kvm/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

#![expect(missing_docs)]
#![cfg(target_os = "linux")]
// UNSAFETY: Calling KVM APIs and IOCTLs and dealing with the raw pointers
// necessary for doing so.
#![expect(unsafe_code)]

pub use kvm_bindings::kvm_ioeventfd_flag_nr_datamatch;
pub use kvm_bindings::kvm_ioeventfd_flag_nr_deassign;
pub use kvm_bindings::*;
use pal::unix::pthread::*;
use parking_lot::RwLock;
use std::fs::File;
use std::io;
use std::marker::PhantomData;
use std::os::unix::prelude::*;
use std::sync::Once;
use std::sync::atomic::AtomicU8;
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering;
use thiserror::Error;

mod ioctl {
    use kvm_bindings::*;
    use nix::ioctl_read;
    use nix::ioctl_readwrite;
    use nix::ioctl_write_int_bad;
    use nix::ioctl_write_ptr;
    use nix::request_code_none;
    const KVMIO: u8 = 0xae;
    ioctl_write_int_bad!(kvm_create_vm, request_code_none!(KVMIO, 0x1));
    ioctl_write_int_bad!(kvm_check_extension, request_code_none!(KVMIO, 0x03));
    ioctl_write_int_bad!(kvm_get_vcpu_mmap_size, request_code_none!(KVMIO, 0x04));
    #[cfg(target_arch = "x86_64")]
    ioctl_readwrite!(kvm_get_supported_cpuid, KVMIO, 0x05, kvm_cpuid2);
    ioctl_write_int_bad!(kvm_create_vcpu, request_code_none!(KVMIO, 0x41));
    ioctl_write_ptr!(
        kvm_set_user_memory_region,
        KVMIO,
        0x46,
        kvm_userspace_memory_region
    );
    ioctl_write_ptr!(kvm_irq_line, KVMIO, 0x61, kvm_irq_level);
    ioctl_write_ptr!(kvm_set_gsi_routing, KVMIO, 0x6a, kvm_irq_routing);
    ioctl_write_ptr!(kvm_irqfd, KVMIO, 0x76, kvm_irqfd);
    ioctl_write_int_bad!(kvm_set_boot_cpu_id, request_code_none!(KVMIO, 0x78));
    ioctl_write_int_bad!(kvm_run, request_code_none!(KVMIO, 0x80));
    // Is *NOT* defined for arm64
    #[cfg(not(target_arch = "aarch64"))]
    ioctl_read!(kvm_get_regs, KVMIO, 0x81, kvm_regs);
    // Is *NOT* defined for arm64
    #[cfg(not(target_arch = "aarch64"))]
    ioctl_write_ptr!(kvm_set_regs, KVMIO, 0x82, kvm_regs);
    ioctl_read!(kvm_get_sregs, KVMIO, 0x83, kvm_sregs);
    ioctl_write_ptr!(kvm_set_sregs, KVMIO, 0x84, kvm_sregs);
    ioctl_readwrite!(kvm_translation, KVMIO, 0x85, kvm_translation);
    ioctl_write_ptr!(kvm_interrupt, KVMIO, 0x86, kvm_interrupt);
    #[cfg(target_arch = "x86_64")]
    ioctl_readwrite!(kvm_get_msrs, KVMIO, 0x88, kvm_msrs);
    #[cfg(target_arch = "x86_64")]
    ioctl_write_ptr!(kvm_set_msrs, KVMIO, 0x89, kvm_msrs);
    ioctl_write_ptr!(kvm_set_signal_mask, KVMIO, 0x8b, kvm_signal_mask);
    ioctl_read!(kvm_get_fpu, KVMIO, 0x8c, kvm_fpu);
    ioctl_write_ptr!(kvm_set_fpu, KVMIO, 0x8d, kvm_fpu);
    #[cfg(target_arch = "x86_64")]
    ioctl_read!(kvm_get_lapic, KVMIO, 0x8e, kvm_lapic_state);
    #[cfg(target_arch = "x86_64")]
    ioctl_write_ptr!(kvm_set_lapic, KVMIO, 0x8f, kvm_lapic_state);
    #[cfg(target_arch = "x86_64")]
    ioctl_write_ptr!(kvm_set_cpuid2, KVMIO, 0x90, kvm_cpuid2);
    ioctl_read!(kvm_get_mp_state, KVMIO, 0x98, kvm_mp_state);
    ioctl_write_ptr!(kvm_set_mp_state, KVMIO, 0x99, kvm_mp_state);
    ioctl_read!(kvm_get_vcpu_events, KVMIO, 0x9f, kvm_vcpu_events);
    ioctl_write_ptr!(kvm_set_vcpu_events, KVMIO, 0xa0, kvm_vcpu_events);
    #[cfg(target_arch = "x86_64")]
    ioctl_read!(kvm_get_debugregs, KVMIO, 0xa1, kvm_debugregs);
    #[cfg(target_arch = "x86_64")]
    ioctl_write_ptr!(kvm_set_debugregs, KVMIO, 0xa2, kvm_debugregs);
    ioctl_write_ptr!(kvm_enable_cap, KVMIO, 0xa3, kvm_enable_cap);
    #[cfg(target_arch = "x86_64")]
    ioctl_read!(kvm_get_xsave, KVMIO, 0xa4, kvm_xsave);
    #[cfg(target_arch = "x86_64")]
    ioctl_write_ptr!(kvm_set_xsave, KVMIO, 0xa5, kvm_xsave);
    ioctl_write_ptr!(kvm_signal_msi, KVMIO, 0xa5, kvm_msi);
    #[cfg(target_arch = "x86_64")]
    ioctl_read!(kvm_get_xcrs, KVMIO, 0xa6, kvm_xcrs);
    #[cfg(target_arch = "x86_64")]
    ioctl_write_ptr!(kvm_set_xcrs, KVMIO, 0xa7, kvm_xcrs);
    ioctl_write_ptr!(kvm_get_reg, KVMIO, 0xab, kvm_one_reg);
    ioctl_write_ptr!(kvm_set_reg, KVMIO, 0xac, kvm_one_reg);
    #[cfg(target_arch = "aarch64")]
    ioctl_write_ptr!(kvm_arm_vcpu_init, KVMIO, 0xae, kvm_vcpu_init);
    #[cfg(target_arch = "aarch64")]
    ioctl_read!(kvm_arm_preferred_target, KVMIO, 0xaf, kvm_vcpu_init);
    ioctl_write_ptr!(kvm_ioeventfd, KVMIO, 0x79, kvm_ioeventfd);
    ioctl_write_ptr!(kvm_set_guest_debug, KVMIO, 0x9b, kvm_guest_debug);
    ioctl_readwrite!(kvm_create_device, KVMIO, 0xe0, kvm_create_device);
    ioctl_write_ptr!(kvm_set_device_attr, KVMIO, 0xe1, kvm_device_attr);
}

