1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

mod bidir;
pub mod cancel;
pub mod cell;
mod deadline;
pub mod error;
mod lazy;
pub mod pipe;
pub mod rpc;

use bidir::Channel;
use mesh_node::local_node::Port;
use mesh_node::message::MeshField;
use mesh_protobuf::Downcast;
use mesh_protobuf::Protobuf;
use mesh_protobuf::Upcast;
use std::fmt::Debug;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;
use thiserror::Error;

/// An error representing a failure of a channel.
#[derive(Debug, Error)]
#[error(transparent)]
pub struct ChannelError(Box<ChannelErrorInner>);

/// The kind of channel failure.
#[derive(Debug)]
#[non_exhaustive]
pub enum ChannelErrorKind {
    /// The peer node failed.
    NodeFailure,
    /// The received message contents are invalid.
    Corruption,
}

impl ChannelError {
    /// Returns the kind of channel failure that occurred.
    pub fn kind(&self) -> ChannelErrorKind {
        match &*self.0 {
            ChannelErrorInner::NodeFailure(_) => ChannelErrorKind::NodeFailure,
            ChannelErrorInner::Corruption(_) => ChannelErrorKind::Corruption,
        }
    }
}

impl From<mesh_protobuf::Error> for ChannelError {
    fn from(err: mesh_protobuf::Error) -> Self {
        Self(Box::new(ChannelErrorInner::Corruption(err)))
    }
}

impl From<mesh_node::local_node::NodeError> for ChannelError {
    fn from(value: mesh_node::local_node::NodeError) -> Self {
        Self(Box::new(ChannelErrorInner::NodeFailure(value)))
    }
}

#[derive(Debug, Error)]
enum ChannelErrorInner {
    #[error("node failure")]
    NodeFailure(#[source] mesh_node::local_node::NodeError),
    #[error("message corruption")]
    Corruption(#[source] mesh_protobuf::Error),
}

#[derive(Debug, Error)]
pub enum TryRecvError {
    #[error("channel empty")]
    Empty,
    #[error("channel closed")]
    Closed,
    #[error("channel failure")]
    Error(#[from] ChannelError),
}

#[derive(Debug, Error)]
pub enum RecvError {
    #[error("channel closed")]
    Closed,
    #[error("channel failure")]
    Error(#[from] ChannelError),
}

/// The sending half of a channel returned by [`channel`].
#[derive(Protobuf)]
#[mesh(
    no_upcast,
    bound = "T: MeshField",
    resource = "mesh_node::resource::Resource"
)]
pub struct Sender<T>(Channel<(T,), ()>);

impl<T> Debug for Sender<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        Debug::fmt(&self.0, f)
    }
}

/// The receiving half of a channel returned by [`channel`].
#[derive(Protobuf)]
#[mesh(
    no_upcast,
    bound = "T: MeshField",
    resource = "mesh_node::resource::Resource"
)]
pub struct Receiver<T>(Channel<(), (T,)>);

impl<T> Debug for Receiver<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        Debug::fmt(&self.0, f)
    }
}

impl<T: MeshField> From<Port> for Sender<T> {
    fn from(port: Port) -> Self {
        Self(port.into())
    }
}

impl<T: MeshField> From<Sender<T>> for Port {
    fn from(v: Sender<T>) -> Self {
        v.0.into()
    }
}

// Contravariance for senders, in analogy to functions being contravariant in
// their arguments.
//
// Wrap T and U in tuples for this bound since field types are implicitly
// wrapped in messages when serialized.
impl<T: MeshField, U: MeshField> Downcast<Sender<U>> for Sender<T> where (U,): Downcast<(T,)> {}

impl<T: MeshField> Sender<T> {
    /// Upcasts this sender to one that can send values whose encoding is a
    /// subset of `T`'s.
    ///
    /// ```
    /// # extern crate mesh_node;
    /// # use mesh_channel::*;
    /// # use futures::executor::block_on;
    /// let (send, mut recv) = channel::<Option<mesh_node::message::Message>>();
    /// let send = send.upcast::<Option<(u32, u16)>>();
    /// send.send(None);
    /// send.send(Some((5, 4)));
    /// assert!(block_on(recv.recv()).unwrap().is_none());
    /// assert!(block_on(recv.recv()).unwrap().is_some());
    /// ```
    pub fn upcast<U: MeshField>(self) -> Sender<U>
    where
        Self: Upcast<Sender<U>>,
    {
        Sender(self.0.change_types())
    }

