fn upcast<U: MeshField>(self) -> MpscReceiver<U>
where
Self: Upcast<MpscReceiver<U>>,
{
MpscReceiver {
receivers: self
.receivers
.into_iter()
.map(|r| r.change_types())
.collect(),
}
}
/// Downcasts this receiver to one that can receive values whose encoding is
/// a subset of `T`'s.
///
/// Although this is memory safe, it can cause decoding failures if the
/// associated sender sends values that don't decode to `U`.
pub fn force_downcast<U: MeshField>(self) -> MpscReceiver<U>
where
MpscReceiver<U>: Upcast<Self>,
{
MpscReceiver {
receivers: self
.receivers
.into_iter()
.map(|r| r.change_types())
.collect(),
}
}
}
impl<T: 'static + Send> MpscReceiver<T> {
/// Creates a new receiver with no senders.
///
/// Receives will fail with [`RecvError::Closed`] until [`Self::sender`] is
/// called.
pub fn new() -> Self {
MpscReceiver {
receivers: Vec::new(),
}
}
/// Creates a new sender for sending data to this receiver.
///
/// Note that this may transition the channel from the closed to open state.
pub fn sender(&mut self) -> MpscSender<T> {
let (send, recv) = Channel::new_pair();
self.receivers.push(recv);
MpscSender(Arc::new(MpscSenderInner(send)))
}
/// Consumes and returns the next message, waiting until one is available.
///
/// Returns immediately when the channel is closed or failed.
///
/// ```rust
/// # use mesh_channel::*;
/// # futures::executor::block_on(async {
/// let (send, mut recv) = mpsc_channel();
/// send.send(5u32);
/// drop(send);
/// assert_eq!(recv.recv().await.unwrap(), 5);
/// assert!(matches!(recv.recv().await.unwrap_err(), RecvError::Closed));
/// # });
/// ```
pub fn recv(&mut self) -> impl Future<Output = Result<T, RecvError>> + '_ {
std::future::poll_fn(move |cx| self.poll_recv(cx))
}
fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
let receivers = &mut self.receivers;
let mut i = 0;
while i < receivers.len() {
let recv = &mut receivers[i];
match recv.poll_recv(cx) {
Poll::Ready(Ok(message)) => match message {
MpscMessage::Data(inner_message) => {
return Poll::Ready(Ok(inner_message));
}
MpscMessage::Clone(new_recv) => {
receivers.push(new_recv);
}
},
Poll::Ready(Err(_)) => {
receivers.swap_remove(i);
}
Poll::Pending => {
i += 1;
}
}
}
if receivers.is_empty() {
Poll::Ready(Err(RecvError::Closed))
} else {
Poll::Pending
}
}
}
impl<T: 'static + Send> Default for MpscReceiver<T> {
fn default() -> Self {
Self::new()
}
}
impl<T: 'static + Send> futures_core::stream::FusedStream for MpscReceiver<T> {
fn is_terminated(&self) -> bool {
self.receivers.is_empty()
}
}
impl<T: 'static + Send> futures_core::stream::Stream for MpscReceiver<T> {
type Item = T;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
Poll::Ready(std::task::ready!(self.poll_recv(cx)).ok())
}
}
/// Sender type for [`mpsc_channel()`].
//
// This wraps the actual sender in an Arc to ensure that clones within the same
// process are cheap. When this is encoded for sending to a remote process, only
// then will the receiver be notified of a new mesh port.
#[derive(Protobuf)]
#[mesh(
no_upcast,
bound = "T: MeshField",
resource = "mesh_node::resource::Resource"
)]
pub struct MpscSender<T>(Arc<MpscSenderInner<T>>);
impl<T> Debug for MpscSender<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
Debug::fmt(&self.0 .0, f)
}
}
// Manual implementation since T might not be Clone.
impl<T> Clone for MpscSender<T> {
fn clone(&self) -> Self {
Self(self.0.clone())
}
}
impl<T: MeshField, U: MeshField> Downcast<MpscSender<U>> for MpscSender<T> where U: Downcast<T> {}
/// Wrapper that implements Clone.