#[derive(Error, Debug)]
pub enum Error {
    #[error("failed to open /dev/kvm")]
    OpenKvm(#[source] io::Error),
    #[error("SignalMsi")]
    SignalMsi(#[source] nix::Error),
    #[error("SetMemoryRegion")]
    SetMemoryRegion(#[source] nix::Error),
    #[error("CreateVm")]
    CreateVm(#[source] nix::Error),
    #[error("EnableCap({0})")]
    EnableCap(&'static str, #[source] nix::Error),
    #[error("CreateVCpu")]
    CreateVCpu(#[source] nix::Error),
    #[error("GetRegs")]
    GetRegs(#[source] nix::Error),
    #[error("GetSRegs")]
    GetSRegs(#[source] nix::Error),
    #[error("SetRegs")]
    SetRegs(#[source] nix::Error),
    #[error("SetSRegs")]
    SetSRegs(#[source] nix::Error),
    #[error("Run")]
    Run(#[source] nix::Error),
    #[error("GetVCpuMmapSize")]
    GetVCpuMmapSize(#[source] nix::Error),
    #[error("MmapVCpu")]
    MmapVCpu(#[source] io::Error),
    #[error("SetFpu")]
    SetFpu(#[source] nix::Error),
    #[error("GetSupportedCpuid")]
    GetSupportedCpuid(#[source] nix::Error),
    #[error("SetCpuid")]
    SetCpuid(#[source] nix::Error),
    #[error("Interrupt")]
    Interrupt(#[source] nix::Error),
    #[error("GetLApic")]
    GetLApic(#[source] nix::Error),
    #[error("SetLApic")]
    SetLApic(#[source] nix::Error),
    #[error("GetXsave")]
    GetXsave(#[source] nix::Error),
    #[error("SetXsave")]
    SetXsave(#[source] nix::Error),
    #[error("GetDebugRegs")]
    GetDebugRegs(#[source] nix::Error),
    #[error("SetDebugRegs")]
    SetDebugRegs(#[source] nix::Error),
    #[error("GetXcrs")]
    GetXcrs(#[source] nix::Error),
    #[error("SetXcrs")]
    SetXcrs(#[source] nix::Error),
    #[error("xsave is not enabled")]
    XsaveNotEnabled,
    #[error("SetGsiRouting")]
    SetGsiRouting(#[source] nix::Error),
    #[error("IrqLine")]
    IrqLine(#[source] nix::Error),
    #[error("GetMsrs")]
    GetMsrs(#[source] nix::Error),
    #[error("SetMsrs")]
    SetMsrs(#[source] nix::Error),
    #[error("GetMpState")]
    GetMpState(#[source] nix::Error),
    #[error("SetMpState")]
    SetMpState(#[source] nix::Error),
    #[error("GetVcpuEvents")]
    GetVcpuEvents(#[source] nix::Error),
    #[error("SetVcpuEvents")]
    SetVcpuEvents(#[source] nix::Error),
    #[error("TranslateGva")]
    TranslateGva(#[source] nix::Error),
    #[error("unknown exit {0:#x}")]
    UnknownExit(u32),
    #[error("unknown Hyper-V exit {0:#x}")]
    UnknownHvExit(u32),
    #[error("ioeventfd")]
    IoEventFd(#[source] nix::Error),
    #[error("irqfd")]
    IrqFd(#[source] nix::Error),
    #[error("failed to set BSP")]
    SetBsp(#[source] nix::Error),
    #[error("CreateDevice")]
    CreateDevice(#[source] nix::Error),
    #[error("SetDeviceAttr")]
    SetDeviceAttr(#[source] nix::Error),
}

type Result<T, E = Error> = std::result::Result<T, E>;

#[derive(Debug)]
struct Vp {
    vcpu: File,
    run_data: VpPtr,
    thread: RwLock<Option<Pthread>>,
    _phantom: PhantomData<kvm_run>,
}

/// Send+Sync wrapper around the mapped kvm_run pointer.
#[derive(Debug)]
struct VpPtr {
    ptr: *mut kvm_run,
    len: usize,
}

// SAFETY: this type contains a pointer to mapped data. By itself this is
// Send+Sync since it's just a raw pointer value with no methods, but in context
// it must be carefully accessed only by one thread at a time. This is mediated
// by `Vp`.
unsafe impl Send for VpPtr {}
// SAFETY: see above comment
unsafe impl Sync for VpPtr {}

/// An open file to `/dev/kvm`.
#[derive(Debug)]
pub struct Kvm(File);

impl Kvm {
    /// Opens `/dev/kvm`.
    pub fn new() -> Result<Self> {
        let kvm = std::fs::OpenOptions::new()
            .read(true)
            .write(true)
            .open("/dev/kvm")
            .map_err(Error::OpenKvm)?;

        Ok(Self(kvm))
    }

    /// Returns the CPUID values that are supported by the hypervisor.
    #[cfg(target_arch = "x86_64")]
    pub fn supported_cpuid(&self) -> Result<Vec<kvm_cpuid_entry2>> {
        const MAX_CPUID_ENTRIES: usize = 256;
        let mut supported_cpuid = Cpuid {
            cpuid: kvm_cpuid2 {
                nent: MAX_CPUID_ENTRIES as u32,
                ..Default::default()
            },
            entries: [Default::default(); MAX_CPUID_ENTRIES],
        };

        // TODO: We are not checking for KVM_CAP_EXT_CPUID first.
        // SAFETY: We have allocated an array for the ioctl to write to and correctly specified its size in nent.
        unsafe {
            ioctl::kvm_get_supported_cpuid(self.as_fd().as_raw_fd(), &mut supported_cpuid.cpuid)
                .map_err(Error::GetSupportedCpuid)?;
        }

        Ok(supported_cpuid.entries[..supported_cpuid.cpuid.nent as usize].to_vec())
    }

    pub fn check_extension(&self, extension: u32) -> nix::Result<libc::c_int> {
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe { ioctl::kvm_check_extension(self.as_fd().as_raw_fd(), extension as i32) }
    }

    pub fn new_vm(&self) -> Result<Partition> {
        // On ARM, can request memory isolation which we don't use.
        // For that, include the `KVM_VM_TYPE_ARM_PROTECTED` flag.
        // Use 0 as the fallback machine type, which implies 40bit
        // IPA on ARM64, and on x86_64 is the only option.
        let vm_type = self.check_extension(KVM_CAP_ARM_VM_IPA_SIZE).unwrap_or(0);