    /// Downcasts this sender to one that can send values whose encoding is a
    /// superset of `T`'s.
    ///
    /// Although this is memory safe, it can cause the receiver to see message
    /// decoding errors.
    pub fn force_downcast<U: MeshField>(self) -> Sender<U>
    where
        Sender<U>: Upcast<Self>,
    {
        Sender(self.0.change_types())
    }
}

impl<T: 'static + Send> Sender<T> {
    /// Sends a message to the associated [`Receiver<T>`].
    ///
    /// Does not return a result, so messages can be silently dropped if the
    /// receiver has closed or failed. To detect such conditions, include
    /// another sender in the message you send so that the receiving thread can
    /// use it to send a response.
    ///
    /// ```rust
    /// # use mesh_channel::*;
    /// # futures::executor::block_on(async {
    /// let (send, mut recv) = channel();
    /// let (response_send, mut response_recv) = channel::<bool>();
    /// send.send((3, response_send));
    /// let (val, response_send) = recv.recv().await.unwrap();
    /// response_send.send(val == 3);
    /// assert_eq!(response_recv.recv().await.unwrap(), true);
    /// # });
    /// ```
    pub fn send(&self, msg: T) {
        self.0.send((msg,));
    }

    /// Bridges this and `recv` together, consuming both `self` and `recv`. This
    /// makes it so that anything sent to `recv` will be directly sent to this
    /// channel's peer receiver, without a separate relay step. This includes
    /// any data that was previously sent but not yet consumed.
    ///
    /// ```rust
    /// # use mesh_channel::*;
    /// let (outer_send, inner_recv) = channel::<u32>();
    /// let (inner_send, mut outer_recv) = channel::<u32>();
    ///
    /// outer_send.send(2);
    /// inner_send.send(1);
    /// inner_send.bridge(inner_recv);
    /// assert_eq!(outer_recv.try_recv().unwrap(), 1);
    /// assert_eq!(outer_recv.try_recv().unwrap(), 2);
    /// ```
    pub fn bridge(self, recv: Receiver<T>) {
        self.0.bridge(recv.0)
    }

    /// Returns whether the receiving side of the channel is known to be closed
    /// (or failed).
    ///
    /// This is useful to determine if there is any point in sending more data
    /// via this port. But even if this returns `false` messages may still fail
    /// to reach the destination.
    pub fn is_closed(&self) -> bool {
        self.0.is_peer_closed()
    }
}

impl<T: MeshField> From<Port> for Receiver<T> {
    fn from(port: Port) -> Self {
        Self(port.into())
    }
}

impl<T: MeshField> From<Receiver<T>> for Port {
    fn from(v: Receiver<T>) -> Self {
        v.0.into()
    }
}

// Covariance for receivers, in analogy to functions being covariant in their
// return values.
//
// Wrap T and U in tuples for this bound since field types are implicitly
// wrapped in messages when serialized.
impl<T: MeshField, U: MeshField> Downcast<Receiver<U>> for Receiver<T> where (T,): Downcast<(U,)> {}

impl<T: MeshField> Receiver<T> {
    /// Upcasts this receiver to one that can receive values whose encoding is a
    /// superset of `T`'s.
    ///
    /// ```
    /// # extern crate mesh_node;
    /// # use mesh_channel::*;
    /// # use futures::executor::block_on;
    /// let (send, recv) = channel::<Option<(u32, u16)>>();
    /// let mut recv = recv.upcast::<Option<mesh_node::message::Message>>();
    /// send.send(None);
    /// send.send(Some((5, 4)));
    /// assert!(block_on(recv.recv()).unwrap().is_none());
    /// assert!(block_on(recv.recv()).unwrap().is_some());
    /// ```
    pub fn upcast<U: MeshField>(self) -> Receiver<U>
    where
        Self: Upcast<Receiver<U>>,
    {
        Receiver(self.0.change_types())
    }

