membacking/memory_manager/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Hvlite's memory manager.

mod device_memory;

pub use device_memory::DeviceMemoryMapper;

use crate::RemoteProcess;
use crate::mapping_manager::Mappable;
use crate::mapping_manager::MappingManager;
use crate::mapping_manager::MappingManagerClient;
use crate::mapping_manager::VaMapper;
use crate::mapping_manager::VaMapperError;
use crate::partition_mapper::PartitionMapper;
use crate::region_manager::MapParams;
use crate::region_manager::RegionHandle;
use crate::region_manager::RegionManager;
use guestmem::GuestMemory;
use hvdef::Vtl;
use inspect::Inspect;
use memory_range::MemoryRange;
use mesh::MeshPayload;
use pal_async::DefaultPool;
use std::sync::Arc;
use std::thread::JoinHandle;
use thiserror::Error;
use vm_topology::memory::MemoryLayout;

/// The HvLite memory manager.
#[derive(Debug, Inspect)]
pub struct GuestMemoryManager {
    /// Guest RAM allocation.
    #[inspect(skip)]
    guest_ram: Mappable,

    #[inspect(skip)]
    ram_regions: Arc<Vec<RamRegion>>,

    #[inspect(flatten)]
    mapping_manager: MappingManager,

    #[inspect(flatten)]
    region_manager: RegionManager,

    #[inspect(skip)]
    va_mapper: Arc<VaMapper>,

    #[inspect(skip)]
    _thread: JoinHandle<()>,

    vtl0_alias_map_offset: Option<u64>,
    pin_mappings: bool,
}

#[derive(Debug)]
struct RamRegion {
    range: MemoryRange,
    handle: RegionHandle,
}

/// Errors when attaching a partition to a [`GuestMemoryManager`].
#[derive(Error, Debug)]
pub enum PartitionAttachError {
    /// Failure to allocate a VA mapper.
    #[error("failed to reserve VA range for partition mapping")]
    VaMapper(#[source] VaMapperError),
    /// Failure to map memory into a partition.
    #[error("failed to attach partition to memory manager")]
    PartitionMapper(#[source] crate::partition_mapper::PartitionMapperError),
}

/// Errors creating a [`GuestMemoryManager`].
#[derive(Error, Debug)]
pub enum MemoryBuildError {
    /// RAM too large.
    #[error("ram size {0} is too large")]
    RamTooLarge(u64),
    /// Couldn't allocate RAM.
    #[error("failed to allocate memory")]
    AllocationFailed(#[source] std::io::Error),
    /// Couldn't allocate VA mapper.
    #[error("failed to create VA mapper")]
    VaMapper(#[source] VaMapperError),
    /// Memory layout incompatible with VTL0 alias map.
    #[error("not enough guest address space available for the vtl0 alias map")]
    AliasMapWontFit,
    /// Memory layout incompatible with x86 legacy support.
    #[error("x86 support requires RAM to start at 0 and contain at least 1MB")]
    InvalidRamForX86,
}

/// A builder for [`GuestMemoryManager`].
pub struct GuestMemoryBuilder {
    existing_mapping: Option<SharedMemoryBacking>,
    vtl0_alias_map: Option<u64>,
    prefetch_ram: bool,
    pin_mappings: bool,
    x86_legacy_support: bool,
}

impl GuestMemoryBuilder {
    /// Returns a new builder.
    pub fn new() -> Self {
        Self {
            existing_mapping: None,
            vtl0_alias_map: None,
            pin_mappings: false,
            prefetch_ram: false,
            x86_legacy_support: false,
        }
    }

    /// Specifies an existing memory backing to use.
    pub fn existing_backing(mut self, mapping: Option<SharedMemoryBacking>) -> Self {
        self.existing_mapping = mapping;
        self
    }

    /// Specifies the offset of the VTL0 alias map, if enabled for VTL2. This is
    /// a mirror of VTL0 memory into a high portion of the VM's physical address
    /// space.
    pub fn vtl0_alias_map(mut self, offset: Option<u64>) -> Self {
        self.vtl0_alias_map = offset;
        self
    }

    /// Specify whether to pin mappings in memory. This is used to support
    /// device assignment for devices that require the IOMMU to be programmed
    /// for all addresses.
    pub fn pin_mappings(mut self, enable: bool) -> Self {
        self.pin_mappings = enable;
        self
    }

    /// Specify whether to prefetch RAM mappings. This improves boot performance
    /// by reducing memory intercepts at the cost of pre-allocating all of RAM.
    pub fn prefetch_ram(mut self, enable: bool) -> Self {
        self.prefetch_ram = enable;
        self
    }