        // SAFETY: Calling IOCTL as documented, with no special requirements.
        let vm = unsafe {
            let fd =
                ioctl::kvm_create_vm(self.as_fd().as_raw_fd(), vm_type).map_err(Error::CreateVm)?;
            File::from_raw_fd(fd)
        };

        // TODO: We are not checking KVM_CAP_ENABLE_CAP_VM first.
        // TODO: We are not calling KVM_CHECK_EXTENSION first.
        // SAFETY: Calling IOCTLs as documented, with no special requirements.
        #[cfg(target_arch = "x86_64")]
        unsafe {
            // Disable quirks to make KVM behave more architecturally correct.
            // TODO: Investigate using KVM_CAP_DISABLE_QUIRKS2 instead.
            ioctl::kvm_enable_cap(
                vm.as_raw_fd(),
                &kvm_enable_cap {
                    cap: KVM_CAP_DISABLE_QUIRKS,
                    args: [KVM_X86_QUIRK_LINT0_REENABLED.into(), 0, 0, 0],
                    ..Default::default()
                },
            )
            .map_err(|err| Error::EnableCap("disable_quirks", err))?;
        }

        // SAFETY: Calling IOCTL as documented, with no special requirements.
        let mmap_size = unsafe {
            ioctl::kvm_get_vcpu_mmap_size(self.as_fd().as_raw_fd(), 0)
                .map_err(Error::GetVCpuMmapSize)? as usize
        };

        Ok(Partition {
            vm,
            vps: Vec::new(),
            mmap_size,
        })
    }
}

impl AsFd for Kvm {
    fn as_fd(&self) -> BorrowedFd<'_> {
        self.0.as_fd()
    }
}

#[repr(C)]
#[cfg(target_arch = "x86_64")]
struct Cpuid {
    cpuid: kvm_cpuid2,
    entries: [kvm_cpuid_entry2; 256],
}

#[derive(Debug)]
pub struct Partition {
    vm: File,
    vps: Vec<Option<Vp>>,
    mmap_size: usize,
}

impl Partition {
    pub fn enable_split_irqchip(&self, lines: u32) -> Result<()> {
        // TODO: We are not checking KVM_CAP_ENABLE_CAP_VM first.
        // TODO: We are not calling KVM_CHECK_EXTENSION first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_enable_cap(
                self.vm.as_raw_fd(),
                &kvm_enable_cap {
                    cap: KVM_CAP_SPLIT_IRQCHIP,
                    args: [lines.into(), 0, 0, 0],
                    ..Default::default()
                },
            )
            .map_err(|err| Error::EnableCap("split_irqchip", err))?;
        }
        Ok(())
    }

    /// Enable X2APIC IDs in interrupt and LAPIC APIs.
    #[cfg(target_arch = "x86_64")]
    pub fn enable_x2apic_api(&self) -> Result<()> {
        let flags = KVM_X2APIC_API_USE_32BIT_IDS;
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_enable_cap(
                self.vm.as_raw_fd(),
                &kvm_enable_cap {
                    cap: KVM_CAP_X2APIC_API,
                    args: [flags.into(), 0, 0, 0],
                    ..Default::default()
                },
            )
            .map_err(|err| Error::EnableCap("x2apic_api", err))?;
        }
        Ok(())
    }

    pub fn enable_unknown_msr_exits(&self) -> Result<()> {
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        // TODO: We are not checking KVM_CAP_ENABLE_CAP_VM first.
        unsafe {
            ioctl::kvm_enable_cap(
                self.vm.as_raw_fd(),
                &kvm_enable_cap {
                    cap: KVM_CAP_X86_USER_SPACE_MSR,
                    args: [KVM_MSR_EXIT_REASON_UNKNOWN.into(), 0, 0, 0],
                    ..Default::default()
                },
            )
            .map_err(|err| Error::EnableCap("user_space_msr", err))?;
        }
        Ok(())
    }

    /// Set the VCPU index of the BSP. This must be called before any VCPUs are
    /// created.
    #[cfg(target_arch = "x86_64")]
    pub fn set_bsp(&mut self, vcpu_idx: u32) -> Result<()> {
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_boot_cpu_id(self.vm.as_raw_fd(), vcpu_idx as i32)
                .map_err(Error::SetBsp)?;
        }

        Ok(())
    }

    pub fn add_vp(&mut self, vcpu_idx: u32) -> Result<()> {
        // TODO: We are not checking KVM_CAP_NR_VCPUS or KVM_CAP_MAX_VCPUS first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        let vcpu = unsafe {
            let fd = ioctl::kvm_create_vcpu(self.vm.as_raw_fd(), vcpu_idx as i32)
                .map_err(Error::CreateVCpu)?;
            File::from_raw_fd(fd)
        };

        // SAFETY: Calling mmap with a null pointer is valid, and vcpu is guaranteed to have a valid fd.
        let ptr = unsafe {
            let ptr = libc::mmap(
                std::ptr::null_mut(),
                self.mmap_size,
                libc::PROT_READ | libc::PROT_WRITE,
                libc::MAP_SHARED,
                vcpu.as_raw_fd(),
                0,
            );
            if ptr == libc::MAP_FAILED {
                return Err(Error::MmapVCpu(io::Error::last_os_error()));
            }
            ptr
        };

        #[cfg(target_arch = "aarch64")]
        {
            // Can request additional features like so:
            let mut kvi = kvm_vcpu_init::default();
            kvi.features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;

            if vcpu_idx > 0 {
                kvi.features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
            }

            let mut pref_target = kvm_vcpu_init::default();
            // SAFETY: Calling IOCTL as documented, with no special requirements.
            unsafe {
                ioctl::kvm_arm_preferred_target(self.vm.as_raw_fd(), &mut pref_target)
                    .map_err(Error::CreateVCpu)?
            };

            kvi.target = pref_target.target;
            // SAFETY: Calling IOCTL as documented, with no special requirements.
            unsafe { ioctl::kvm_arm_vcpu_init(vcpu.as_raw_fd(), &kvi).map_err(Error::CreateVCpu)? };
        }

        let vp = Vp {
            vcpu,
            run_data: VpPtr {
                ptr: ptr.cast(),
                len: self.mmap_size,
            },
            thread: RwLock::new(None),
            _phantom: PhantomData,
        };
        if self.vps.len() <= vcpu_idx as usize {
            self.vps.resize_with(vcpu_idx as usize + 1, || None);
        }
        assert!(self.vps[vcpu_idx as usize].replace(vp).is_none());

        Ok(())
    }

    pub fn vp(&self, index: u32) -> Processor<'_> {
        Processor(self, index)
    }

    pub fn request_msi(&self, msi: &kvm_msi) -> Result<()> {
        // TODO: We are not checking KVM_CAP_SIGNAL_MSI first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_signal_msi(self.vm.as_raw_fd(), msi).map_err(Error::SignalMsi)?;
        }
        Ok(())
    }