    /// Downcasts this receiver to one that can receive values whose encoding is
    /// a subset of `T`'s.
    ///
    /// Although this is memory safe, it can cause decoding failures if the
    /// associated sender sends values that don't decode to `U`.
    pub fn force_downcast<U: MeshField>(self) -> Receiver<U>
    where
        Receiver<U>: Upcast<Self>,
    {
        Receiver(self.0.change_types())
    }
}

impl<T: 'static + Send> Receiver<T> {
    /// Consumes and returns the next message, if there is one.
    ///
    /// Otherwise, returns whether the channel is empty, closed, or failed.
    ///
    /// ```rust
    /// # use mesh_channel::*;
    /// let (send, mut recv) = channel();
    /// send.send(5u32);
    /// drop(send);
    /// assert_eq!(recv.try_recv().unwrap(), 5);
    /// assert!(matches!(recv.try_recv().unwrap_err(), TryRecvError::Closed));
    /// ```
    pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
        Ok(self.0.try_recv()?.0)
    }

    /// Consumes and returns the next message, waiting until one is available.
    ///
    /// Returns immediately when the channel is closed or failed.
    ///
    /// ```rust
    /// # use mesh_channel::*;
    /// # futures::executor::block_on(async {
    /// let (send, mut recv) = channel();
    /// send.send(5u32);
    /// drop(send);
    /// assert_eq!(recv.recv().await.unwrap(), 5);
    /// assert!(matches!(recv.recv().await.unwrap_err(), RecvError::Closed));
    /// # });
    /// ```
    pub fn recv(&mut self) -> impl Future<Output = Result<T, RecvError>> + Unpin + '_ {
        // This is implemented manually instead of using an async fn to allow
        // the result to be Unpin, which is more flexible for callers.
        core::future::poll_fn(|cx| self.poll_recv(cx))
    }

    /// Polls for the next message.
    pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
        self.0.poll_recv(cx).map_ok(|x| x.0)
    }

    /// See [`Sender::bridge`].
    pub fn bridge(self, send: Sender<T>) {
        self.0.bridge(send.0)
    }
}

/// `Stream` implementation for a channel.
///
/// Note that the output item from this throws away the distinction between the
/// channel being closed and the channel failing due to a node error or decoding
/// error. This simplifies most code that does not care about this distinction.
///
/// If you need to distinguish between these cases, use [`Receiver::recv`] or
/// [`Receiver::poll_recv`].
impl<T: 'static + Send> futures_core::stream::Stream for Receiver<T> {
    type Item = T;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Poll::Ready(match std::task::ready!(self.0.poll_recv(cx)) {
            Ok((t,)) => Some(t),
            Err(RecvError::Closed) => None,
            Err(RecvError::Error(err)) => {
                tracing::error!(
                    error = &err as &dyn std::error::Error,
                    "channel closed due to error"
                );
                None
            }
        })
    }
}

impl<T: 'static + Send> futures_core::stream::FusedStream for Receiver<T> {
    fn is_terminated(&self) -> bool {
        self.0.is_queue_drained()
    }
}

