loader/uefi/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! UEFI specific loader definitions and implementation.
#![allow(non_camel_case_types)]

pub mod config;

#[cfg(guest_arch = "aarch64")]
use aarch64 as arch;
#[cfg(guest_arch = "x86_64")]
use x86_64 as arch;

pub use arch::CONFIG_BLOB_GPA_BASE;
pub use arch::IMAGE_SIZE;
pub use arch::load;

use guid::Guid;
use thiserror::Error;
use zerocopy::FromBytes;
use zerocopy::Immutable;
use zerocopy::IntoBytes;
use zerocopy::KnownLayout;

// Constant defining the offset within the image where the SEC volume starts.
// TODO: Revisit this when we reorganize the firmware layout. One option
// would be to just put the SEC volume at the start of the image, so no need
// for this offset.
const SEC_FIRMWARE_VOLUME_OFFSET: u64 = 0x005E0000;

/// Expand a 3 byte sequence into little-endian integer.
fn expand_3byte_integer(size: [u8; 3]) -> u64 {
    ((size[2] as u64) << 16) + ((size[1] as u64) << 8) + size[0] as u64
}

const fn signature_16(v: &[u8; 2]) -> u16 {
    v[0] as u16 | (v[1] as u16) << 8
}

const fn signature_32(v: &[u8; 4]) -> u32 {
    v[0] as u32 | (v[1] as u32) << 8 | (v[2] as u32) << 16 | (v[3] as u32) << 24
}

const IMAGE_DOS_SIGNATURE: u16 = 0x5A4D; // MZ
const IMAGE_NT_SIGNATURE: u32 = 0x00004550; // PE00
const TE_IMAGE_HEADER_SIGNATURE: u16 = signature_16(b"VZ");
const EFI_FVH_SIGNATURE: u32 = signature_32(b"_FVH");

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct ImageDosHeader {
    e_magic: u16,      // Magic number
    e_cblp: u16,       // Bytes on last page of file
    e_cp: u16,         // Pages in file
    e_crlc: u16,       // Relocations
    e_cparhdr: u16,    // Size of header in paragraphs
    e_minalloc: u16,   // Minimum extra paragraphs needed
    e_maxalloc: u16,   // Maximum extra paragraphs needed
    e_ss: u16,         // Initial (relative) SS value
    e_sp: u16,         // Initial SP value
    e_csum: u16,       // Checksum
    e_ip: u16,         // Initial IP value
    e_cs: u16,         // Initial (relative) CS value
    e_lfarlc: u16,     // File address of relocation table
    e_ovno: u16,       // Overlay number
    e_res: [u16; 4],   // Reserved words
    e_oemid: u16,      // OEM identifier (for e_oeminfo)
    e_oeminfo: u16,    // OEM information; e_oemid specific
    e_res2: [u16; 10], // Reserved words
    e_lfanew: i32,     // File address of new exe header
}

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct TeImageHeader {
    signature: u16,
    machine: u16,
    number_of_sections: u8,
    subsystem: u8,
    stripped_size: u16,
    address_of_entry_point: u32,
    base_of_code: u32,
    image_base: u64,
    data_directory: [ImageDataDirectory; 2],
}

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct ImageNtHeaders32 {
    signature: u32,
    file_header: ImageFileHeader,
    optional_header: ImageOptionalHeader32,
}

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct ImageFileHeader {
    machine: u16,
    number_of_sections: u16,
    time_date_stamp: u32,
    pointer_to_symbol_table: u32,
    number_of_symbols: u32,
    size_of_optional_header: u16,
    characteristics: u16,
}

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct ImageOptionalHeader32 {
    magic: u16,
    major_linker_version: u8,
    minor_linker_version: u8,
    size_of_code: u32,
    size_of_initialized_data: u32,
    size_of_uninitialized_data: u32,
    address_of_entry_point: u32,
    base_of_code: u32,
    base_of_data: u32,
    image_base: u32,
    section_alignment: u32,
    file_alignment: u32,
    major_operating_system_version: u16,
    minor_operating_system_version: u16,
    major_image_version: u16,
    minor_image_version: u16,
    major_subsystem_version: u16,
    minor_subsystem_version: u16,
    win32_version_value: u32,
    size_of_image: u32,
    size_of_headers: u32,
    check_sum: u32,
    subsystem: u16,
    dll_characteristics: u16,
    size_of_stack_reserve: u32,
    size_of_stack_commit: u32,
    size_of_heap_reserve: u32,
    size_of_heap_commit: u32,
    loader_flags: u32,
    number_of_rva_and_sizes: u32,
    data_directory: [ImageDataDirectory; 16],
}

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct ImageDataDirectory {
    virtual_address: u32,
    size: u32,
}

fn pe_get_entry_point_offset(pe32_data: &[u8]) -> Option<u32> {
    let dos_header = ImageDosHeader::read_from_prefix(pe32_data).ok()?.0; // TODO: zerocopy: use-rest-of-range, option-to-error (https://github.com/microsoft/openvmm/issues/759)
    let nt_headers_offset = if dos_header.e_magic == IMAGE_DOS_SIGNATURE {
        // DOS image header is present, so read the PE header after the DOS image header.
        dos_header.e_lfanew as usize
    } else {
        // DOS image header is not present, so PE header is at the image base.
        0
    };

    let signature = u32::read_from_prefix(&pe32_data[nt_headers_offset..])
        .ok()?
        .0; // TODO: zerocopy: use-rest-of-range, option-to-error (https://github.com/microsoft/openvmm/issues/759)

