mesh_channel/lazy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Methods for lazily looking up serialize and deserialize functions for a
//! type.
//!
//! This mechanism is used to allow a type's serialize and deserialize functions
//! to only be instantiated by the compiler if it is actually possible to call
//! them at runtime. If it's known to be impossible for a given type to be
//! serialized/deserialized, then there is no reason to include the generated
//! code in the binary. This has two advanges:
//!
//! * Reduces code side by not including code for types that will never be sent
//! across a process boundary.
//! * Makes it possible to support mesh channels over types that cannot be
//! serialized at all.
//!
//! Ordinarily the linker would be able to eliminate dead code, but because of
//! the way mesh ports work, the linker cannot statically determine that these
//! serialize functions are dead.
//!
//! So instead, at the point where it becomes possible for a mesh port to need
//! to serialize or deserialize its contents (i.e. when serializing the port, or
//! when changing the port's type so that the port's peer might need to
//! serialize+deserialize to convert the message types), we set the associated
//! serialize/deserialize functions.
//!
//! For now, we store those function pointers in a global map, which we try to
//! avoid accessing more than necessary to avoid expensive RwLock operations.
//! This would become simpler if Rust supported generic/associated statics, so
//! that the serialize/deserialize functions could just be some static data
//! associated with each type T. Alas.
//!
//! Another alternative might be to use weak linkage somehow, but this is not
//! exposed in stable Rust.
// UNSAFETY: Transmutes between function types to erase generics.
#![expect(unsafe_code)]
use mesh_node::message::MeshPayload;
use mesh_node::message::SerializeMessage;
use mesh_node::resource::Resource;
use mesh_node::resource::SerializedMessage;
use mesh_protobuf::MessageEncode;
use mesh_protobuf::encoding::SerializedMessageEncoder;
use mesh_protobuf::protobuf::MessageSizer;
use mesh_protobuf::protobuf::MessageWriter;
use parking_lot::RwLock;
use std::any::TypeId;
use std::collections::HashMap;
use std::marker::PhantomData;
/// A serializer type for `T`, to be used with [`LazyMessage`].
#[repr(transparent)]
pub struct SerializeFn<T>(static_ref::StaticRef<dyn DynMessageEncode<T>>);
trait DynMessageEncode<T>: Send + Sync {
fn compute_message_size(&self, msg: &mut T, sizer: MessageSizer<'_>);
fn write_message(&self, msg: T, writer: MessageWriter<'_, '_, Resource>);
}
struct DynEncoder<E>(PhantomData<E>);
impl<T, E> DynMessageEncode<T> for DynEncoder<E>
where
E: MessageEncode<T, Resource> + Send + Sync,
{
fn compute_message_size(&self, msg: &mut T, sizer: MessageSizer<'_>) {
E::compute_message_size(msg, sizer)
}
fn write_message(&self, msg: T, writer: MessageWriter<'_, '_, Resource>) {
E::write_message(msg, writer)
}
}
impl<T> Copy for SerializeFn<T> {}
impl<T> Clone for SerializeFn<T> {
fn clone(&self) -> Self {
*self
}
}
impl<T> std::fmt::Debug for SerializeFn<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("SerializeFn").finish()
}
}
/// A deserializer type for `T`, to be used with [`LazyMessage`].
#[repr(transparent)]
pub struct DeserializeFn<T>(fn(SerializedMessage) -> Result<T, mesh_protobuf::Error>);
impl<T> Copy for DeserializeFn<T> {}
impl<T> Clone for DeserializeFn<T> {
fn clone(&self) -> Self {
*self
}
}
impl<T> std::fmt::Debug for DeserializeFn<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_tuple("DeserializeFn").finish()
}
}
static SERIALIZE: RwLock<Option<HashMap<TypeId, ([usize; 2], usize)>>> = RwLock::new(None);
static SERIALIZED_MESSAGE_SERIALIZE: SerializeFn<SerializedMessage> =
SerializeFn(static_ref::StaticRef::new(&DynEncoder::<
SerializedMessageEncoder,
>(PhantomData)));
pub fn ensure_serializable<T: 'static + MeshPayload>() -> (SerializeFn<T>, DeserializeFn<T>) {
let id = TypeId::of::<T>();
if id == TypeId::of::<SerializedMessage>() {
(
// SAFETY: SerializeFn<T> is the same as SerializeFn<SerializedMessage>
unsafe {
std::mem::transmute::<SerializeFn<SerializedMessage>, SerializeFn<T>>(
SERIALIZED_MESSAGE_SERIALIZE,
)
},
// SAFETY: DeserializeFn<T> is the same as DeserializeFn<SerializedMessage>
unsafe {
std::mem::transmute::<DeserializeFn<SerializedMessage>, DeserializeFn<T>>(
DeserializeFn(Result::<SerializedMessage, mesh_protobuf::Error>::Ok),
)
},
)
} else if let Some((serialize, deserialize)) = entries(id) {
(
// SAFETY: a function pointer of the appropriate type was put into the map.
unsafe { std::mem::transmute::<[usize; 2], SerializeFn<T>>(serialize) },
// SAFETY: a function pointer of the appropriate type was put into the map.
unsafe { std::mem::transmute::<usize, DeserializeFn<T>>(deserialize) },
)
} else {
let serialize = SerializeFn(static_ref::StaticRef::new(&DynEncoder::<
<T as MeshPayload>::Encoding,
>(PhantomData)));
let deserialize = DeserializeFn(SerializedMessage::into_message);
set_entries(
id,
// SAFETY: converting a fat pointer to usize*2 has no safety requirements.
unsafe { std::mem::transmute::<SerializeFn<T>, [usize; 2]>(serialize) },
deserialize.0 as usize,
);
(serialize, deserialize)
}
}
fn set_entries(id: TypeId, serialize: [usize; 2], deserialize: usize) {
SERIALIZE
.write()
.get_or_insert_with(HashMap::new)
.insert(id, (serialize, deserialize));
}
fn entries(id: TypeId) -> Option<([usize; 2], usize)> {
Some(*SERIALIZE.read().as_ref()?.get(&id)?)