/// Creates a unidirectional channel for sending objects of type `T`.
///
/// Use [`Sender::send`] and [`Receiver::recv`] to communicate between the ends
/// of the channel.
///
/// Both channel endpoints are initially local to this process, but either or
/// both endpoints may be sent to other processes via a cross-process channel
/// that has already been established.
///
/// ```rust
/// # use mesh_channel::*;
/// # futures::executor::block_on(async {
/// let (send, mut recv) = channel::<u32>();
/// send.send(5);
/// let n = recv.recv().await.unwrap();
/// assert_eq!(n, 5);
/// # });
/// ```
pub fn channel<T: 'static + Send>() -> (Sender<T>, Receiver<T>) {
    let (left, right) = Channel::new_pair();
    (Sender(left), Receiver(right))
}

/// The sending half of a channel returned by [`oneshot`].
#[derive(Protobuf)]
#[mesh(
    no_upcast,
    bound = "T: MeshField",
    resource = "mesh_node::resource::Resource"
)]
pub struct OneshotSender<T>(Channel<(T,), ()>);

impl<T> Debug for OneshotSender<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        Debug::fmt(&self.0, f)
    }
}

impl<T: MeshField> From<Port> for OneshotSender<T> {
    fn from(port: Port) -> Self {
        Self(port.into())
    }
}

impl<T: MeshField> From<OneshotSender<T>> for Port {
    fn from(v: OneshotSender<T>) -> Self {
        v.0.into()
    }
}

impl<T: MeshField, U: MeshField> Downcast<OneshotSender<U>> for OneshotSender<T> where
    Sender<T>: Downcast<Sender<U>>
{
}

impl<T: MeshField> OneshotSender<T> {
    /// Upcasts this sender to one that can send values whose encoding is a
    /// subset of `T`'s.
    pub fn upcast<U: MeshField>(self) -> OneshotSender<U>
    where
        Self: Upcast<OneshotSender<U>>,
    {
        OneshotSender(self.0.change_types())
    }

    /// Downcasts this sender to one that can send values whose encoding is a
    /// superset of `T`'s.
    ///
    /// Although this is memory safe, it can cause the receiver to see message
    /// decoding errors.
    pub fn force_downcast<U: MeshField>(self) -> OneshotSender<U>
    where
        OneshotSender<U>: Upcast<Self>,
    {
        OneshotSender(self.0.change_types())
    }
}

impl<T: 'static + Send> OneshotSender<T> {
    /// Sends `value` to the receiving endpoint of the channel.
    pub fn send(self, value: T) {
        self.0.send_and_close((value,));
    }
}

/// The receiving half of a channel returned by [`oneshot`].
///
/// A value is received by `poll`ing or `await`ing the channel.
#[derive(Protobuf)]
#[mesh(
    no_upcast,
    bound = "T: MeshField",
    resource = "mesh_node::resource::Resource"
)]
pub struct OneshotReceiver<T>(Channel<(), (T,)>);

impl<T> Debug for OneshotReceiver<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        Debug::fmt(&self.0, f)
    }
}

impl<T: 'static + Send> Future for OneshotReceiver<T> {
    type Output = Result<T, RecvError>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let (message,) = std::task::ready!(self.0.poll_recv(cx))?;
        Poll::Ready(Ok(message))
    }
}

impl<T: MeshField> From<Port> for OneshotReceiver<T> {
    fn from(port: Port) -> Self {
        Self(port.into())
    }
}

impl<T: MeshField> From<OneshotReceiver<T>> for Port {
    fn from(v: OneshotReceiver<T>) -> Self {
        v.0.into()
    }
}

impl<T: MeshField, U: MeshField> Downcast<OneshotReceiver<U>> for OneshotReceiver<T> where
    Receiver<T>: Downcast<Receiver<U>>
{
}

impl<T: MeshField> OneshotReceiver<T> {
    /// Upcasts this receiver to one that can receive values whose encoding is a
    /// superset of `T`'s.
    pub fn upcast<U: MeshField>(self) -> OneshotReceiver<U>
    where
        Self: Upcast<OneshotReceiver<U>>,
    {
        OneshotReceiver(self.0.change_types())
    }