    /// Enables legacy x86 support.
    ///
    /// When set, create separate RAM regions for the various low memory ranges
    /// that are special on x86 platforms. Specifically:
    ///
    /// 1. Create a separate RAM region for the VGA VRAM window:
    ///    0xa0000-0xbffff.
    /// 2. Create separate RAM regions within 0xc0000-0xfffff for control by PAM
    ///    registers.
    ///
    /// The caller can use [`RamVisibilityControl`] to adjust the visibility of
    /// these ranges.
    pub fn x86_legacy_support(mut self, enable: bool) -> Self {
        self.x86_legacy_support = enable;
        self
    }

    /// Builds the memory backing, allocating memory if existing memory was not
    /// provided by [`existing_backing`](Self::existing_backing).
    pub async fn build(
        self,
        mem_layout: &MemoryLayout,
    ) -> Result<GuestMemoryManager, MemoryBuildError> {
        let ram_size = mem_layout.ram_size() + mem_layout.vtl2_range().map_or(0, |r| r.len());

        let memory = if let Some(memory) = self.existing_mapping {
            memory.guest_ram
        } else {
            sparse_mmap::alloc_shared_memory(
                ram_size
                    .try_into()
                    .map_err(|_| MemoryBuildError::RamTooLarge(ram_size))?,
            )
            .map_err(MemoryBuildError::AllocationFailed)?
            .into()
        };

        // Spawn a thread to handle memory requests.
        //
        // FUTURE: move this to a task once the GuestMemory deadlocks are resolved.
        let (thread, spawner) = DefaultPool::spawn_on_thread("memory_manager");

        let max_addr =
            (mem_layout.end_of_ram_or_mmio()).max(mem_layout.vtl2_range().map_or(0, |r| r.end()));

        let vtl0_alias_map_offset = if let Some(offset) = self.vtl0_alias_map {
            if max_addr > offset {
                return Err(MemoryBuildError::AliasMapWontFit);
            }
            Some(offset)
        } else {
            None
        };

        let mapping_manager = MappingManager::new(&spawner, max_addr);
        let va_mapper = mapping_manager
            .client()
            .new_mapper()
            .await
            .map_err(MemoryBuildError::VaMapper)?;

        let region_manager = RegionManager::new(&spawner, mapping_manager.client().clone());

        let mut ram_ranges = mem_layout
            .ram()
            .iter()
            .map(|x| x.range)
            .chain(mem_layout.vtl2_range())
            .collect::<Vec<_>>();

        if self.x86_legacy_support {
            if ram_ranges[0].start() != 0 || ram_ranges[0].end() < 0x100000 {
                return Err(MemoryBuildError::InvalidRamForX86);
            }

            // Split RAM ranges to support PAM registers and VGA RAM.
            let range_starts = [
                0,
                0xa0000,
                0xc0000,
                0xc4000,
                0xc8000,
                0xcc000,
                0xd0000,
                0xd4000,
                0xd8000,
                0xdc000,
                0xe0000,
                0xe4000,
                0xe8000,
                0xec000,
                0xf0000,
                0x100000,
                ram_ranges[0].end(),
            ];

            ram_ranges.splice(
                0..1,
                range_starts
                    .iter()
                    .zip(range_starts.iter().skip(1))
                    .map(|(&start, &end)| MemoryRange::new(start..end)),
            );
        }

        let mut ram_regions = Vec::new();
        let mut start = 0;
        for range in &ram_ranges {
            let region = region_manager
                .client()
                .new_region("ram".into(), *range, RAM_PRIORITY)
                .await
                .expect("regions cannot overlap yet");

            region
                .add_mapping(
                    MemoryRange::new(0..range.len()),
                    memory.clone(),
                    start,
                    true,
                )
                .await;

            region
                .map(MapParams {
                    writable: true,
                    executable: true,
                    prefetch: self.prefetch_ram,
                })
                .await;

            ram_regions.push(RamRegion {
                range: *range,
                handle: region,
            });
            start += range.len();
        }

        let gm = GuestMemoryManager {
            guest_ram: memory,
            _thread: thread,
            ram_regions: Arc::new(ram_regions),
            mapping_manager,
            region_manager,
            va_mapper,
            vtl0_alias_map_offset,
            pin_mappings: self.pin_mappings,
        };
        Ok(gm)
    }
}

/// The backing objects used to transfer guest memory between processes.
#[derive(Debug, MeshPayload)]
pub struct SharedMemoryBacking {
    guest_ram: Mappable,
}

/// A mesh-serializable object for providing access to guest memory.
#[derive(Debug, MeshPayload)]
pub struct GuestMemoryClient {
    mapping_manager: MappingManagerClient,
}

impl GuestMemoryClient {
    /// Retrieves a [`GuestMemory`] object to access guest memory from this
    /// process.
    ///
    /// This call will ensure only one VA mapper is allocated per process, so
    /// this is safe to call many times without allocating tons of virtual
    /// address space.
    pub async fn guest_memory(&self) -> Result<GuestMemory, VaMapperError> {
        Ok(GuestMemory::new(
            "ram",
            self.mapping_manager.new_mapper().await?,
        ))
    }
}

