membacking/mapping_manager/
va_mapper.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implements the VA mapper, which maintains a linear virtual address space for
//! all memory mapped into a partition.
//!
//! The VA mapper sends messages to the mapping manager to request mappings for
//! specific address ranges, on demand. The mapping manager later sends
//! invalidation requests back when tearing down mappings, e.g. when some device
//! memory is unmapped from the partition.
//!
//! This lazy approach is taken to avoid having to keep each VA mapper
//! up-to-date with all mappings at all times.
//!
//! TODO: This is a bit dubious because the backing hypervisor will not
//! necessarily propagate a page fault. E.g., KVM will just fail the VP. So at
//! least for the mapper used by the partition itself, this optimization
//! probably needs to be removed and replaced with a guarantee that replacement
//! mappings are established immediately (and atomically?) instead of just by
//! invalidating the existing mappings.

// UNSAFETY: Implementing the unsafe GuestMemoryAccess trait by calling unsafe
// low level memory manipulation functions.
#![expect(unsafe_code)]

use super::manager::MapperId;
use super::manager::MapperRequest;
use super::manager::MappingParams;
use super::manager::MappingRequest;
use crate::RemoteProcess;
use futures::executor::block_on;
use guestmem::GuestMemoryAccess;
use guestmem::PageFaultAction;
use memory_range::MemoryRange;
use mesh::rpc::RpcError;
use mesh::rpc::RpcSend;
use parking_lot::Mutex;
use sparse_mmap::SparseMapping;
use std::ptr::NonNull;
use std::sync::Arc;
use std::thread::JoinHandle;
use thiserror::Error;

pub struct VaMapper {
    inner: Arc<MapperInner>,
    process: Option<RemoteProcess>,
    _thread: JoinHandle<()>,
}

impl std::fmt::Debug for VaMapper {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("VaMapper")
            .field("inner", &self.inner)
            .field("_thread", &self._thread)
            .finish()
    }
}

#[derive(Debug)]
struct MapperInner {
    mapping: SparseMapping,
    waiters: Mutex<Option<Vec<MapWaiter>>>,
    req_send: mesh::Sender<MappingRequest>,
    id: MapperId,
}

#[derive(Debug)]
struct MapWaiter {
    range: MemoryRange,
    writable: bool,
    done: mesh::OneshotSender<bool>,
}

impl MapWaiter {
    fn complete(&mut self, range: MemoryRange, writable: Option<bool>) -> Option<bool> {
        if range.contains_addr(self.range.start()) {
            if writable.is_none() || (self.writable && writable == Some(false)) {
                return Some(false);
            }
            let new_start = self.range.end().min(range.end());
            let remaining = MemoryRange::new(new_start..self.range.end());
            if remaining.is_empty() {
                return Some(true);
            }
            tracing::debug!(%remaining, "waiting for more");
            self.range = remaining;
        }
        None
    }
}

struct MapperTask {
    inner: Arc<MapperInner>,
}

impl MapperTask {
    async fn run(mut self, mut req_recv: mesh::Receiver<MapperRequest>) {
        while let Ok(req) = req_recv.recv().await {
            match req {
                MapperRequest::Unmap(rpc) => rpc.handle_sync(|range| {
                    tracing::debug!(%range, "invalidate received");
                    self.inner
                        .mapping
                        .unmap(range.start() as usize, range.len() as usize)
                        .expect("invalidate request should be valid");
                }),
                MapperRequest::Map(MappingParams {
                    range,
                    mappable,
                    writable,
                    file_offset,
                }) => {
                    tracing::debug!(%range, "mapping received for range");

                    self.inner
                        .mapping
                        .map_file(
                            range.start() as usize,
                            range.len() as usize,
                            &mappable,
                            file_offset,
                            writable,
                        )
                        .expect("oom mapping file");

                    self.wake_waiters(range, Some(writable));
                }
                MapperRequest::NoMapping(range) => {
                    // Wake up waiters. They'll see a failure when they try to
                    // access the VA.
                    tracing::debug!(%range, "no mapping received for range");
                    self.wake_waiters(range, None);
                }
            }
        }
        // Don't allow more waiters.
        *self.inner.waiters.lock() = None;
        // Invalidate everything.
        let _ = self.inner.mapping.unmap(0, self.inner.mapping.len());
    }

    fn wake_waiters(&mut self, range: MemoryRange, writable: Option<bool>) {
        let mut waiters = self.inner.waiters.lock();
        let waiters = waiters.as_mut().unwrap();

        let mut i = 0;
        while i < waiters.len() {
            if let Some(success) = waiters[i].complete(range, writable) {
                waiters.swap_remove(i).done.send(success);
            } else {
                i += 1;
            }
        }
    }
}