    /// Downcasts this receiver to one that can receive values whose encoding is
    /// a subset of `T`'s.
    ///
    /// Although this is memory safe, it can cause decoding failures if the
    /// associated sender sends values that don't decode to `U`.
    pub fn force_downcast<U: MeshField>(self) -> OneshotReceiver<U>
    where
        OneshotReceiver<U>: Upcast<Self>,
    {
        OneshotReceiver(self.0.change_types())
    }
}

/// Creates a unidirection channel for sending a single value of type `T`.
///
/// The channel is automatically closed after the value is sent. Use this
/// instead of [`channel`] when only one value ever needs to be sent to avoid
/// programming errors where the channel is left open longer than necessary.
/// This is also more efficient.
///
/// Use [`OneshotSender::send`] and [`OneshotReceiver`] (directly as a future)
/// to communicate between the ends of the channel.
///
/// `T` must implement [`MeshField`]. Most typically this is done by
/// deriving [`MeshPayload`](mesh_node::message::MeshPayload).
///
/// Both channel endpoints are initially local to this process, but either or
/// both endpoints may be sent to other processes via a cross-process channel
/// that has already been established.
///
/// ```rust
/// # use mesh_channel::*;
/// # futures::executor::block_on(async {
/// let (send, recv) = oneshot::<u32>();
/// send.send(5);
/// let n = recv.await.unwrap();
/// assert_eq!(n, 5);
/// # });
/// ```
pub fn oneshot<T: 'static + Send>() -> (OneshotSender<T>, OneshotReceiver<T>) {
    let (left, right) = Channel::new_pair();
    (OneshotSender(left), OneshotReceiver(right))
}

/// Creates a multi-producer, single-consumer channel for sending objects of
/// type `T`.
///
/// The main difference between these channels and those returned by [`channel`]
/// is that the sender can be cloned and sent to remote processes. This is
/// useful when you are collating data from multiple sources.
///
/// # Performance
///
/// Care must be taken to avoid scaling problems with this type. Internally this
/// uses multiple ports between the receiving end and the sending ends, and
/// receiving is linear in the number of ports.
///
/// An ordinary call to `clone` won't allocate a new port, nor will sending a
/// clone within a process. But sending a clone to a different process will
/// allocate a new port.
pub fn mpsc_channel<T: 'static + Send>() -> (MpscSender<T>, MpscReceiver<T>) {
    let (send, recv) = Channel::new_pair();
    (
        MpscSender(Arc::new(MpscSenderInner(send))),
        MpscReceiver {
            receivers: vec![recv],
        },
    )
}

#[derive(Debug, Protobuf)]
#[mesh(
    no_upcast,
    bound = "T: MeshField",
    resource = "mesh_node::resource::Resource"
)]
enum MpscMessage<T> {
    Data(T),
    Clone(Channel<(), MpscMessage<T>>),
}

/// Receiver type for [`mpsc_channel()`].
#[derive(Protobuf)]
#[mesh(
    no_upcast,
    bound = "T: MeshField",
    resource = "mesh_node::resource::Resource"
)]
pub struct MpscReceiver<T> {
    receivers: Vec<Channel<(), MpscMessage<T>>>,
}

impl<T> Debug for MpscReceiver<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("MpscReceiver")
            .field("receivers", &self.receivers)
            .finish()
    }
}

impl<T, U> Downcast<MpscReceiver<U>> for MpscReceiver<T> where T: Downcast<U> {}

impl<T: MeshField> MpscReceiver<T> {
    /// Upcasts this receiver to one that can receive values whose encoding is a
    /// superset of `T`'s.
    pub fn upcast<U: MeshField>(self) -> MpscReceiver<U>
    where
        Self: Upcast<MpscReceiver<U>>,
    {
        MpscReceiver {
            receivers: self
                .receivers
                .into_iter()
                .map(|r| r.change_types())
                .collect(),
        }
    }