    // Calculate the entry point relative to the start of the image.
    // AddressOfEntryPoint is common for PE32 & PE32+
    if signature as u16 == TE_IMAGE_HEADER_SIGNATURE {
        let te = TeImageHeader::read_from_prefix(&pe32_data[nt_headers_offset..])
            .ok()?
            .0; // TODO: zerocopy: use-rest-of-range, option-to-error (https://github.com/microsoft/openvmm/issues/759)
        Some(te.address_of_entry_point + size_of_val(&te) as u32 - te.stripped_size as u32)
    } else if signature == IMAGE_NT_SIGNATURE {
        let pe = ImageNtHeaders32::read_from_prefix(&pe32_data[nt_headers_offset..])
            .ok()?
            .0; // TODO: zerocopy: use-rest-of-range, option-to-error (https://github.com/microsoft/openvmm/issues/759)
        Some(pe.optional_header.address_of_entry_point)
    } else {
        None
    }
}

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct EFI_FIRMWARE_VOLUME_HEADER {
    zero_vector: [u8; 16],
    file_system_guid: Guid,
    fv_length: u64,
    signature: u32,
    attributes: u32,
    header_length: u16,
    checksum: u16,
    ext_header_offset: u16,
    reserved: u8,
    revision: u8,
}

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct EFI_FFS_FILE_HEADER {
    name: Guid,
    integrity_check: u16,
    typ: u8,
    attributes: u8,
    size: [u8; 3],
    state: u8,
}

const EFI_FV_FILETYPE_SECURITY_CORE: u8 = 3;

#[repr(C)]
#[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
struct EFI_COMMON_SECTION_HEADER {
    size: [u8; 3],
    typ: u8,
}

const EFI_SECTION_PE32: u8 = 0x10;

/// Get the SEC entry point offset from the firmware base.
fn get_sec_entry_point_offset(image: &[u8]) -> Option<u64> {
    // Skip to SEC volume start.
    let mut image_offset = SEC_FIRMWARE_VOLUME_OFFSET;

    // Expect a firmware volume header for SEC volume.
    let fvh = EFI_FIRMWARE_VOLUME_HEADER::read_from_prefix(&image[image_offset as usize..])
        .ok()?
        .0; // TODO: zerocopy: use-rest-of-range, option-to-error (https://github.com/microsoft/openvmm/issues/759)
    if fvh.signature != EFI_FVH_SIGNATURE {
        return None;
    }

    // Skip past firmware volume header to beginning of firmware volume.
    image_offset += fvh.header_length as u64;

    // Find the first SEC CORE file type.
    let mut sec_core_file_header = None;
    let mut volume_offset = 0;
    while volume_offset < fvh.fv_length {
        let new_volume_offset = (volume_offset + 7) & !7;
        if new_volume_offset > volume_offset {
            image_offset += new_volume_offset - volume_offset;
            volume_offset = new_volume_offset;
        }
        let fh = EFI_FFS_FILE_HEADER::read_from_prefix(&image[image_offset as usize..])
            .ok()?
            .0; // TODO: zerocopy: use-rest-of-range, option-to-error (https://github.com/microsoft/openvmm/issues/759)
        if fh.typ == EFI_FV_FILETYPE_SECURITY_CORE {
            sec_core_file_header = Some(fh);
            break;
        }

        image_offset += expand_3byte_integer(fh.size);
        volume_offset += expand_3byte_integer(fh.size);
    }

    // There should always be a Security Core file.
    let sec_core_file_header = sec_core_file_header?;
    let sec_core_file_size = expand_3byte_integer(sec_core_file_header.size);

    // Move past the firmware file header.
    image_offset += size_of::<EFI_FFS_FILE_HEADER>() as u64;
    volume_offset += size_of::<EFI_FFS_FILE_HEADER>() as u64;

    // Loop through the firmware file sections looking for PE section.
    let mut file_offset = volume_offset;
    while file_offset < sec_core_file_size {
        //
        // Section headers are 8 byte aligned with respect to the beginning of the file stream.
        //
        let new_file_offset = (file_offset + 3) & !3;
        if new_file_offset > file_offset {
            image_offset += new_file_offset - file_offset;
            volume_offset += new_file_offset - file_offset;
            file_offset += new_file_offset - file_offset;
        }

        let sh = EFI_COMMON_SECTION_HEADER::read_from_prefix(&image[image_offset as usize..])
            .ok()?
            .0; // TODO: zerocopy: use-rest-of-range, option-to-error (https://github.com/microsoft/openvmm/issues/759)
        if sh.typ == EFI_SECTION_PE32 {
            let pe_offset = pe_get_entry_point_offset(
                &image[image_offset as usize + size_of::<EFI_COMMON_SECTION_HEADER>()..],
            )?;
            image_offset += size_of::<EFI_COMMON_SECTION_HEADER>() as u64 + pe_offset as u64;
            break;
        }
        image_offset += expand_3byte_integer(sh.size);
        volume_offset += expand_3byte_integer(sh.size);
        file_offset += expand_3byte_integer(sh.size);
    }

    Some(image_offset)
}

/// Definitions shared by UEFI and the loader when loaded with parameters passed in IGVM format.
mod igvm {
    use zerocopy::FromBytes;

    use zerocopy::Immutable;
    use zerocopy::IntoBytes;
    use zerocopy::KnownLayout;

