membacking/memory_manager/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
//! Hvlite's memory manager.
mod device_memory;
pub use device_memory::DeviceMemoryMapper;
use crate::RemoteProcess;
use crate::mapping_manager::Mappable;
use crate::mapping_manager::MappingManager;
use crate::mapping_manager::MappingManagerClient;
use crate::mapping_manager::VaMapper;
use crate::mapping_manager::VaMapperError;
use crate::partition_mapper::PartitionMapper;
use crate::region_manager::MapParams;
use crate::region_manager::RegionHandle;
use crate::region_manager::RegionManager;
use guestmem::GuestMemory;
use hvdef::Vtl;
use inspect::Inspect;
use memory_range::MemoryRange;
use mesh::MeshPayload;
use pal_async::DefaultPool;
use std::sync::Arc;
use std::thread::JoinHandle;
use thiserror::Error;
use vm_topology::memory::MemoryLayout;
/// The HvLite memory manager.
#[derive(Debug, Inspect)]
pub struct GuestMemoryManager {
/// Guest RAM allocation.
#[inspect(skip)]
guest_ram: Mappable,
#[inspect(skip)]
ram_regions: Arc<Vec<RamRegion>>,
#[inspect(flatten)]
mapping_manager: MappingManager,
#[inspect(flatten)]
region_manager: RegionManager,
#[inspect(skip)]
va_mapper: Arc<VaMapper>,
#[inspect(skip)]
_thread: JoinHandle<()>,
vtl0_alias_map_offset: Option<u64>,
pin_mappings: bool,
}
#[derive(Debug)]
struct RamRegion {
range: MemoryRange,
handle: RegionHandle,
}
/// Errors when attaching a partition to a [`GuestMemoryManager`].
#[derive(Error, Debug)]
pub enum PartitionAttachError {
/// Failure to allocate a VA mapper.
#[error("failed to reserve VA range for partition mapping")]
VaMapper(#[source] VaMapperError),
/// Failure to map memory into a partition.
#[error("failed to attach partition to memory manager")]
PartitionMapper(#[source] crate::partition_mapper::PartitionMapperError),
}
/// Errors creating a [`GuestMemoryManager`].
#[derive(Error, Debug)]
pub enum MemoryBuildError {
/// RAM too large.
#[error("ram size {0} is too large")]
RamTooLarge(u64),
/// Couldn't allocate RAM.
#[error("failed to allocate memory")]
AllocationFailed(#[source] std::io::Error),
/// Couldn't allocate VA mapper.
#[error("failed to create VA mapper")]
VaMapper(#[source] VaMapperError),
/// Memory layout incompatible with VTL0 alias map.
#[error("not enough guest address space available for the vtl0 alias map")]
AliasMapWontFit,
/// Memory layout incompatible with x86 legacy support.
#[error("x86 support requires RAM to start at 0 and contain at least 1MB")]
InvalidRamForX86,
}
/// A builder for [`GuestMemoryManager`].
pub struct GuestMemoryBuilder {
existing_mapping: Option<SharedMemoryBacking>,
vtl0_alias_map: Option<u64>,
prefetch_ram: bool,
pin_mappings: bool,
x86_legacy_support: bool,
}
impl GuestMemoryBuilder {
/// Returns a new builder.
pub fn new() -> Self {
Self {
existing_mapping: None,
vtl0_alias_map: None,
pin_mappings: false,
prefetch_ram: false,
x86_legacy_support: false,
}
}
/// Specifies an existing memory backing to use.
pub fn existing_backing(mut self, mapping: Option<SharedMemoryBacking>) -> Self {
self.existing_mapping = mapping;
self
}
/// Specifies the offset of the VTL0 alias map, if enabled for VTL2. This is
/// a mirror of VTL0 memory into a high portion of the VM's physical address
/// space.
pub fn vtl0_alias_map(mut self, offset: Option<u64>) -> Self {
self.vtl0_alias_map = offset;
self
}
/// Specify whether to pin mappings in memory. This is used to support
/// device assignment for devices that require the IOMMU to be programmed
/// for all addresses.
pub fn pin_mappings(mut self, enable: bool) -> Self {
self.pin_mappings = enable;
self
}
/// Specify whether to prefetch RAM mappings. This improves boot performance
/// by reducing memory intercepts at the cost of pre-allocating all of RAM.
pub fn prefetch_ram(mut self, enable: bool) -> Self {
self.prefetch_ram = enable;
self
}
/// Enables legacy x86 support.