    /// Downcasts this receiver to one that can receive values whose encoding is
    /// a subset of `T`'s.
    ///
    /// Although this is memory safe, it can cause decoding failures if the
    /// associated sender sends values that don't decode to `U`.
    pub fn force_downcast<U: MeshField>(self) -> MpscReceiver<U>
    where
        MpscReceiver<U>: Upcast<Self>,
    {
        MpscReceiver {
            receivers: self
                .receivers
                .into_iter()
                .map(|r| r.change_types())
                .collect(),
        }
    }
}

impl<T: 'static + Send> MpscReceiver<T> {
    /// Creates a new receiver with no senders.
    ///
    /// Receives will fail with [`RecvError::Closed`] until [`Self::sender`] is
    /// called.
    pub fn new() -> Self {
        MpscReceiver {
            receivers: Vec::new(),
        }
    }

    /// Creates a new sender for sending data to this receiver.
    ///
    /// Note that this may transition the channel from the closed to open state.
    pub fn sender(&mut self) -> MpscSender<T> {
        let (send, recv) = Channel::new_pair();
        self.receivers.push(recv);
        MpscSender(Arc::new(MpscSenderInner(send)))
    }

    /// Consumes and returns the next message, waiting until one is available.
    ///
    /// Returns immediately when the channel is closed or failed.
    ///
    /// ```rust
    /// # use mesh_channel::*;
    /// # futures::executor::block_on(async {
    /// let (send, mut recv) = mpsc_channel();
    /// send.send(5u32);
    /// drop(send);
    /// assert_eq!(recv.recv().await.unwrap(), 5);
    /// assert!(matches!(recv.recv().await.unwrap_err(), RecvError::Closed));
    /// # });
    /// ```
    pub fn recv(&mut self) -> impl Future<Output = Result<T, RecvError>> + '_ {
        std::future::poll_fn(move |cx| self.poll_recv(cx))
    }

    fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Result<T, RecvError>> {
        let receivers = &mut self.receivers;
        let mut i = 0;
        while i < receivers.len() {
            let recv = &mut receivers[i];
            match recv.poll_recv(cx) {
                Poll::Ready(Ok(message)) => match message {
                    MpscMessage::Data(inner_message) => {
                        return Poll::Ready(Ok(inner_message));
                    }
                    MpscMessage::Clone(new_recv) => {
                        receivers.push(new_recv);
                    }
                },
                Poll::Ready(Err(_)) => {
                    receivers.swap_remove(i);
                }
                Poll::Pending => {
                    i += 1;
                }
            }
        }
        if receivers.is_empty() {
            Poll::Ready(Err(RecvError::Closed))
        } else {
            Poll::Pending
        }
    }
}

impl<T: 'static + Send> Default for MpscReceiver<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: 'static + Send> futures_core::stream::FusedStream for MpscReceiver<T> {
    fn is_terminated(&self) -> bool {
        self.receivers.is_empty()
    }
}

impl<T: 'static + Send> futures_core::stream::Stream for MpscReceiver<T> {
    type Item = T;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        Poll::Ready(std::task::ready!(self.poll_recv(cx)).ok())
    }
}

/// Sender type for [`mpsc_channel()`].
//
// This wraps the actual sender in an Arc to ensure that clones within the same
// process are cheap. When this is encoded for sending to a remote process, only
// then will the receiver be notified of a new mesh port.
#[derive(Protobuf)]
#[mesh(
    no_upcast,
    bound = "T: MeshField",
    resource = "mesh_node::resource::Resource"
)]
pub struct MpscSender<T>(Arc<MpscSenderInner<T>>);

impl<T> Debug for MpscSender<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        Debug::fmt(&self.0 .0, f)
    }
}

// Manual implementation since T might not be Clone.
impl<T> Clone for MpscSender<T> {
    fn clone(&self) -> Self {
        Self(self.0.clone())
    }
}

impl<T: MeshField, U: MeshField> Downcast<MpscSender<U>> for MpscSender<T> where U: Downcast<T> {}