    /// The structure used to tell UEFI where the IGVM loaded parameters are.
    #[repr(C)]
    #[derive(IntoBytes, Immutable, KnownLayout, FromBytes)]
    pub struct UEFI_IGVM_PARAMETER_INFO {
        pub parameter_page_count: u32,
        pub cpuid_pages_offset: u32,
        pub vp_context_page_number: u64,
        pub loader_block_offset: u32,
        pub command_line_offset: u32,
        pub command_line_page_count: u32,
        pub memory_map_offset: u32,
        pub memory_map_page_count: u32,
        pub madt_offset: u32,
        pub madt_page_count: u32,
        pub srat_offset: u32,
        pub srat_page_count: u32,
        pub maximum_processor_count: u32,
        pub uefi_memory_map_offset: u32,
        pub uefi_memory_map_page_count: u32,
    }

    pub const UEFI_IGVM_LOADER_BLOCK_NUMBER_OF_PROCESSORS_FIELD_OFFSET: usize = 0;
}

#[derive(Debug, Error)]
pub enum Error {
    #[error("Firmware size invalid")]
    InvalidImageSize,
    #[error("Unable to find SEC volume entry point")]
    NoSecEntryPoint,
    #[error("Invalid shared gpa boundary")]
    InvalidSharedGpaBoundary,
    #[error("Invalid config type")]
    InvalidConfigType(String),
    #[error("Importer error")]
    Importer(#[source] anyhow::Error),
}

#[derive(Debug)]
pub enum ConfigType {
    ConfigBlob(config::Blob),
    Igvm,
    None,
}

#[derive(Debug)]
pub struct LoadInfo {
    /// The GPA the firmware was loaded at.
    pub firmware_base: u64,
    /// The size of the firmware image loaded, in bytes.
    pub firmware_size: u64,
    /// The total size used by the loader starting at the firmware_base,
    /// including the firmware image and misc data, in bytes.
    pub total_size: u64,
}

pub mod x86_64 {
    use super::ConfigType;
    use super::Error;
    use super::LoadInfo;
    use crate::common::DEFAULT_GDT_SIZE;
    use crate::common::import_default_gdt;
    use crate::cpuid::HV_PSP_CPUID_PAGE;
    use crate::importer::BootPageAcceptance;
    use crate::importer::IgvmParameterType;
    use crate::importer::ImageLoad;
    use crate::importer::IsolationType;
    use crate::importer::StartupMemoryType;
    use crate::importer::X86Register;
    use crate::uefi::SEC_FIRMWARE_VOLUME_OFFSET;
    use crate::uefi::get_sec_entry_point_offset;
    use hvdef::HV_PAGE_SIZE;
    use page_table::IdentityMapSize;
    use page_table::x64::align_up_to_page_size;
    use page_table::x64::build_page_tables_64;
    use zerocopy::FromZeros;
    use zerocopy::IntoBytes;

    pub const IMAGE_SIZE: u64 = 0x00600000; // 6 MB. See MsvmPkg\MsvmPkgX64.fdf
    const IMAGE_GPA_BASE: u64 = 0x100000; // 1MB
    const PAGE_TABLE_GPA_BASE: u64 = IMAGE_GPA_BASE + IMAGE_SIZE; // 7MB - 0x700000
    const PAGE_TABLE_SIZE: u64 = HV_PAGE_SIZE * 6;
    const GDT_GPA_BASE: u64 = PAGE_TABLE_GPA_BASE + PAGE_TABLE_SIZE; // 0x707000
    const MISC_PAGES_GPA_BASE: u64 = GDT_GPA_BASE + DEFAULT_GDT_SIZE; // 0x707000
    const MISC_PAGES_SIZE: u64 = HV_PAGE_SIZE * 2;
    pub const CONFIG_BLOB_GPA_BASE: u64 = MISC_PAGES_GPA_BASE + MISC_PAGES_SIZE; // 0x709000

    /// Load a UEFI image with the provided config type.
    pub fn load(
        importer: &mut dyn ImageLoad<X86Register>,
        image: &[u8],
        config: ConfigType,
    ) -> Result<LoadInfo, Error> {
        if image.len() != IMAGE_SIZE as usize {
            return Err(Error::InvalidImageSize);
        }

        let sec_entry_point = get_sec_entry_point_offset(image).ok_or(Error::NoSecEntryPoint)?;

        let isolation = importer.isolation_config();

        // Build the page tables. This depends on if we have a paravisor present or not:
        //      - If this is an SNP VM with no paravisor, then build a set of page tables
        //        to map the bottom 4GB of memory with shared visibility.
        //      - Otherwise, build the standard UEFI page tables. Bottom 4GB of address space,
        //        identity mapped with 2 MB pages.
        let (page_tables, shared_vis_page_tables) =
            if isolation.isolation_type == IsolationType::Snp && !isolation.paravisor_present {
                if let ConfigType::ConfigBlob(_) = config {
                    return Err(Error::InvalidConfigType(
                        "Enlightened UEFI must use IGVM parameters".into(),
                    ));
                }

                let shared_vis_page_table_gpa = CONFIG_BLOB_GPA_BASE + HV_PAGE_SIZE;
                let shared_gpa_boundary_bits = isolation
                    .shared_gpa_boundary_bits
                    .ok_or(Error::InvalidSharedGpaBoundary)?;
                let shared_gpa_boundary = 1 << shared_gpa_boundary_bits;

