loader/
elf.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

// Portions Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//
// Portions Copyright 2017 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the THIRD-PARTY file.

//! Helper for loading an ELF kernel image.

use crate::importer::GuestArch;
use crate::importer::GuestArchKind;
use crate::importer::ImageLoad;
use hvdef::HV_PAGE_SIZE;
use object::ReadCache;
use object::ReadRef;
use object::elf;
use object::read::elf::FileHeader;
use std::io::Read;
use std::io::Seek;
use thiserror::Error;

type LE = object::LittleEndian;
const LE: LE = LE {};

#[derive(Debug, Error)]
pub enum Error {
    #[error("failed to read file header")]
    ReadFileHeader,
    #[error("invalid file header")]
    InvalidFileHeader,
    #[error("target machine mismatch")]
    TargetMachineMismatch,
    #[error("unsupported ELF file byte order")]
    BigEndianElfOnLittle,
    #[error(
        "invalid entry address found in ELF header: {e_entry:#x}, start address: {start_address:#x}, load offset: {load_offset:#x}"
    )]
    InvalidEntryAddress {
        e_entry: u64,
        start_address: u64,
        load_offset: u64,
    },
    #[error("failed to parse ELF program header")]
    InvalidProgramHeader(#[source] object::read::Error),
    #[error("adding load offset {load_offset} to paddr {p_paddr} overflowed")]
    LoadOffsetOverflow { load_offset: u64, p_paddr: u64 },
    #[error("invalid ELF program header memory offset {mem_offset}, below start {start_address}")]
    InvalidProgramHeaderMemoryOffset { mem_offset: u64, start_address: u64 },
    #[error(
        "adding reloc bias {reloc_bias} and load offset {load_offset} to paddr {p_paddr} overflowed"
    )]
    RelocBiasOverflow {
        load_offset: u64,
        reloc_bias: u64,
        p_paddr: u64,
    },
    #[error("failed to read kernel image")]
    ReadKernelImage,
    #[error("failed during import pages call")]
    ImportPages(#[source] anyhow::Error),
    #[error("failed to seek to offset of kernel image")]
    SeekKernelImage,
}

pub type Result<T> = std::result::Result<T, Error>;

/// Information about the loaded ELF image.
#[derive(Debug)]
pub struct LoadInfo {
    /// The minimum physical address used when loading the ELF image. This may be different from the start_address
    /// provided, as the ELF image controls where it should be loaded.
    pub minimum_address_used: u64,
    /// The next available physical address after the kernel was loaded.
    pub next_available_address: u64,
    /// The entrypoint of the image.
    pub entrypoint: u64,
}

/// Loads a kernel from a vmlinux elf image to a slice
///
/// # Arguments
///
/// * `guest_mem` - The guest memory region the kernel is written to.
/// * `kernel_image` - Input vmlinux image.
/// * `start_address` - For x86_64, this is the start of the high memory. Kernel should reside above it.
/// * `load_offset` - The offset to add to each loaded address.
/// * `assume_pic` - Assume that the image contains Position-Independent Code.
/// * `acceptance` - The page acceptance type for pages in the kernel.
/// * `tag` - The tag used to report igvm imports.
///
/// Returns (minimum offset written, maximum offset written, entry address of the kernel).
pub fn load_static_elf<F, R: GuestArch>(
    importer: &mut dyn ImageLoad<R>,
    kernel_image: &mut F,
    start_address: u64,
    load_offset: u64,
    assume_pic: bool,
    acceptance: crate::importer::BootPageAcceptance,
    tag: &str,
) -> Result<LoadInfo>
where
    F: Read + Seek,
{
    let reader = ReadCache::new(kernel_image);
    let ehdr: &elf::FileHeader64<LE> = reader.read_at(0).map_err(|_| Error::ReadFileHeader)?;