///
/// When set, create separate RAM regions for the various low memory ranges
/// that are special on x86 platforms. Specifically:
///
/// 1. Create a separate RAM region for the VGA VRAM window:
/// 0xa0000-0xbffff.
/// 2. Create separate RAM regions within 0xc0000-0xfffff for control by PAM
/// registers.
///
/// The caller can use [`RamVisibilityControl`] to adjust the visibility of
/// these ranges.
pub fn x86_legacy_support(mut self, enable: bool) -> Self {
self.x86_legacy_support = enable;
self
}
/// Builds the memory backing, allocating memory if existing memory was not
/// provided by [`existing_backing`](Self::existing_backing).
pub async fn build(
self,
mem_layout: &MemoryLayout,
) -> Result<GuestMemoryManager, MemoryBuildError> {
let ram_size = mem_layout.ram_size() + mem_layout.vtl2_range().map_or(0, |r| r.len());
let memory = if let Some(memory) = self.existing_mapping {
memory.guest_ram
} else {
sparse_mmap::alloc_shared_memory(
ram_size
.try_into()
.map_err(|_| MemoryBuildError::RamTooLarge(ram_size))?,
)
.map_err(MemoryBuildError::AllocationFailed)?
.into()
};
// Spawn a thread to handle memory requests.
//
// FUTURE: move this to a task once the GuestMemory deadlocks are resolved.
let (thread, spawner) = DefaultPool::spawn_on_thread("memory_manager");
let max_addr =
(mem_layout.end_of_ram_or_mmio()).max(mem_layout.vtl2_range().map_or(0, |r| r.end()));
let vtl0_alias_map_offset = if let Some(offset) = self.vtl0_alias_map {
if max_addr > offset {
return Err(MemoryBuildError::AliasMapWontFit);
}
Some(offset)
} else {
None
};
let mapping_manager = MappingManager::new(&spawner, max_addr);
let va_mapper = mapping_manager
.client()
.new_mapper()
.await
.map_err(MemoryBuildError::VaMapper)?;
let region_manager = RegionManager::new(&spawner, mapping_manager.client().clone());
let mut ram_ranges = mem_layout
.ram()
.iter()
.map(|x| x.range)
.chain(mem_layout.vtl2_range())
.collect::<Vec<_>>();
if self.x86_legacy_support {
if ram_ranges[0].start() != 0 || ram_ranges[0].end() < 0x100000 {
return Err(MemoryBuildError::InvalidRamForX86);
}
// Split RAM ranges to support PAM registers and VGA RAM.
let range_starts = [
0,
0xa0000,
0xc0000,
0xc4000,
0xc8000,
0xcc000,
0xd0000,
0xd4000,
0xd8000,
0xdc000,
0xe0000,
0xe4000,
0xe8000,
0xec000,
0xf0000,
0x100000,
ram_ranges[0].end(),
];
ram_ranges.splice(
0..1,
range_starts
.iter()
.zip(range_starts.iter().skip(1))
.map(|(&start, &end)| MemoryRange::new(start..end)),
);
}
let mut ram_regions = Vec::new();
let mut start = 0;
for range in &ram_ranges {
let region = region_manager
.client()
.new_region("ram".into(), *range, RAM_PRIORITY)
.await
.expect("regions cannot overlap yet");
region
.add_mapping(
MemoryRange::new(0..range.len()),
memory.clone(),
start,
true,
)
.await;
region
.map(MapParams {
writable: true,
executable: true,
prefetch: self.prefetch_ram,
})
.await;
ram_regions.push(RamRegion {
range: *range,
handle: region,
});
start += range.len();
}
let gm = GuestMemoryManager {
guest_ram: memory,
_thread: thread,
ram_regions: Arc::new(ram_regions),
mapping_manager,
region_manager,
va_mapper,
vtl0_alias_map_offset,
pin_mappings: self.pin_mappings,
};
Ok(gm)
}
}
/// The backing objects used to transfer guest memory between processes.
#[derive(Debug, MeshPayload)]
pub struct SharedMemoryBacking {
guest_ram: Mappable,
}
/// A mesh-serializable object for providing access to guest memory.
#[derive(Debug, MeshPayload)]
pub struct GuestMemoryClient {
mapping_manager: MappingManagerClient,
}
impl GuestMemoryClient {
/// Retrieves a [`GuestMemory`] object to access guest memory from this
/// process.