                // The extra page tables are placed after the first config blob
                // page.  They will be accounted for when the IGVM parameters are
                // built.
                let shared_vis_page_tables = build_page_tables_64(
                    shared_vis_page_table_gpa,
                    shared_gpa_boundary,
                    IdentityMapSize::Size4Gb,
                    None,
                );

                let page_tables = build_page_tables_64(
                    PAGE_TABLE_GPA_BASE,
                    0,
                    IdentityMapSize::Size4Gb,
                    Some((shared_vis_page_table_gpa, shared_gpa_boundary)),
                );

                (page_tables, Some(shared_vis_page_tables))
            } else {
                let page_tables =
                    build_page_tables_64(PAGE_TABLE_GPA_BASE, 0, IdentityMapSize::Size4Gb, None);

                (page_tables, None)
            };

        // Size must match expected compiled constant
        assert_eq!(page_tables.len(), PAGE_TABLE_SIZE as usize);

        // Import image, page tables, GDT entries.
        let image_page_count = image.len() as u64 / HV_PAGE_SIZE;
        importer
            .import_pages(
                IMAGE_GPA_BASE / HV_PAGE_SIZE,
                image_page_count,
                "uefi-image",
                BootPageAcceptance::Exclusive,
                image,
            )
            .map_err(Error::Importer)?;

        let mut total_page_count = IMAGE_GPA_BASE / HV_PAGE_SIZE + image_page_count;

        importer
            .import_pages(
                PAGE_TABLE_GPA_BASE / HV_PAGE_SIZE,
                PAGE_TABLE_SIZE / HV_PAGE_SIZE,
                "uefi-page-tables",
                BootPageAcceptance::Exclusive,
                &page_tables,
            )
            .map_err(Error::Importer)?;

        total_page_count += PAGE_TABLE_SIZE / HV_PAGE_SIZE;

        // The default GDT is used with a page count of one.
        assert_eq!(DEFAULT_GDT_SIZE, HV_PAGE_SIZE);
        import_default_gdt(importer, GDT_GPA_BASE / HV_PAGE_SIZE).map_err(Error::Importer)?;
        total_page_count += DEFAULT_GDT_SIZE / HV_PAGE_SIZE;

        // Reserve free pages. Currently these are only used by UEFI PEI for making hypercalls.
        importer
            .import_pages(
                MISC_PAGES_GPA_BASE / HV_PAGE_SIZE,
                MISC_PAGES_SIZE / HV_PAGE_SIZE,
                "uefi-misc-pages",
                BootPageAcceptance::Exclusive,
                &[],
            )
            .map_err(Error::Importer)?;

        total_page_count += MISC_PAGES_SIZE / HV_PAGE_SIZE;

        // Import the config blobg, if set. Some callers may not load UEFI
        // configuration at this time, such as if running with a paravisor.
        match config {
            ConfigType::Igvm => {
                total_page_count += set_igvm_parameters(
                    importer,
                    CONFIG_BLOB_GPA_BASE / HV_PAGE_SIZE,
                    match isolation.isolation_type {
                        IsolationType::Snp => {
                            let table = shared_vis_page_tables
                                .as_ref()
                                .expect("should be shared vis page tables");
                            table
                        }
                        _ => &[],
                    },
                )?
            }
            ConfigType::ConfigBlob(config) => {
                let data = config.complete();
                assert!(!data.is_empty());
                let config_blob_page_count = (data.len() as u64).div_ceil(HV_PAGE_SIZE);
                importer
                    .import_pages(
                        CONFIG_BLOB_GPA_BASE / HV_PAGE_SIZE,
                        config_blob_page_count,
                        "uefi-config-blob",
                        BootPageAcceptance::Exclusive,
                        &data,
                    )
                    .map_err(Error::Importer)?;

                total_page_count += config_blob_page_count;
            }
            ConfigType::None => {}
        }

        // UEFI expects that the memory from GPA 0 up until the end of the config
        // blob is present, at a minimum. Note that ImageGpaBase is not 0.
        importer
            .verify_startup_memory_available(0, total_page_count, StartupMemoryType::Ram)
            .map_err(Error::Importer)?;

        let mut import_reg = |register| {
            importer
                .import_vp_register(register)
                .map_err(Error::Importer)
        };

        // Set CR0
        import_reg(X86Register::Cr0(
            x86defs::X64_CR0_PG | x86defs::X64_CR0_NE | x86defs::X64_CR0_MP | x86defs::X64_CR0_PE,
        ))?;

        // Set CR3 to point to page table which starts right after the image.
        import_reg(X86Register::Cr3(PAGE_TABLE_GPA_BASE))?;

        // Set CR4
        import_reg(X86Register::Cr4(
            x86defs::X64_CR4_PAE
                | x86defs::X64_CR4_MCE
                | x86defs::X64_CR4_FXSR
                | x86defs::X64_CR4_XMMEXCPT,
        ))?;

        // Set EFER to LME, LMA, and NXE for 64 bit mode.
        import_reg(X86Register::Efer(
            x86defs::X64_EFER_LMA | x86defs::X64_EFER_LME | x86defs::X64_EFER_NXE,
        ))?;