/// Wrapper that implements Clone.
#[derive(Protobuf)]
#[mesh(bound = "T: MeshField", resource = "mesh_node::resource::Resource")]
struct MpscSenderInner<T>(Channel<MpscMessage<T>, ()>);

impl<T: 'static + Send> Clone for MpscSenderInner<T> {
    fn clone(&self) -> Self {
        // Clone the sender by sending a new port to the receiver.
        let (send, recv) = Channel::new_pair();
        self.0.send(MpscMessage::Clone(recv));
        Self(send)
    }
}

impl<T: MeshField> MpscSender<T> {
    /// Upcasts this sender to one that can send values whose encoding is a
    /// subset of `T`'s.
    pub fn upcast<U: MeshField>(self) -> MpscSender<U>
    where
        Self: Upcast<MpscSender<U>>,
    {
        let inner = Arc::try_unwrap(self.0).unwrap_or_else(|x| (*x).clone());
        let inner = Arc::new(MpscSenderInner(inner.0.change_types()));
        MpscSender(inner)
    }

    /// Downcasts this sender to one that can send values whose encoding is a
    /// superset of `T`'s.
    ///
    /// Although this is memory safe, it can cause the receiver to see message
    /// decoding errors.
    pub fn force_downcast<U: MeshField>(self) -> MpscSender<U>
    where
        MpscSender<U>: Upcast<Self>,
    {
        let inner = Arc::try_unwrap(self.0).unwrap_or_else(|x| (*x).clone());
        let inner = Arc::new(MpscSenderInner(inner.0.change_types()));
        MpscSender(inner)
    }
}

impl<T: 'static + Send> MpscSender<T> {
    /// Sends a message to the receiver.
    pub fn send(&self, msg: T) {
        (self.0).0.send(MpscMessage::Data(msg))
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use mesh_node::message::MeshPayload;
    use mesh_protobuf::SerializedMessage;
    use pal_async::async_test;
    use pal_event::Event;
    use test_with_tracing::test;

    #[test]
    fn test() {
        let (send, mut recv) = channel::<(String, String)>();
        send.send(("abc".to_string(), "def".to_string()));
        assert_eq!(
            recv.try_recv().unwrap(),
            ("abc".to_string(), "def".to_string())
        );
    }

    #[test]
    fn test_send_port() {
        let (send, mut recv) = channel::<Receiver<u32>>();
        let (sendi, recvi) = channel::<u32>();
        send.send(recvi);
        let mut recvi = recv.try_recv().unwrap();
        sendi.send(0xf00d);
        assert_eq!(recvi.try_recv().unwrap(), 0xf00d);
    }

    #[test]
    fn test_send_resource() {
        let (send, mut recv) = channel::<Event>();
        let event = Event::new();
        send.send(event.clone());
        let event2 = recv.try_recv().unwrap();
        event2.signal();
        event.wait();
    }

    #[async_test]
    async fn test_oneshot() {
        let (send, mut recv) = oneshot::<u32>();
        send.send(5);
        recv.0.recv().await.unwrap();
        assert!(matches!(
            recv.0.recv().await.unwrap_err(),
            RecvError::Closed
        ));
    }

    #[async_test]
    async fn test_mpsc() {
        let (send, mut recv) = mpsc_channel::<u32>();
        send.send(5);
        roundtrip(send.clone()).send(6);
        drop(send);
        let a = recv.recv().await.unwrap();
        let b = recv.recv().await.unwrap();
        assert!(matches!(recv.recv().await.unwrap_err(), RecvError::Closed));
        let mut s = [a, b];
        s.sort_unstable();
        assert_eq!(&s, &[5, 6]);
    }

    #[async_test]
    async fn test_mpsc_again() {
        let (send, recv) = mpsc_channel::<u32>();
        drop(recv);
        send.send(5);
    }

    /// Serializes and deserializes a mesh message. Used to force an MpscSender
    /// to clone its underlying port.
    fn roundtrip<T: MeshPayload>(t: T) -> T {
        SerializedMessage::from_message(t).into_message().unwrap()
    }
}