}
fn serialize_entry(id: TypeId) -> Option<[usize; 2]> {
let (serialize, _) = entries(id)?;
Some(serialize)
}
fn deserialize_entry(id: TypeId) -> Option<usize> {
let (_, deserialize) = entries(id)?;
Some(deserialize)
}
/// Gets the serializer for `T`, if [`ensure_serializable::<T>`] has been
/// called.
pub fn serializer<T: 'static>() -> Option<SerializeFn<T>> {
let id = TypeId::of::<T>();
if id == TypeId::of::<SerializedMessage>() {
// SAFETY: SerializeFn<T> is the same as SerializeFn<SerializedMessage>.
Some(unsafe {
std::mem::transmute::<SerializeFn<SerializedMessage>, SerializeFn<T>>(
SERIALIZED_MESSAGE_SERIALIZE,
)
})
} else {
let f = serialize_entry(id)?;
// SAFETY: a function pointer of the appropriate type was put into the map.
Some(unsafe { std::mem::transmute::<[usize; 2], SerializeFn<T>>(f) })
}
}
/// Gets the deserializer for `T`, if [`ensure_serializable::<T>`] has been
/// called.
pub fn deserializer<T: 'static>() -> Option<DeserializeFn<T>> {
let id = TypeId::of::<T>();
let f = if id == TypeId::of::<SerializedMessage>() {
DeserializeFn(Result::<SerializedMessage, mesh_protobuf::Error>::Ok).0 as usize
} else {
deserialize_entry(id)?
};
// SAFETY: a function pointer of the appropriate type was put into the map.
Some(unsafe { std::mem::transmute::<usize, DeserializeFn<T>>(f) })
}
// A message that might be able to be serialized.
pub struct LazyMessage<T> {
msg: T,
serialize: Option<SerializeFn<T>>,
}
impl<T: 'static + Send> LazyMessage<T> {
// Creates a new message wrapping `data`, which will be lazily serialized
// when needed.
//
// If a serialize function is not provided, then one will be looked up at
// serialize time. In this case, the caller is responsible for ensuring that
// [`crate::lazy::ensure_serializable`] has been called before calling
// [`Self::serialize`] on this result.
pub fn new(data: T, serialize: Option<SerializeFn<T>>) -> Self {
LazyMessage {
msg: data,
serialize,
}
}
}
impl<T: 'static + Send> SerializeMessage for LazyMessage<T> {
type Concrete = T;
fn compute_message_size(&mut self, sizer: MessageSizer<'_>) {
let serialize = self
.serialize
.get_or_insert_with(|| serializer::<T>().expect("missing serialize for T"));
serialize.0.compute_message_size(&mut self.msg, sizer);
}
fn write_message(self, writer: MessageWriter<'_, '_, Resource>) {
self.serialize.unwrap().0.write_message(self.msg, writer);
}
fn extract(self) -> Self::Concrete {
self.msg
}
}
/// Parses the method, using the provided deserialize function to
/// deserialize it if necessary.
///
/// If no deserialize function is provided, then one will be looked up when
/// necessary. The caller is responsible for ensuring
/// [`crate::lazy::ensure_serializable`] has been called if the message
/// might be in serialized state.
pub fn lazy_parse<T: 'static + Send>(
serialized: SerializedMessage,
cache: &mut Option<DeserializeFn<T>>,
) -> Result<T, mesh_protobuf::Error> {
let deserialize =
*cache.get_or_insert_with(|| deserializer::<T>().expect("missing deserialize"));
(deserialize.0)(serialized)
}
mod static_ref {
use std::ops::Deref;
/// This is equivalent to a `&'static T`, except that it does not require a
/// lifetime bound on `T` just to declare it.
#[repr(transparent)]
pub struct StaticRef<T: ?Sized>(*const T);
impl<T: ?Sized> StaticRef<T> {
pub const fn new(x: &'static T) -> Self {
Self(x)
}
}
impl<T: ?Sized> From<&'static T> for StaticRef<T> {
fn from(x: &'static T) -> Self {
Self(x)
}
}
impl<T: ?Sized> Deref for StaticRef<T> {
type Target = T;
fn deref(&self) -> &T {
// SAFETY: the inner T is known to be a valid object with 'static
// lifetime.
unsafe { &*self.0 }
}
}
impl<T: ?Sized> Copy for StaticRef<T> {}
impl<T: ?Sized> Clone for StaticRef<T> {
fn clone(&self) -> Self {
*self
}
}
/// SAFETY: &'static T is Send if T is Sync.
unsafe impl<T: ?Sized + Sync> Send for StaticRef<T> {}
/// SAFETY: &'static T is Sync if T is Sync.
unsafe impl<T: ?Sized + Sync> Sync for StaticRef<T> {}
}