#[derive(Debug, Error)]
pub enum VaMapperError {
    #[error("failed to communicate with the memory manager")]
    MemoryManagerGone(#[source] RpcError),
    #[error("failed to reserve address space")]
    Reserve(#[source] std::io::Error),
}

#[derive(Debug, Error)]
#[error("no mapping for {0}")]
pub struct NoMapping(MemoryRange);

impl MapperInner {
    async fn request_mapping(&self, range: MemoryRange, writable: bool) -> Result<(), NoMapping> {
        let (send, recv) = mesh::oneshot();
        self.waiters
            .lock()
            .as_mut()
            .ok_or(NoMapping(range))?
            .push(MapWaiter {
                range,
                writable,
                done: send,
            });

        tracing::debug!(%range, "waiting for mappings");
        self.req_send
            .send(MappingRequest::SendMappings(self.id, range));
        match recv.await {
            Ok(true) => Ok(()),
            Ok(false) | Err(_) => Err(NoMapping(range)),
        }
    }
}

impl VaMapper {
    pub(crate) async fn new(
        req_send: mesh::Sender<MappingRequest>,
        len: u64,
        remote_process: Option<RemoteProcess>,
    ) -> Result<Self, VaMapperError> {
        let mapping = match &remote_process {
            None => SparseMapping::new(len as usize),
            Some(process) => match process {
                #[cfg(not(windows))]
                _ => unreachable!(),
                #[cfg(windows)]
                process => SparseMapping::new_remote(
                    process.as_handle().try_clone_to_owned().unwrap().into(),
                    None,
                    len as usize,
                ),
            },
        }
        .map_err(VaMapperError::Reserve)?;

        let (send, req_recv) = mesh::channel();
        let id = req_send
            .call(MappingRequest::AddMapper, send)
            .await
            .map_err(VaMapperError::MemoryManagerGone)?;

        let inner = Arc::new(MapperInner {
            mapping,
            waiters: Mutex::new(Some(Vec::new())),
            req_send,
            id,
        });

        // FUTURE: use a task once we resolve the block_ons in the
        // GuestMemoryAccess implementation.
        let thread = std::thread::Builder::new()
            .name("mapper".to_owned())
            .spawn({
                let runner = MapperTask {
                    inner: inner.clone(),
                };
                || block_on(runner.run(req_recv))
            })
            .unwrap();

        Ok(VaMapper {
            inner,
            process: remote_process,
            _thread: thread,
        })
    }

    /// Ensures a mapping has been established for the given range.
    pub async fn ensure_mapped(&self, range: MemoryRange) -> Result<(), NoMapping> {
        self.inner.request_mapping(range, false).await
    }

    pub fn as_ptr(&self) -> *mut u8 {
        self.inner.mapping.as_ptr().cast()
    }

    pub fn len(&self) -> usize {
        self.inner.mapping.len()
    }

    pub fn process(&self) -> Option<&RemoteProcess> {
        self.process.as_ref()
    }
}

/// SAFETY: the underlying VA mapping is guaranteed to be valid for the lifetime
/// of this object.
unsafe impl GuestMemoryAccess for VaMapper {
    fn mapping(&self) -> Option<NonNull<u8>> {
        // No one should be using this as a GuestMemoryAccess for remote
        // mappings, but it's convenient to have the same type for both local
        // and remote mappings for the sake of simplicity in
        // `PartitionRegionMapper`.
        assert!(self.inner.mapping.is_local());

        NonNull::new(self.inner.mapping.as_ptr().cast())
    }

    fn max_address(&self) -> u64 {
        self.inner.mapping.len() as u64
    }

    fn page_fault(
        &self,
        address: u64,
        len: usize,
        write: bool,
        bitmap_failure: bool,
    ) -> PageFaultAction {
        assert!(!bitmap_failure, "bitmaps are not used");
        // `block_on` is OK to call here (will not deadlock) because this is
        // never called from the page fault handler thread or any threads it
        // depends on.
        //
        // Removing this `block_on` would make all guest memory access `async`,
        // which would be a difficult change.
        if let Err(err) = block_on(
            self.inner
                .request_mapping(MemoryRange::bounding(address..address + len as u64), write),
        ) {
            return PageFaultAction::Fail(err.into());
        }
        PageFaultAction::Retry
    }
}