// The region priority for RAM. Overrides anything else.
const RAM_PRIORITY: u8 = 255;

// The region priority for device memory.
const DEVICE_PRIORITY: u8 = 0;

impl GuestMemoryManager {
    /// Returns an object to access guest memory.
    pub fn client(&self) -> GuestMemoryClient {
        GuestMemoryClient {
            mapping_manager: self.mapping_manager.client().clone(),
        }
    }

    /// Returns an object to map device memory into the VM.
    pub fn device_memory_mapper(&self) -> DeviceMemoryMapper {
        DeviceMemoryMapper::new(self.region_manager.client().clone())
    }

    /// Returns an object for manipulating the visibility state of different RAM
    /// regions.
    pub fn ram_visibility_control(&self) -> RamVisibilityControl {
        RamVisibilityControl {
            regions: self.ram_regions.clone(),
        }
    }

    /// Returns the shared memory resources that can be used to reconstruct the
    /// memory backing.
    ///
    /// This can be used with [`GuestMemoryBuilder::existing_backing`] to create a
    /// new memory manager with the same memory state. Only one instance of this
    /// type should be managing a given memory backing at a time, though, or the
    /// guest may see unpredictable results.
    pub fn shared_memory_backing(&self) -> SharedMemoryBacking {
        let guest_ram = self.guest_ram.clone();
        SharedMemoryBacking { guest_ram }
    }

    /// Attaches the guest memory to a partition, mapping it to the guest
    /// physical address space.
    ///
    /// If `process` is provided, then allocate a VA range in that process for
    /// the guest memory, and map the memory into the partition from that
    /// process. This is necessary to work around WHP's lack of support for
    /// mapping multiple partitions from a single process.
    ///
    /// TODO: currently, all VTLs will get the same mappings--no support for
    /// per-VTL memory protections is supported.
    pub async fn attach_partition(
        &mut self,
        vtl: Vtl,
        partition: &Arc<dyn virt::PartitionMemoryMap>,
        process: Option<RemoteProcess>,
    ) -> Result<(), PartitionAttachError> {
        let va_mapper = if let Some(process) = process {
            self.mapping_manager
                .client()
                .new_remote_mapper(process)
                .await
                .map_err(PartitionAttachError::VaMapper)?
        } else {
            self.va_mapper.clone()
        };

        if vtl == Vtl::Vtl2 {
            if let Some(offset) = self.vtl0_alias_map_offset {
                let partition =
                    PartitionMapper::new(partition, va_mapper.clone(), offset, self.pin_mappings);
                self.region_manager
                    .client()
                    .add_partition(partition)
                    .await
                    .map_err(PartitionAttachError::PartitionMapper)?;
            }
        }

        let partition = PartitionMapper::new(partition, va_mapper, 0, self.pin_mappings);
        self.region_manager
            .client()
            .add_partition(partition)
            .await
            .map_err(PartitionAttachError::PartitionMapper)?;
        Ok(())
    }
}

/// A client to the [`GuestMemoryManager`] used to control the visibility of
/// RAM regions.
pub struct RamVisibilityControl {
    regions: Arc<Vec<RamRegion>>,
}

/// The RAM visibility for use with [`RamVisibilityControl::set_ram_visibility`].
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum RamVisibility {
    /// RAM is unmapped, so reads and writes will go to device memory or MMIO.
    Unmapped,
    /// RAM is read-only. Writes will go to device memory or MMIO.
    ///
    /// Note that writes will take exits even if there is mapped device memory.
    ReadOnly,
    /// RAM is read-write by the guest.
    ReadWrite,
}

/// An error returned by [`RamVisibilityControl::set_ram_visibility`].
#[derive(Debug, Error)]
#[error("{0} is not a controllable RAM range")]
pub struct InvalidRamRegion(MemoryRange);

impl RamVisibilityControl {
    /// Sets the visibility of a RAM region.
    ///
    /// A whole region's visibility must be controlled at once, or an error will
    /// be returned. [`GuestMemoryBuilder::x86_legacy_support`] can be used to
    /// ensure that there are RAM regions corresponding to x86 memory ranges
    /// that need to be controlled.
    pub async fn set_ram_visibility(
        &self,
        range: MemoryRange,
        visibility: RamVisibility,
    ) -> Result<(), InvalidRamRegion> {
        let region = self
            .regions
            .iter()
            .find(|region| region.range == range)
            .ok_or(InvalidRamRegion(range))?;

        match visibility {
            RamVisibility::ReadWrite | RamVisibility::ReadOnly => {
                region
                    .handle
                    .map(MapParams {
                        writable: matches!(visibility, RamVisibility::ReadWrite),
                        executable: true,
                        prefetch: false,
                    })
                    .await
            }
            RamVisibility::Unmapped => region.handle.unmap().await,
        }
        Ok(())
    }
}