    // Sanity checks
    if !ehdr.is_supported() {
        return Err(Error::InvalidFileHeader);
    }
    if ehdr.is_big_endian() {
        return Err(Error::BigEndianElfOnLittle);
    }

    match R::arch() {
        GuestArchKind::Aarch64 => {
            if ehdr.e_machine != object::U16::new(object::LittleEndian, elf::EM_AARCH64) {
                tracing::error!(
                    "ELF file target machine mismatch, was the file built for aarch64?"
                );
                return Err(Error::TargetMachineMismatch);
            }
        }
        GuestArchKind::X86_64 => {
            if ehdr.e_machine != object::U16::new(object::LittleEndian, elf::EM_X86_64) {
                tracing::error!("ELF file target machine mismatch, was the file built for X86_64?");
                return Err(Error::TargetMachineMismatch);
            }
        }
    }

    let e_entry = ehdr.e_entry.get(LE);
    let load_offset = if assume_pic && e_entry < start_address {
        // The kernel is assumed to contain PIC
        start_address + load_offset
    } else {
        load_offset
    };

    let entry = e_entry
        .checked_add(load_offset)
        .ok_or(Error::InvalidEntryAddress {
            e_entry,
            start_address,
            load_offset,
        })?;
    if entry < start_address {
        return Err(Error::InvalidEntryAddress {
            e_entry,
            start_address,
            load_offset,
        });
    }

    let phdrs = ehdr
        .program_headers(LE, &reader)
        .map_err(Error::InvalidProgramHeader)?;

    // The first pass on the sections provides the layout data
    let (lowest_addr, last_offset, reloc_bias) = {
        let mut lowest_addr = u64::MAX;
        let mut last_offset = load_offset;

        // Read in each section pointed to by the program headers.
        for phdr in phdrs {
            if phdr.p_type.get(LE) != elf::PT_LOAD {
                continue;
            }

            let p_paddr = phdr.p_paddr.get(LE);
            let mem_offset = p_paddr
                .checked_add(load_offset)
                .ok_or(Error::LoadOffsetOverflow {
                    load_offset,
                    p_paddr,
                })?;

            if mem_offset < start_address {
                return Err(Error::InvalidProgramHeaderMemoryOffset {
                    mem_offset,
                    start_address,
                });
            }

            let page_mask = HV_PAGE_SIZE - 1;
            let page_base = mem_offset / HV_PAGE_SIZE;
            let page_count: u64 =
                ((mem_offset & page_mask) + phdr.p_memsz.get(LE) + page_mask) / HV_PAGE_SIZE;

            lowest_addr = lowest_addr.min(page_base * HV_PAGE_SIZE);
            last_offset = last_offset.max((page_base + page_count) * HV_PAGE_SIZE);
        }

        (
            lowest_addr,
            last_offset,
            if assume_pic {
                lowest_addr - start_address
            } else {
                0
            },
        )
    };

    // During the second pass, read in each section pointed to by the program headers,
    // and import into the guest memory.
    for phdr in phdrs {
        if phdr.p_type.get(LE) != elf::PT_LOAD {
            continue;
        }

        let p_paddr = phdr.p_paddr.get(LE);
        let mem_offset = p_paddr
            .checked_add(load_offset)
            .ok_or(Error::LoadOffsetOverflow {
                load_offset,
                p_paddr,
            })?
            .checked_sub(reloc_bias)
            .ok_or(Error::RelocBiasOverflow {
                load_offset,
                reloc_bias,
                p_paddr,
            })?;

        if mem_offset < start_address {
            return Err(Error::InvalidProgramHeaderMemoryOffset {
                mem_offset,
                start_address,
            });
        }

        let page_mask = HV_PAGE_SIZE - 1;

        let filesz = phdr.p_filesz.get(LE);
        let mut v = vec![0; ((mem_offset & page_mask) + filesz) as usize];
        if filesz != 0 {
            let v_start_offset = (mem_offset & page_mask) as usize;
            let read_length = (v.len() - v_start_offset) as u64;
            v[v_start_offset..].copy_from_slice(
                reader
                    .read_bytes_at(phdr.p_offset.get(LE), read_length)
                    .map_err(|_| Error::ReadKernelImage)?,
            );
        }

        let page_base = mem_offset / HV_PAGE_SIZE;
        let page_count =
            ((mem_offset & page_mask) + phdr.p_memsz.get(LE) + page_mask) / HV_PAGE_SIZE;
        importer
            .import_pages(page_base, page_count, tag, acceptance, &v)
            .map_err(Error::ImportPages)?;
    }

    Ok(LoadInfo {
        minimum_address_used: lowest_addr - reloc_bias,
        next_available_address: last_offset - reloc_bias,
        entrypoint: entry - reloc_bias,
    })
}