        // Set PAT
        import_reg(X86Register::Pat(x86defs::X86X_MSR_DEFAULT_PAT))?;

        // Set register state to values SEC entry point expects.
        // RBP - start of BFV (sec FV)
        import_reg(X86Register::Rbp(
            IMAGE_GPA_BASE + SEC_FIRMWARE_VOLUME_OFFSET,
        ))?;

        // Set RIP to SEC entry point.
        import_reg(X86Register::Rip(IMAGE_GPA_BASE + sec_entry_point))?;

        // Set R8-R11 to the hypervisor isolation CPUID leaf values.
        let isolation_cpuid = isolation.get_cpuid();

        import_reg(X86Register::R8(isolation_cpuid.eax as u64))?;
        import_reg(X86Register::R9(isolation_cpuid.ebx as u64))?;
        import_reg(X86Register::R10(isolation_cpuid.ecx as u64))?;
        import_reg(X86Register::R11(isolation_cpuid.edx as u64))?;

        // Enable MTRRs, default MTRR is uncached, and set lowest 640KB as WB
        import_reg(X86Register::MtrrDefType(0xc00))?;
        import_reg(X86Register::MtrrFix64k00000(0x0606060606060606))?;
        import_reg(X86Register::MtrrFix16k80000(0x0606060606060606))?;

        Ok(LoadInfo {
            firmware_base: IMAGE_GPA_BASE,
            firmware_size: image.len() as u64,
            total_size: total_page_count * HV_PAGE_SIZE,
        })
    }

    /// A simple page allocator that supports allocating pages counting up from a base page.
    struct PageAllocator {
        base: u32,
        total_count: u32,
    }

    impl PageAllocator {
        /// Create a `PageAllocator` starting at the given page `base`.
        fn new(base: u32) -> PageAllocator {
            PageAllocator {
                base,
                total_count: 0,
            }
        }

        /// Allocate `count` number of pages. Returns the base page number for the allocation.
        fn allocate(&mut self, count: u32) -> u32 {
            let allocation = self.base + self.total_count;
            self.total_count += count;

            allocation
        }

        /// Get the total number of pages allocated.
        fn total(&self) -> u32 {
            self.total_count
        }
    }

    /// Construct the UEFI parameter information in IGVM format. `config_area_base_page` specifies the GPA page number
    /// at the start of the config region. The number of pages used in the config region is returned.
    fn set_igvm_parameters(
        importer: &mut dyn ImageLoad<X86Register>,
        config_area_base_page: u64,
        shared_visibility_page_tables: &[u8],
    ) -> Result<u64, Error> {
        let mut parameter_info = super::igvm::UEFI_IGVM_PARAMETER_INFO::new_zeroed();

        // IGVM UEFI_IGVM_PARAMETER_INFO page offsets are relative to 1, as the first page is taken by the
        // UEFI_IGVM_PARAMETER_INFO structure. Allocate a page for the UEFI_IGVM_PARAMETER_INFO structure.
        let mut allocator = PageAllocator::new(0);
        allocator.allocate(1);

        // Set up the parameter info structure with offsets to each of the
        // additional parameters. Each table allocates a constant number of
        // pages.
        let table_page_count = 20;

        // The first structure is the loader block, which happens after the parameter info structure and shared
        // visibility page tables.
        let page_table_page_count =
            align_up_to_page_size(shared_visibility_page_tables.len() as u64) / HV_PAGE_SIZE;
        let page_table_offset = allocator.allocate(page_table_page_count as u32);
        parameter_info.loader_block_offset = allocator.allocate(1);

        let command_line_page_count = 1;
        parameter_info.command_line_offset = allocator.allocate(command_line_page_count);
        parameter_info.command_line_page_count = command_line_page_count;

        parameter_info.memory_map_offset = allocator.allocate(table_page_count);
        parameter_info.memory_map_page_count = table_page_count;

        parameter_info.madt_offset = allocator.allocate(table_page_count);
        parameter_info.madt_page_count = table_page_count;

        parameter_info.srat_offset = allocator.allocate(table_page_count);
        parameter_info.srat_page_count = table_page_count;

        // Reserve additional pre-accepted pages for UEFI to use to reconstruct
        // portions of the config blob.
        parameter_info.uefi_memory_map_offset = allocator.allocate(table_page_count);
        parameter_info.uefi_memory_map_page_count = table_page_count;

        // If this is an SNP image with no paravisor, then reserve additional pages as required.
        let isolation = importer.isolation_config();
        if isolation.isolation_type == IsolationType::Snp {
            // NOTE: Currently UEFI expects this parameter load style to have no paravisor. Disallow that here.
            if isolation.paravisor_present {
                return Err(Error::InvalidConfigType(
                    "IGVM ConfigType specified but paravisor is present.".into(),
                ));
            }

            // Supply the address of the parameter info block so it can be used
            // before PEI parses the config information.
            importer
                .import_vp_register(X86Register::R12(config_area_base_page * HV_PAGE_SIZE))
                .map_err(Error::Importer)?;