    #[expect(clippy::missing_safety_doc, clippy::undocumented_unsafe_blocks)]
    pub unsafe fn set_user_memory_region(
        &self,
        slot: u32,
        data: *mut u8,
        size: usize,
        addr: u64,
        readonly: bool,
    ) -> Result<()> {
        let region = kvm_userspace_memory_region {
            slot,
            flags: if readonly { KVM_MEM_READONLY } else { 0 },
            guest_phys_addr: addr,
            memory_size: size as u64,
            userspace_addr: data as usize as u64,
        };
        unsafe {
            ioctl::kvm_set_user_memory_region(self.vm.as_raw_fd(), &region)
                .map_err(Error::SetMemoryRegion)?;
        }
        Ok(())
    }

    pub fn set_gsi_routes(&self, routes: &[(u32, RoutingEntry)]) -> Result<()> {
        const MAX_ROUTES: usize = 2048;
        assert!(routes.len() <= MAX_ROUTES);

        #[repr(C)]
        struct Routes {
            header: kvm_irq_routing,
            entries: [kvm_irq_routing_entry; MAX_ROUTES],
        }

        let mut kvm_routes = Routes {
            header: Default::default(),
            entries: [Default::default(); MAX_ROUTES],
        };
        for (i, route) in routes.iter().enumerate() {
            let (type_, u) = match route.1 {
                RoutingEntry::Msi {
                    address_lo,
                    address_hi,
                    data,
                } => (
                    KVM_IRQ_ROUTING_MSI,
                    kvm_irq_routing_entry__bindgen_ty_1 {
                        msi: kvm_irq_routing_msi {
                            address_lo,
                            address_hi,
                            data,
                            __bindgen_anon_1: Default::default(),
                        },
                    },
                ),
                RoutingEntry::HvSint { vp, sint } => (
                    KVM_IRQ_ROUTING_HV_SINT,
                    kvm_irq_routing_entry__bindgen_ty_1 {
                        hv_sint: kvm_irq_routing_hv_sint {
                            vcpu: vp,
                            sint: sint.into(),
                        },
                    },
                ),
                RoutingEntry::Irqchip { pin } => (
                    KVM_IRQ_ROUTING_IRQCHIP,
                    kvm_irq_routing_entry__bindgen_ty_1 {
                        irqchip: kvm_irq_routing_irqchip { pin, irqchip: 0 },
                    },
                ),
            };
            kvm_routes.entries[i] = kvm_irq_routing_entry {
                gsi: route.0,
                type_,
                flags: 0,
                pad: 0,
                u,
            };
            kvm_routes.header.nr += 1;
        }

        // TODO: We are not checking KVM_CAP_IRQ_ROUTING first.
        // SAFETY: Our Routes type puts the entries array immediately after the header in memory, as required.
        unsafe {
            ioctl::kvm_set_gsi_routing(self.vm.as_raw_fd(), &kvm_routes.header)
                .map_err(Error::SetGsiRouting)?;
        }
        Ok(())
    }

    pub fn irqfd(&self, gsi: u32, event: RawFd, assign: bool) -> Result<()> {
        // TODO: We are not checking KVM_CAP_IRQFD first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_irqfd(
                self.vm.as_raw_fd(),
                &kvm_irqfd {
                    fd: event as u32,
                    gsi,
                    flags: if assign { 0 } else { KVM_IRQFD_FLAG_DEASSIGN },
                    resamplefd: 0,
                    pad: [0; 16],
                },
            )
            .map_err(Error::IrqFd)
            .map(drop)
        }
    }

    pub fn irq_line(&self, gsi: u32, level: bool) -> Result<()> {
        // TODO: We are not checking KVM_CAP_IRQCHIP first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_irq_line(
                self.vm.as_raw_fd(),
                &kvm_irq_level {
                    __bindgen_anon_1: kvm_irq_level__bindgen_ty_1 { irq: gsi },
                    level: level.into(),
                },
            )
            .map_err(Error::IrqLine)?;
        }
        Ok(())
    }

    pub fn ioeventfd(
        &self,
        datamatch: u64,
        addr: u64,
        len: u32,
        fd: i32,
        flags: u32,
    ) -> Result<()> {
        // TODO: We are not checking KVM_CAP_IOEVENTFD first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_ioeventfd(
                self.vm.as_raw_fd(),
                &kvm_ioeventfd {
                    datamatch,
                    addr,
                    len,
                    fd,
                    flags,
                    ..Default::default()
                },
            )
            .map_err(Error::IoEventFd)?;
        };
        Ok(())
    }

    pub fn create_device(&self, ty: u32, flags: u32) -> nix::Result<Device> {
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        // The reference: https://www.kernel.org/doc/html/latest/virt/kvm/api.html#kvm-create-device.
        // The kernel checks on the input parameters and returns the appropriate
        // error code.
        unsafe {
            let mut device = kvm_create_device {
                type_: ty,
                fd: 0,
                flags,
            };
            ioctl::kvm_create_device(self.vm.as_raw_fd(), &mut device)?;
            Ok(Device(File::from_raw_fd(device.fd as i32)))
        }
    }
}

/// An in-kernel emulated device.
pub struct Device(File);

impl Device {
    /// # Safety
    ///
    /// `addr` must point to the appropriate input for the attribute being
    /// set.
    pub unsafe fn set_device_attr<T>(
        &self,
        group: u32,
        attr: u32,
        addr: &T,
        flags: u32,
    ) -> nix::Result<()> {
        // SAFETY: caller guaranteed.
        unsafe {
            ioctl::kvm_set_device_attr(
                self.0.as_raw_fd(),
                &kvm_device_attr {
                    group,
                    attr: attr as u64,
                    addr: std::ptr::from_ref(addr) as u64,
                    flags,
                },
            )?;
        }
        Ok(())
    }
}

#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum RoutingEntry {
    Irqchip {
        pin: u32,
    },
    Msi {
        address_lo: u32,
        address_hi: u32,
        data: u32,
    },
    HvSint {
        vp: u32,
        sint: u8,
    },
}

pub struct Processor<'a>(&'a Partition, u32);

impl<'a> Processor<'a> {
    pub fn enable_synic(&self) -> Result<()> {
        // TODO: We are not checking KVM_CAP_ENABLE_CAP_VM first.
        // TODO: We are not calling KVM_CHECK_EXTENSION first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_enable_cap(
                self.get().vcpu.as_raw_fd(),
                &kvm_enable_cap {
                    cap: KVM_CAP_HYPERV_SYNIC2,
                    ..Default::default()
                },
            )
            .map_err(|err| Error::EnableCap("hyperv_synic2", err))?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn set_cpuid(&self, entries: &[kvm_cpuid_entry2]) -> Result<()> {
        const MAX_CPUID_ENTRIES: usize = 256;
        assert!(entries.len() <= MAX_CPUID_ENTRIES);

        let mut cpuid: Cpuid = Cpuid {
            cpuid: Default::default(),
            entries: [Default::default(); MAX_CPUID_ENTRIES],
        };
        for (i, e) in entries.iter().enumerate() {
            cpuid.entries[i] = *e;
            cpuid.cpuid.nent += 1;
        }