#[derive(Protobuf)]
#[mesh(bound = "T: MeshField", resource = "mesh_node::resource::Resource")]
struct MpscSenderInner<T>(Channel<MpscMessage<T>, ()>);
impl<T: 'static + Send> Clone for MpscSenderInner<T> {
fn clone(&self) -> Self {
// Clone the sender by sending a new port to the receiver.
let (send, recv) = Channel::new_pair();
self.0.send(MpscMessage::Clone(recv));
Self(send)
}
}
impl<T: MeshField> MpscSender<T> {
/// Upcasts this sender to one that can send values whose encoding is a
/// subset of `T`'s.
pub fn upcast<U: MeshField>(self) -> MpscSender<U>
where
Self: Upcast<MpscSender<U>>,
{
let inner = Arc::try_unwrap(self.0).unwrap_or_else(|x| (*x).clone());
let inner = Arc::new(MpscSenderInner(inner.0.change_types()));
MpscSender(inner)
}
/// Downcasts this sender to one that can send values whose encoding is a
/// superset of `T`'s.
///
/// Although this is memory safe, it can cause the receiver to see message
/// decoding errors.
pub fn force_downcast<U: MeshField>(self) -> MpscSender<U>
where
MpscSender<U>: Upcast<Self>,
{
let inner = Arc::try_unwrap(self.0).unwrap_or_else(|x| (*x).clone());
let inner = Arc::new(MpscSenderInner(inner.0.change_types()));
MpscSender(inner)
}
}
impl<T: 'static + Send> MpscSender<T> {
/// Sends a message to the receiver.
pub fn send(&self, msg: T) {
(self.0).0.send(MpscMessage::Data(msg))
}
}
#[cfg(test)]
mod tests {
use super::*;
use mesh_node::message::MeshPayload;
use mesh_protobuf::SerializedMessage;
use pal_async::async_test;
use pal_event::Event;
use test_with_tracing::test;
#[test]
fn test() {
let (send, mut recv) = channel::<(String, String)>();
send.send(("abc".to_string(), "def".to_string()));
assert_eq!(
recv.try_recv().unwrap(),
("abc".to_string(), "def".to_string())
);
}
#[test]
fn test_send_port() {
let (send, mut recv) = channel::<Receiver<u32>>();
let (sendi, recvi) = channel::<u32>();
send.send(recvi);
let mut recvi = recv.try_recv().unwrap();
sendi.send(0xf00d);
assert_eq!(recvi.try_recv().unwrap(), 0xf00d);
}
#[test]
fn test_send_resource() {
let (send, mut recv) = channel::<Event>();
let event = Event::new();
send.send(event.clone());
let event2 = recv.try_recv().unwrap();
event2.signal();
event.wait();
}
#[async_test]
async fn test_oneshot() {
let (send, mut recv) = oneshot::<u32>();
send.send(5);
recv.0.recv().await.unwrap();
assert!(matches!(
recv.0.recv().await.unwrap_err(),
RecvError::Closed
));
}
#[async_test]
async fn test_mpsc() {
let (send, mut recv) = mpsc_channel::<u32>();
send.send(5);
roundtrip(send.clone()).send(6);
drop(send);
let a = recv.recv().await.unwrap();
let b = recv.recv().await.unwrap();
assert!(matches!(recv.recv().await.unwrap_err(), RecvError::Closed));
let mut s = [a, b];
s.sort_unstable();
assert_eq!(&s, &[5, 6]);
}
#[async_test]
async fn test_mpsc_again() {
let (send, recv) = mpsc_channel::<u32>();
drop(recv);
send.send(5);
}
/// Serializes and deserializes a mesh message. Used to force an MpscSender
/// to clone its underlying port.
fn roundtrip<T: MeshPayload>(t: T) -> T {
SerializedMessage::from_message(t).into_message().unwrap()
}
}