            // Reserve two pages to hold CPUID information. The first CPUID page
            // contains initialized data to query CPUID leaves. The second page
            // contains no data, as it will be populated by the host when the
            // image is loaded.
            parameter_info.cpuid_pages_offset = allocator.allocate(2);

            let cpuid_page = create_snp_cpuid_page();

            importer
                .import_pages(
                    config_area_base_page + parameter_info.cpuid_pages_offset as u64,
                    1,
                    "uefi-cpuid-page",
                    BootPageAcceptance::CpuidPage,
                    cpuid_page.as_bytes(),
                )
                .map_err(Error::Importer)?;

            importer
                .import_pages(
                    config_area_base_page + parameter_info.cpuid_pages_offset as u64 + 1,
                    1,
                    "uefi-cpuid-extended-page",
                    BootPageAcceptance::CpuidExtendedStatePage,
                    &[],
                )
                .map_err(Error::Importer)?;

            // Reserve a page to use to hold the VMSA.  This must be reported to
            // UEFI so that the page can be marked as a permanent firmware
            // allocation.
            //
            // Note that this page must not be counted within the size of the
            // config block, since it has different memory protection properties.
            // The first page following the config block is chosen for the
            // allocation.
            let vp_context_page_number = config_area_base_page + allocator.total() as u64;
            importer
                .set_vp_context_page(vp_context_page_number)
                .map_err(Error::Importer)?;

            parameter_info.vp_context_page_number = vp_context_page_number;
        } else {
            // If this is not an SNP image, then the VP context page does not
            // need to be reported to UEFI. Put in the TDX reset page value for
            // consistency with old code; this probably is unnecessary (or the
            // UEFI firmware should just be improved to not need this).
            parameter_info.vp_context_page_number = 0xfffff;
        }

        // Encode the total amount of pages used by all parameters.
        parameter_info.parameter_page_count = allocator.total();

        importer
            .import_pages(
                config_area_base_page,
                1,
                "uefi-config-base-page",
                BootPageAcceptance::Exclusive,
                parameter_info.as_bytes(),
            )
            .map_err(Error::Importer)?;

        importer
            .import_pages(
                config_area_base_page + parameter_info.uefi_memory_map_offset as u64,
                parameter_info.uefi_memory_map_page_count as u64,
                "uefi-memory-map-scratch",
                BootPageAcceptance::ExclusiveUnmeasured,
                &[],
            )
            .map_err(Error::Importer)?;

        let loader_block = importer
            .create_parameter_area(
                config_area_base_page + parameter_info.loader_block_offset as u64,
                1,
                "uefi-loader-block",
            )
            .map_err(Error::Importer)?;
        importer
            .import_parameter(
                loader_block,
                super::igvm::UEFI_IGVM_LOADER_BLOCK_NUMBER_OF_PROCESSORS_FIELD_OFFSET as u32,
                IgvmParameterType::VpCount,
            )
            .map_err(Error::Importer)?;

        let command_line = importer
            .create_parameter_area(
                config_area_base_page + parameter_info.command_line_offset as u64,
                parameter_info.command_line_page_count,
                "uefi-command-line",
            )
            .map_err(Error::Importer)?;
        importer
            .import_parameter(command_line, 0, IgvmParameterType::CommandLine)
            .map_err(Error::Importer)?;

        let memory_map = importer
            .create_parameter_area(
                config_area_base_page + parameter_info.memory_map_offset as u64,
                parameter_info.memory_map_page_count,
                "uefi-memory-map",
            )
            .map_err(Error::Importer)?;
        importer
            .import_parameter(memory_map, 0, IgvmParameterType::MemoryMap)
            .map_err(Error::Importer)?;

        let madt = importer
            .create_parameter_area(
                config_area_base_page + parameter_info.madt_offset as u64,
                parameter_info.madt_page_count,
                "uefi-madt",
            )
            .map_err(Error::Importer)?;
        importer
            .import_parameter(madt, 0, IgvmParameterType::Madt)
            .map_err(Error::Importer)?;

        let srat = importer
            .create_parameter_area(
                config_area_base_page + parameter_info.srat_offset as u64,
                parameter_info.srat_page_count,
                "uefi-srat",
            )
            .map_err(Error::Importer)?;
        importer
            .import_parameter(srat, 0, IgvmParameterType::Srat)
            .map_err(Error::Importer)?;

        if page_table_page_count != 0 {
            importer
                .import_pages(
                    config_area_base_page + page_table_offset as u64,
                    page_table_page_count,
                    "uefi-igvm-page-tables",
                    BootPageAcceptance::Exclusive,
                    shared_visibility_page_tables,
                )
                .map_err(Error::Importer)?;
        }

        Ok(allocator.total() as u64)
    }

    /// Create a hypervisor SNP CPUID page with the default values.
    fn create_snp_cpuid_page() -> HV_PSP_CPUID_PAGE {
        let mut cpuid_page = HV_PSP_CPUID_PAGE::default();

        for (i, required_leaf) in crate::cpuid::SNP_REQUIRED_CPUID_LEAF_LIST_UEFI
            .iter()
            .enumerate()
        {
            cpuid_page.cpuid_leaf_info[i].eax_in = required_leaf.eax;
            cpuid_page.cpuid_leaf_info[i].eax_out = required_leaf.ecx;
            cpuid_page.count += 1;
        }

        cpuid_page
    }
}

pub mod aarch64 {
    use super::ConfigType;
    use super::Error;
    use super::LoadInfo;
    use crate::importer::Aarch64Register;
    use crate::importer::BootPageAcceptance;
    use crate::importer::ImageLoad;
    use aarch64defs::Cpsr64;
    use hvdef::HV_PAGE_SIZE;

    use zerocopy::IntoBytes;

    pub const IMAGE_SIZE: u64 = 0x800000;
    pub const CONFIG_BLOB_GPA_BASE: u64 = 0x824000;