        // SAFETY: Our Cpuid type puts the entries array immediately after the header in memory, as required.
        unsafe {
            ioctl::kvm_set_cpuid2(self.get().vcpu.as_raw_fd(), &cpuid.cpuid)
                .map_err(Error::SetCpuid)?;
        }
        Ok(())
    }

    fn get(&self) -> &'a Vp {
        self.0.vps[self.1 as usize].as_ref().expect("vp exists")
    }

    /// Forces an exit to be returned from the next call to [`VpRunner::run`].
    ///
    /// Note that this does nothing if a [`VpRunner`] does not currently exist
    /// for this VP, or if this is called from the same thread as the runner.
    pub fn force_exit(&self) {
        let vp = self.get();
        let thread = vp.thread.read();
        if let Some(thread) = *thread {
            if thread != Pthread::current() {
                thread
                    .signal(libc::SIGRTMIN())
                    .expect("thread cancel signal failed");
            }
        }
    }

    pub fn interrupt(&self, vector: u32) -> Result<()> {
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_interrupt(self.get().vcpu.as_raw_fd(), &kvm_interrupt { irq: vector })
                .map_err(Error::Interrupt)?;
        };
        Ok(())
    }

    /// Very not structured way of setting the register. Could enjoy using an enum.
    pub fn set_reg64(&self, reg_id: u64, value: u64) -> Result<()> {
        let reg = kvm_one_reg {
            id: reg_id,
            addr: std::ptr::from_ref(&value) as u64,
        };
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_reg(self.get().vcpu.as_raw_fd(), &reg).map_err(Error::SetRegs)?;
        }
        Ok(())
    }

    #[cfg(not(target_arch = "aarch64"))]
    pub fn set_regs(&self, regs: &kvm_regs) -> Result<()> {
        // This IOCTL does not work on arm64.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_regs(self.get().vcpu.as_raw_fd(), regs).map_err(Error::SetRegs)?;
        }
        Ok(())
    }

    #[cfg(not(target_arch = "aarch64"))]
    pub fn set_sregs(&self, sregs: &kvm_sregs) -> Result<()> {
        // This IOCTL does not work on arm64.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_sregs(self.get().vcpu.as_raw_fd(), sregs).map_err(Error::SetRegs)?;
        }
        Ok(())
    }

    /// Very not structured way of getting the register. Could enjoy using an enum.
    pub fn get_reg64(&self, reg_id: u64) -> Result<u64> {
        let mut value: u64 = 0;
        let reg = kvm_one_reg {
            id: reg_id,
            addr: std::ptr::from_mut(&mut value) as u64,
        };
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_get_reg(self.get().vcpu.as_raw_fd(), &reg).map_err(Error::GetRegs)?;
        }

        Ok(value)
    }

    #[cfg(not(target_arch = "aarch64"))]
    pub fn get_regs(&self) -> Result<kvm_regs> {
        let mut regs = Default::default();
        // This IOCTL does not work on arm64.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_get_regs(self.get().vcpu.as_raw_fd(), &mut regs).map_err(Error::GetRegs)?;
        }
        Ok(regs)
    }

    #[cfg(not(target_arch = "aarch64"))]
    pub fn get_sregs(&self) -> Result<kvm_sregs> {
        let mut sregs = Default::default();
        // This IOCTL does not work on arm64.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_get_sregs(self.get().vcpu.as_raw_fd(), &mut sregs)
                .map_err(Error::GetSRegs)?;
        }
        Ok(sregs)
    }

    #[cfg(target_arch = "x86_64")]
    pub fn get_msrs(&self, msrs: &[u32], values: &mut [u64]) -> Result<()> {
        const MAX_MSR_ENTRIES: usize = 256;
        assert_eq!(msrs.len(), values.len());
        assert!(msrs.len() <= MAX_MSR_ENTRIES);

        #[repr(C)]
        struct Msrs {
            header: kvm_msrs,
            entries: [kvm_msr_entry; MAX_MSR_ENTRIES],
        }
        let mut input = Msrs {
            header: kvm_msrs {
                nmsrs: msrs.len() as u32,
                ..Default::default()
            },
            entries: [Default::default(); MAX_MSR_ENTRIES],
        };
        for (i, msr) in msrs.iter().enumerate() {
            input.entries[i] = kvm_msr_entry {
                index: *msr,
                reserved: 0,
                data: 0,
            };
        }

        // SAFETY: Our Msrs type puts the entries array immediately after the header in memory, as required.
        unsafe {
            ioctl::kvm_get_msrs(self.get().vcpu.as_raw_fd(), &mut input.header)
                .map_err(Error::GetMsrs)?;
        }
        for (v, e) in values.iter_mut().zip(&input.entries) {
            *v = e.data;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn set_msrs(&self, msrs: &[(u32, u64)]) -> Result<()> {
        const MAX_MSR_ENTRIES: usize = 256;
        assert!(msrs.len() <= MAX_MSR_ENTRIES);

        #[repr(C)]
        struct Msrs {
            header: kvm_msrs,
            entries: [kvm_msr_entry; MAX_MSR_ENTRIES],
        }
        let mut input = Msrs {
            header: kvm_msrs {
                nmsrs: msrs.len() as u32,
                ..Default::default()
            },
            entries: [Default::default(); MAX_MSR_ENTRIES],
        };
        for (i, msr) in msrs.iter().enumerate() {
            input.entries[i] = kvm_msr_entry {
                index: msr.0,
                reserved: 0,
                data: msr.1,
            };
        }

        // SAFETY: Our Msrs type puts the entries array immediately after the header in memory, as required.
        unsafe {
            ioctl::kvm_set_msrs(self.get().vcpu.as_raw_fd(), &input.header)
                .map_err(Error::SetMsrs)?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn get_lapic(&self, state: &mut [u8; 1024]) -> Result<()> {
        assert_eq!(size_of_val(state), size_of::<kvm_lapic_state>());