///
/// This call will ensure only one VA mapper is allocated per process, so
/// this is safe to call many times without allocating tons of virtual
/// address space.
pub async fn guest_memory(&self) -> Result<GuestMemory, VaMapperError> {
Ok(GuestMemory::new(
"ram",
self.mapping_manager.new_mapper().await?,
))
}
}
// The region priority for RAM. Overrides anything else.
const RAM_PRIORITY: u8 = 255;
// The region priority for device memory.
const DEVICE_PRIORITY: u8 = 0;
impl GuestMemoryManager {
/// Returns an object to access guest memory.
pub fn client(&self) -> GuestMemoryClient {
GuestMemoryClient {
mapping_manager: self.mapping_manager.client().clone(),
}
}
/// Returns an object to map device memory into the VM.
pub fn device_memory_mapper(&self) -> DeviceMemoryMapper {
DeviceMemoryMapper::new(self.region_manager.client().clone())
}
/// Returns an object for manipulating the visibility state of different RAM
/// regions.
pub fn ram_visibility_control(&self) -> RamVisibilityControl {
RamVisibilityControl {
regions: self.ram_regions.clone(),
}
}
/// Returns the shared memory resources that can be used to reconstruct the
/// memory backing.
///
/// This can be used with [`GuestMemoryBuilder::existing_backing`] to create a
/// new memory manager with the same memory state. Only one instance of this
/// type should be managing a given memory backing at a time, though, or the
/// guest may see unpredictable results.
pub fn shared_memory_backing(&self) -> SharedMemoryBacking {
let guest_ram = self.guest_ram.clone();
SharedMemoryBacking { guest_ram }
}
/// Attaches the guest memory to a partition, mapping it to the guest
/// physical address space.
///
/// If `process` is provided, then allocate a VA range in that process for
/// the guest memory, and map the memory into the partition from that
/// process. This is necessary to work around WHP's lack of support for
/// mapping multiple partitions from a single process.
///
/// TODO: currently, all VTLs will get the same mappings--no support for
/// per-VTL memory protections is supported.
pub async fn attach_partition(
&mut self,
vtl: Vtl,
partition: &Arc<dyn virt::PartitionMemoryMap>,
process: Option<RemoteProcess>,
) -> Result<(), PartitionAttachError> {
let va_mapper = if let Some(process) = process {
self.mapping_manager
.client()
.new_remote_mapper(process)
.await
.map_err(PartitionAttachError::VaMapper)?
} else {
self.va_mapper.clone()
};
if vtl == Vtl::Vtl2 {
if let Some(offset) = self.vtl0_alias_map_offset {
let partition =
PartitionMapper::new(partition, va_mapper.clone(), offset, self.pin_mappings);
self.region_manager
.client()
.add_partition(partition)
.await
.map_err(PartitionAttachError::PartitionMapper)?;
}
}
let partition = PartitionMapper::new(partition, va_mapper, 0, self.pin_mappings);
self.region_manager
.client()
.add_partition(partition)
.await
.map_err(PartitionAttachError::PartitionMapper)?;
Ok(())
}
}
/// A client to the [`GuestMemoryManager`] used to control the visibility of
/// RAM regions.
pub struct RamVisibilityControl {
regions: Arc<Vec<RamRegion>>,
}
/// The RAM visibility for use with [`RamVisibilityControl::set_ram_visibility`].
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum RamVisibility {
/// RAM is unmapped, so reads and writes will go to device memory or MMIO.
Unmapped,
/// RAM is read-only. Writes will go to device memory or MMIO.
///
/// Note that writes will take exits even if there is mapped device memory.
ReadOnly,
/// RAM is read-write by the guest.
ReadWrite,
}
/// An error returned by [`RamVisibilityControl::set_ram_visibility`].
#[derive(Debug, Error)]
#[error("{0} is not a controllable RAM range")]
pub struct InvalidRamRegion(MemoryRange);
impl RamVisibilityControl {
/// Sets the visibility of a RAM region.
///
/// A whole region's visibility must be controlled at once, or an error will
/// be returned. [`GuestMemoryBuilder::x86_legacy_support`] can be used to
/// ensure that there are RAM regions corresponding to x86 memory ranges
/// that need to be controlled.
pub async fn set_ram_visibility(
&self,
range: MemoryRange,
visibility: RamVisibility,
) -> Result<(), InvalidRamRegion> {
let region = self
.regions
.iter()
.find(|region| region.range == range)
.ok_or(InvalidRamRegion(range))?;
match visibility {
RamVisibility::ReadWrite | RamVisibility::ReadOnly => {
region
.handle
.map(MapParams {
writable: matches!(visibility, RamVisibility::ReadWrite),
executable: true,
prefetch: false,
})
.await
}
RamVisibility::Unmapped => region.handle.unmap().await,
}
Ok(())
}
}