    /// Load a UEFI image with the provided config type.
    pub fn load(
        importer: &mut dyn ImageLoad<Aarch64Register>,
        image: &[u8],
        config: ConfigType,
    ) -> Result<LoadInfo, Error> {
        if image.len() != IMAGE_SIZE as usize {
            return Err(Error::InvalidImageSize);
        }

        const BYTES_2MB: u64 = 0x200000;

        let image_size = (image.len() as u64 + BYTES_2MB - 1) & !(BYTES_2MB - 1);
        importer
            .import_pages(
                0,
                image_size / HV_PAGE_SIZE,
                "uefi-image",
                BootPageAcceptance::Exclusive,
                image,
            )
            .map_err(Error::Importer)?;

        // The stack.
        let stack_offset = image_size;
        let stack_size = 32 * HV_PAGE_SIZE;
        let stack_end = stack_offset + stack_size;
        importer
            .import_pages(
                stack_offset / HV_PAGE_SIZE,
                stack_size / HV_PAGE_SIZE,
                "uefi-stack",
                BootPageAcceptance::Exclusive,
                &[],
            )
            .map_err(Error::Importer)?;

        // The page tables.
        let page_table_offset = stack_end;
        let page_tables = page_tables(page_table_offset, 1 << 30 /* TODO */);
        importer
            .import_pages(
                page_table_offset / HV_PAGE_SIZE,
                page_tables.as_bytes().len() as u64 / HV_PAGE_SIZE,
                "uefi-page-tables",
                BootPageAcceptance::Exclusive,
                page_tables.as_bytes(),
            )
            .map_err(Error::Importer)?;

        let blob_offset = CONFIG_BLOB_GPA_BASE;

        // The config blob.
        let blob_size = match config {
            ConfigType::ConfigBlob(blob) => {
                let blob = blob.complete();
                let blob_size = (blob.len() as u64 + HV_PAGE_SIZE - 1) & !(HV_PAGE_SIZE - 1);
                importer
                    .import_pages(
                        blob_offset / HV_PAGE_SIZE,
                        blob_size / HV_PAGE_SIZE,
                        "uefi-config-blob",
                        BootPageAcceptance::Exclusive,
                        &blob,
                    )
                    .map_err(Error::Importer)?;

                blob_size
            }
            ConfigType::None => 0,
            ConfigType::Igvm => {
                return Err(Error::InvalidConfigType("igvm not supported".to_owned()));
            }
        };

        let total_size = blob_offset + blob_size;

        let mut import_reg = |reg| importer.import_vp_register(reg).map_err(Error::Importer);

        import_reg(Aarch64Register::Cpsr(
            Cpsr64::new().with_sp(true).with_el(1).into(),
        ))?;
        import_reg(Aarch64Register::X0(0x1000))?;
        import_reg(Aarch64Register::Pc(0x1000))?;
        import_reg(Aarch64Register::X1(stack_end))?;

        import_reg(Aarch64Register::Ttbr0El1(page_table_offset))?;

        // Memory attribute indirection register.
        const ARM64_MAIR_CACHE_WBWA: u64 = 0xff;
        const ARM64_MAIR_CACHE_NC: u64 = 0x00;
        const ARM64_MAIR_CACHE_WTNA: u64 = 0xaa;
        const ARM64_MAIR_CACHE_WC: u64 = 0x44;

        import_reg(Aarch64Register::MairEl1(
            ARM64_MAIR_CACHE_WBWA
                | (ARM64_MAIR_CACHE_NC << 8)
                | (ARM64_MAIR_CACHE_WTNA << 16)
                | (ARM64_MAIR_CACHE_WC << 24)
                | (ARM64_MAIR_CACHE_WBWA << 32)
                | (ARM64_MAIR_CACHE_NC << 40)
                | (ARM64_MAIR_CACHE_WTNA << 48)
                | (ARM64_MAIR_CACHE_WC << 56),
        ))?;

        // System control register.
        const ARM64_SCTLR_M: u64 = 0x00000001;
        const ARM64_SCTLR_C: u64 = 0x00000004;
        const ARM64_SCTLR_RES1_11: u64 = 0x00000800;
        const ARM64_SCTLR_I: u64 = 0x00001000;
        const ARM64_SCTLR_RES1_20: u64 = 0x00100000;
        const ARM64_SCTLR_RES1_22: u64 = 0x00400000;
        const ARM64_SCTLR_RES1_23: u64 = 0x00800000;
        const ARM64_SCTLR_RES1_28: u64 = 0x10000000;
        const ARM64_SCTLR_RES1_29: u64 = 0x20000000;

        import_reg(Aarch64Register::SctlrEl1(
            ARM64_SCTLR_M
                | ARM64_SCTLR_C
                | ARM64_SCTLR_I
                | ARM64_SCTLR_RES1_11
                | ARM64_SCTLR_RES1_20
                | ARM64_SCTLR_RES1_22
                | ARM64_SCTLR_RES1_23
                | ARM64_SCTLR_RES1_28
                | ARM64_SCTLR_RES1_29,
        ))?;

        // Translation control register.