        // TODO: We are not checking KVM_CAP_IRQCHIP first.
        // SAFETY: We have verified that our output buffer is the correct size.
        unsafe {
            ioctl::kvm_get_lapic(self.get().vcpu.as_raw_fd(), state.as_mut_ptr().cast())
                .map_err(Error::GetLApic)?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn set_lapic(&self, state: &[u8; 1024]) -> Result<()> {
        assert_eq!(size_of_val(state), size_of::<kvm_lapic_state>());

        // TODO: We are not checking KVM_CAP_IRQCHIP first.
        // SAFETY: We have verified that our input buffer is the correct size.
        unsafe {
            ioctl::kvm_set_lapic(self.get().vcpu.as_raw_fd(), state.as_ptr().cast())
                .map_err(Error::SetLApic)?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn get_xsave(&self, state: &mut [u8; 4096]) -> Result<()> {
        assert_eq!(size_of_val(state), size_of::<kvm_xsave>());

        // TODO: We are not checking KVM_CAP_XSAVE2 first.
        // SAFETY: We have verified that our output buffer is the correct size.
        unsafe {
            ioctl::kvm_get_xsave(self.get().vcpu.as_raw_fd(), state.as_mut_ptr().cast())
                .map_err(Error::GetXsave)?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn set_xsave(&self, state: &[u8; 4096]) -> Result<()> {
        assert_eq!(size_of_val(state), size_of::<kvm_xsave>());

        // TODO: We are not checking KVM_CAP_XSAVE2 first.
        // SAFETY: We have verified that our input buffer is the correct size.
        unsafe {
            ioctl::kvm_set_xsave(self.get().vcpu.as_raw_fd(), state.as_ptr().cast())
                .map_err(Error::SetXsave)?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn set_debug_regs(&self, regs: &DebugRegisters) -> Result<()> {
        let data = kvm_debugregs {
            db: regs.db,
            dr6: regs.dr6,
            dr7: regs.dr7,
            flags: 0,
            reserved: [0; 9],
        };

        // TODO: We are not checking KVM_CAP_DEBUGREGS first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_debugregs(self.get().vcpu.as_raw_fd(), &data)
                .map_err(Error::SetDebugRegs)?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn get_debug_regs(&self) -> Result<DebugRegisters> {
        let mut data = Default::default();

        // TODO: We are not checking KVM_CAP_DEBUGREGS first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_get_debugregs(self.get().vcpu.as_raw_fd(), &mut data)
                .map_err(Error::GetDebugRegs)?;
        }

        Ok(DebugRegisters {
            db: data.db,
            dr6: data.dr6,
            dr7: data.dr7,
        })
    }

    #[cfg(target_arch = "x86_64")]
    pub fn set_xcr0(&self, value: u64) -> Result<()> {
        let mut data = kvm_xcrs {
            nr_xcrs: 1,
            ..Default::default()
        };
        data.xcrs[0] = kvm_xcr {
            xcr: 0,
            reserved: 0,
            value,
        };

        // TODO: We are not checking KVM_CAP_XCRS first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_xcrs(self.get().vcpu.as_raw_fd(), &data).map_err(Error::GetXcrs)?;
        }
        Ok(())
    }

    #[cfg(target_arch = "x86_64")]
    pub fn get_xcr0(&self) -> Result<u64> {
        let mut data = Default::default();

        // TODO: We are not checking KVM_CAP_XCRS first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_get_xcrs(self.get().vcpu.as_raw_fd(), &mut data).map_err(Error::SetXcrs)?;
        }

        if data.nr_xcrs < 1 {
            return Err(Error::XsaveNotEnabled);
        }
        assert_eq!(data.nr_xcrs, 1);
        assert_eq!(data.xcrs[0].xcr, 0);
        Ok(data.xcrs[0].value)
    }

    pub fn set_mp_state(&self, state: u32) -> Result<()> {
        let state = kvm_mp_state { mp_state: state };
        // TODO: We are not checking KVM_CAP_MP_STATE first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_mp_state(self.get().vcpu.as_raw_fd(), &state)
                .map_err(Error::SetMpState)?;
        }
        Ok(())
    }

    pub fn get_mp_state(&self) -> Result<u32> {
        let mut state = Default::default();
        // TODO: We are not checking KVM_CAP_MP_STATE first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_get_mp_state(self.get().vcpu.as_raw_fd(), &mut state)
                .map_err(Error::GetMpState)?;
        }
        Ok(state.mp_state)
    }

    pub fn set_vcpu_events(&self, events: &kvm_vcpu_events) -> Result<()> {
        // TODO: We are not checking KVM_CAP_VCPU_EVENTS first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_vcpu_events(self.get().vcpu.as_raw_fd(), events)
                .map_err(Error::SetVcpuEvents)?;
        }
        Ok(())
    }

    pub fn get_vcpu_events(&self) -> Result<kvm_vcpu_events> {
        let mut events = Default::default();
        // TODO: We are not checking KVM_CAP_VCPU_EVENTS first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_get_vcpu_events(self.get().vcpu.as_raw_fd(), &mut events)
                .map_err(Error::GetVcpuEvents)?;
        }
        Ok(events)
    }

    pub fn translate_gva(&self, gva: u64) -> Result<kvm_translation> {
        let mut translation = kvm_translation {
            linear_address: gva,
            ..Default::default()
        };

        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_translation(self.get().vcpu.as_raw_fd(), &mut translation)
                .map_err(Error::TranslateGva)?;
        }

        Ok(translation)
    }

    /// Sets the guest debugging state: `control` bits `KVM_GUESTDBG_*`, `db`
    /// containing DR0 through DR3, and `dr7`.
    #[cfg(target_arch = "x86_64")]
    pub fn set_guest_debug(&self, control: u32, db: [u64; 4], dr7: u64) -> Result<()> {
        // N.B. Debug registers 4 through 6 are not used by KVM in this path.
        let debug = kvm_guest_debug {
            control,
            pad: 0,
            arch: kvm_guest_debug_arch {
                debugreg: [db[0], db[1], db[2], db[3], 0, 0, 0, dr7],
            },
        };

        // TODO: We are not checking KVM_CAP_SET_GUEST_DEBUG first.
        // SAFETY: Calling IOCTL as documented, with no special requirements.
        unsafe {
            ioctl::kvm_set_guest_debug(self.get().vcpu.as_raw_fd(), &debug)
                .map_err(Error::GetRegs)?;
        }
        Ok(())
    }

    /// # Safety
    ///
    /// `addr` must point to the appropriate input for the attribute being
    /// set.
    pub unsafe fn set_device_attr<T>(
        &self,
        group: u32,
        attr: u32,
        addr: &T,
        flags: u32,
    ) -> nix::Result<libc::c_int> {
        // SAFETY: caller guaranteed.
        unsafe {
            ioctl::kvm_set_device_attr(
                self.get().vcpu.as_raw_fd(),
                &kvm_device_attr {
                    group,
                    attr: attr as u64,
                    addr: std::ptr::from_ref(addr) as u64,
                    flags,
                },
            )
        }
    }

    pub fn runner(&self) -> VpRunner<'a> {
        // Ensure this thread is uniquely running the VP, and store the thread
        // ID to support cancellation.
        assert!(
            self.get()
                .thread
                .write()
                .replace(Pthread::current())
                .is_none()
        );

        VpRunner {
            partition: self.0,
            idx: self.1,
            _not_send_sync: PhantomData,
        }
    }
}

pub struct VpRunner<'a> {
    partition: &'a Partition,
    idx: u32,
    // This type stores the current thread in `partition` and removes it in
    // `drop`, so don't allow sending or sharing this.
    _not_send_sync: PhantomData<*const u8>,
}

impl Drop for VpRunner<'_> {
    fn drop(&mut self) {
        // The thread is no longer in use.
        let thread = self.get().thread.write().take();
        assert_eq!(thread, Some(Pthread::current()));
    }
}

impl<'a> VpRunner<'a> {
    fn get(&self) -> &'a Vp {
        self.partition.vp(self.idx).get()
    }

    fn run_data(&mut self) -> &mut kvm_run {
        let vp = self.get();
        // SAFETY: there are no other references to this data right
        // now since this thread is uniquely processing the VP, and
        // the VP is not running (so the kernel is not mutating the
        // structure either).
        unsafe { &mut *vp.run_data.ptr }
    }

    fn run_data_slice(&mut self) -> &mut [u8] {
        let vp = self.get();
        // SAFETY: there are no other references to this data right
        // now since this thread is uniquely processing the VP, and
        // the VP is not running (so the kernel is not mutating the
        // structure either).
        unsafe { std::slice::from_raw_parts_mut(vp.run_data.ptr.cast::<u8>(), vp.run_data.len) }
    }

    /// Issues an IOCTL to run the VP.
    fn run_vp_once(&mut self) -> Result<bool> {
        CURRENT_KVM_RUN.with(|r| {
            let vp = self.get();

            // Clear immediate_exit before giving up exclusive ownership of the
            // kvm_run structure.
            self.run_data().immediate_exit = 0;

            // Swap the kvm_run structure pointer in so the signal handler can set
            // immediate_exit if the signal arrives just before the kvm_run ioctl.
            match r.swap(vp.run_data.ptr as usize, Ordering::Relaxed) {
                NO_KVM_RUN => {}
                CANCEL_KVM_RUN => {
                    // A cancel request signal arrived before the swap. Set
                    // immediate_exit so that any pending exit gets completed,
                    // and then the IOCTL returns before actually running the
                    // VP.
                    //
                    // The kvm_run structure is now aliased, so don't call
                    // `run_data()` to get it.
                    //
                    // SAFETY: the signal thread that might access the structure
                    // will also use `set_immediate_exit`.
                    unsafe { set_immediate_exit(vp.run_data.ptr) };
                }
                state => unreachable!("unexpected state {:#x}", state),
            }

            // SAFETY: Calling IOCTL as documented, with no special requirements.
            let result = unsafe { ioctl::kvm_run(vp.vcpu.as_raw_fd(), 0) };
            CURRENT_KVM_RUN.with(|r| r.store(NO_KVM_RUN, Ordering::Relaxed));
            match result {
                Ok(_) => Ok(true),
                Err(err) => match err {
                    nix::errno::Errno::EINTR | nix::errno::Errno::EAGAIN => Ok(false),
                    _ => Err(Error::Run(err)),
                },
            }
        })
    }

    /// Completes the current exit without running the VP further.
    ///
    /// This may generate more exits.
    pub fn complete_exit(&mut self) -> Result<Exit<'_>, Error> {
        CURRENT_KVM_RUN.with(|run| run.store(CANCEL_KVM_RUN, Ordering::Relaxed));
        self.run()
    }

    /// Continues running the VP.
    ///
    /// Runs until an exit occurs or interrupted by a signal or a call to
    /// [`Processor::force_exit`].
    pub fn run(&mut self) -> Result<Exit<'_>, Error> {
        if !self.run_vp_once()? {
            return Ok(Exit::Interrupted);
        }

        let exit = match self.run_data().exit_reason {
            KVM_EXIT_DEBUG => {
                // SAFETY: no other references to this data.
                let debug = unsafe { &self.run_data().__bindgen_anon_1.debug };

                #[cfg(not(target_arch = "x86_64"))]
                {
                    _ = debug;
                    todo!("debug exit on non-x86_64")
                }

                #[cfg(target_arch = "x86_64")]
                {
                    Exit::Debug {
                        exception: debug.arch.exception,
                        pc: debug.arch.pc,
                        dr6: debug.arch.dr6,
                        dr7: debug.arch.dr7,
                    }
                }
            }
            KVM_EXIT_IO => {
                // SAFETY: this is the active union field.
                let io = unsafe { self.run_data().__bindgen_anon_1.io };

                let offset = io.data_offset as usize;
                let data = &mut self.run_data_slice()
                    [offset..offset + io.size as usize * io.count as usize];
                if io.direction == KVM_EXIT_IO_IN as u8 {
                    Exit::IoIn {
                        port: io.port,
                        size: io.size,
                        data,
                    }
                } else {
                    Exit::IoOut {
                        port: io.port,
                        size: io.size,
                        data,
                    }
                }
            }
            KVM_EXIT_IRQ_WINDOW_OPEN => {
                let rdata = self.run_data();
                assert!(rdata.ready_for_interrupt_injection != 0);
                rdata.request_interrupt_window = 0;
                Exit::InterruptWindow
            }
            KVM_EXIT_MMIO => {
                // SAFETY: this is the active union field.
                let mmio = unsafe { &mut self.run_data().__bindgen_anon_1.mmio };
                if mmio.is_write != 0 {
                    Exit::MmioWrite {
                        address: mmio.phys_addr,
                        data: &mmio.data[0..mmio.len as usize],
                    }
                } else {
                    mmio.data = [0; 8];
                    Exit::MmioRead {
                        address: mmio.phys_addr,
                        data: &mut mmio.data[0..mmio.len as usize],
                    }
                }
            }
            KVM_EXIT_SHUTDOWN => Exit::Shutdown,
            KVM_EXIT_HYPERV => {
                // SAFETY: this is the active union field.
                let hyperv = unsafe { &mut self.run_data().__bindgen_anon_1.hyperv };
                match hyperv.type_ {
                    KVM_EXIT_HYPERV_HCALL => {
                        // SAFETY: this is the active union field.
                        let hcall = unsafe { &mut hyperv.u.hcall };
                        Exit::HvHypercall {
                            input: hcall.input,
                            result: &mut hcall.result,
                            params: hcall.params,
                        }
                    }
                    KVM_EXIT_HYPERV_SYNIC => {
                        // SAFETY: this is the active union field.
                        let synic = unsafe { &hyperv.u.synic };
                        Exit::SynicUpdate {
                            msr: synic.msr,
                            control: synic.control,
                            siefp: synic.evt_page,
                            simp: synic.msg_page,
                        }
                    }
                    _ => return Err(Error::UnknownHvExit(hyperv.type_)),
                }
            }
            KVM_EXIT_IOAPIC_EOI => {
                // SAFETY: this is the active union field.
                let eoi = unsafe { &mut self.run_data().__bindgen_anon_1.eoi };