        const ARM64_TCR_IRGN0_WBWA: u64 = 0x0000000000000100;
        const ARM64_TCR_ORGN0_WBWA: u64 = 0x0000000000000400;
        const ARM64_TCR_SH0_INNER_SHARED: u64 = 0x0000000000003000;
        const ARM64_TCR_TG0_4K: u64 = 0x0000000000000000;
        const ARM64_TCR_EPD1: u64 = 0x0000000000800000;
        const ARM64_TCR_T0SZ_SHIFT: u32 = 0;
        const ARM64_TCR_T1SZ_SHIFT: u32 = 16;

        import_reg(Aarch64Register::TcrEl1(
            ARM64_TCR_EPD1
                | ARM64_TCR_TG0_4K
                | ARM64_TCR_SH0_INNER_SHARED
                | ARM64_TCR_ORGN0_WBWA
                | ARM64_TCR_IRGN0_WBWA
                | (16 << ARM64_TCR_T0SZ_SHIFT)
                | (16 << ARM64_TCR_T1SZ_SHIFT),
        ))?;

        Ok(LoadInfo {
            firmware_base: 0,
            firmware_size: image.len() as u64,
            total_size,
        })
    }

    const PTE_VALID: u64 = 1 << 0;
    const PTE_NOT_LARGE: u64 = 1 << 1;
    const PTE_MAIR_WB: u64 = 0 << 2;
    const PTE_MAIR_UC: u64 = 1 << 2;
    const PTE_SHARABILITY_INNER: u64 = 3 << 8;
    const PTE_ACCESSED: u64 = 1 << 10;
    const PTE_USER_NX: u64 = 1 << 54;

    fn large_leaf_entry(normal: bool, address: u64) -> u64 {
        address
            | PTE_VALID
            | PTE_ACCESSED
            | PTE_SHARABILITY_INNER
            | PTE_USER_NX
            | if normal { PTE_MAIR_WB } else { PTE_MAIR_UC }
    }

    fn non_leaf_entry(address: u64) -> u64 {
        address | PTE_VALID | PTE_NOT_LARGE
    }

    fn leaf_entry(normal: bool, address: u64) -> u64 {
        address
            | PTE_VALID
            | PTE_ACCESSED
            | PTE_NOT_LARGE
            | PTE_SHARABILITY_INNER
            | PTE_USER_NX
            | if normal { PTE_MAIR_WB } else { PTE_MAIR_UC }
    }

    fn table_index(va: u64, level: u32) -> usize {
        let index = va >> (9 * (3 - level) + 12);
        let index = index & ((1 << 9) - 1);
        index as usize
    }

    fn page_tables(address: u64, end_of_ram: u64) -> Vec<[u64; 512]> {
        const PT_SIZE: u64 = 4096;
        const VA_4GB: u64 = 1 << 32;
        const VA_1GB: u64 = 1 << 30;
        const VA_2MB: u64 = 2 << 20;
        const VA_4KB: u64 = 4 << 10;

        let mut buffer = vec![[0u64; PT_SIZE as usize / 8]; 4];
        let [level0, level1, level2, level3] = buffer.as_mut_slice() else {
            unreachable!()
        };

        // Allocate temporary buffer to hold page tables. We need 4 page tables:
        // - PML4 table (level 0 table in ARM terminology).
        // - PDP table (level 1 table).
        // - PD table (level 2 table) to map the 1 GB region that contains the
        //   split between normal and device memory.
        // - PT table (level 3 table) to map the 2 MB region that contains the
        //   split between normal and device memory.

        // Link level 1 translation table.
        level0[0] = non_leaf_entry(address + PT_SIZE);

        // Create an identity map for the address space from 0 to 4 GB.
        // The range [0, 4GB - MMIO Space Size) is mapped as normal memory, the
        // range [4 GB - MMIO Space Size, 4 GB) is mapped as device memory.

        let mut normal = true;
        let mut va = 0;
        let mut end_va = end_of_ram;
        while va < VA_4GB {
            //
            // Switch to device memory if we are are within the MMIO space.
            //
            if normal && va == end_va {
                normal = false;
                end_va = VA_4GB;
                continue;
            }

            // Try to use a 1 GB page (level 1 block entry) if possible.
            let level1_index = table_index(va, 1);
            if level1[level1_index] & PTE_VALID == 0
                && ((va & (VA_1GB - 1)) == 0)
                && (end_va - va >= VA_1GB)
            {
                level1[level1_index] = large_leaf_entry(normal, va);
                va += VA_1GB;
                continue;
            }

            //
            // Allocate and link level 2 translation table (PD) if it does not yet
            // exist.
            //
            if level1[level1_index] & PTE_VALID == 0 {
                level1[level1_index] = non_leaf_entry(address + PT_SIZE * 2);
            }

            //
            // Try to use a 2 MB page (level 2 block entry) if possible.
            //
            let level2_index = table_index(va, 2);
            if level2[level2_index] & PTE_VALID == 0
                && ((va & (VA_2MB - 1)) == 0)
                && (end_va - va >= VA_2MB)
            {
                level2[level2_index] = large_leaf_entry(normal, va);
                va += VA_2MB;
                continue;
            }

            //
            // Allocate and link level 1 translation table (PT) if it does not yet
            // exist.
            //
            if level2[level2_index] & PTE_VALID == 0 {
                level2[level2_index] = non_leaf_entry(address + PT_SIZE * 3);
            }

            let level3_index = table_index(va, 3);
            level3[level3_index] = leaf_entry(normal, va);
            va += VA_4KB;
        }

        buffer
    }
}