                Exit::Eoi { irq: eoi.vector }
            }
            KVM_EXIT_FAIL_ENTRY => {
                // SAFETY: this is the active union field.
                let fail_entry = unsafe { &self.run_data().__bindgen_anon_1.fail_entry };
                Exit::FailEntry {
                    hardware_entry_failure_reason: fail_entry.hardware_entry_failure_reason,
                }
            }
            KVM_EXIT_INTERNAL_ERROR => {
                // SAFETY: this is the active union field.
                let internal = unsafe { &self.run_data().__bindgen_anon_1.internal };
                if internal.suberror == KVM_INTERNAL_ERROR_EMULATION {
                    // FUTURE: update bindings and get the instruction bytes when they are present.
                    Exit::EmulationFailure {
                        instruction_bytes: &[],
                    }
                } else {
                    Exit::InternalError {
                        error: internal.suberror,
                        data: &internal.data[..internal.ndata as usize],
                    }
                }
            }
            KVM_EXIT_X86_WRMSR => {
                // SAFETY: this is the active union field.
                let msr = unsafe { &mut self.run_data().__bindgen_anon_1.msr };
                msr.error = 0;
                Exit::MsrWrite {
                    index: msr.index,
                    data: msr.data,
                    error: &mut msr.error,
                }
            }
            KVM_EXIT_X86_RDMSR => {
                // SAFETY: this is the active union field.
                let msr = unsafe { &mut self.run_data().__bindgen_anon_1.msr };
                msr.data = 0;
                msr.error = 0;
                Exit::MsrRead {
                    index: msr.index,
                    data: &mut msr.data,
                    error: &mut msr.error,
                }
            }
            exit_reason => return Err(Error::UnknownExit(exit_reason)),
        };
        Ok(exit)
    }

    /// Request an exit when the interrupt window opens.
    ///
    /// Returns true if the window is already open (in which case the request is
    /// not registered).
    #[must_use]
    pub fn check_or_request_interrupt_window(&mut self) -> bool {
        let rdata = self.run_data();
        if rdata.ready_for_interrupt_injection != 0 {
            true
        } else {
            rdata.request_interrupt_window = 1;
            false
        }
    }

    /// Injects an extint interrupt.
    ///
    /// Caller must ensure that either it has received a
    /// [`Exit::InterruptWindow`] exit, or that
    /// [`Self::check_or_request_interrupt_window`] has returned `true`.
    pub fn inject_extint_interrupt(&mut self, vector: u8) -> Result<()> {
        self.partition.vp(self.idx).interrupt(vector.into())?;
        // Remember that there is a pending extint interrupt. KVM will update
        // this field again after the VP runs.
        self.run_data().ready_for_interrupt_injection = 0;
        Ok(())
    }
}

#[derive(Debug)]
pub enum Exit<'a> {
    Interrupted,
    InterruptWindow,
    IoIn {
        port: u16,
        size: u8,
        data: &'a mut [u8],
    },
    IoOut {
        port: u16,
        size: u8,
        data: &'a [u8],
    },
    MmioRead {
        address: u64,
        data: &'a mut [u8],
    },
    MmioWrite {
        address: u64,
        data: &'a [u8],
    },
    MsrRead {
        index: u32,
        data: &'a mut u64,
        error: &'a mut u8,
    },
    MsrWrite {
        index: u32,
        data: u64,
        error: &'a mut u8,
    },
    Shutdown,
    FailEntry {
        hardware_entry_failure_reason: u64,
    },
    InternalError {
        error: u32,
        data: &'a [u64],
    },
    EmulationFailure {
        instruction_bytes: &'a [u8],
    },
    SynicUpdate {
        msr: u32,
        control: u64,
        siefp: u64,
        simp: u64,
    },
    HvHypercall {
        input: u64,
        result: &'a mut u64,
        params: [u64; 2],
    },
    Debug {
        exception: u32,
        pc: u64,
        dr6: u64,
        dr7: u64,
    },
    Eoi {
        irq: u8,
    },
}

/// Set up a signal used to cause KVM run_vp to return.
pub fn init() {
    static SIGNAL_HANDLER_INIT: Once = Once::new();
    SIGNAL_HANDLER_INIT.call_once(|| {
        let handler = || {
            CURRENT_KVM_RUN.with(|run| {
                // This interrupts the other code that accesses CURRENT_KVM_RUN, so a
                // compare_exchange is not necessary.
                let rdata = run.load(Ordering::Relaxed);
                match rdata {
                    NO_KVM_RUN => run.store(CANCEL_KVM_RUN, Ordering::Relaxed),
                    CANCEL_KVM_RUN => {}
                    _ => {
                        // SAFETY: other concurrent accesses to the structure are via
                        // `set_immediate_exit` or via atomic accesses in the kernel.
                        unsafe { set_immediate_exit(rdata as *mut kvm_run) };
                    }
                }
            })
        };
        // Ensure the thread local is initialized.
        CURRENT_KVM_RUN.with(|value| {
            std::hint::black_box(value);
        });
        // SAFETY: The signal handler does not perform any actions that are forbidden
        // for signal handlers to perform, as it only performs thread-local and atomic
        // reads and writes. We are guaranteed to not interrupt thread local initialization
        // as we have ensured it is initialized above.
        unsafe {
            signal_hook::low_level::register(libc::SIGRTMIN(), handler).unwrap();
        }
    });
}

const NO_KVM_RUN: usize = 0;
const CANCEL_KVM_RUN: usize = 1;

thread_local! {
    static CURRENT_KVM_RUN: AtomicUsize = const { AtomicUsize::new(NO_KVM_RUN) };
}

/// Sets `rdata.immediate_exit` to 1 without constructing a mutable reference.
///
/// This can be used when the kvm_run is aliased by the kernel or by other
/// threads that might call this function.
#[expect(clippy::missing_safety_doc)]
unsafe fn set_immediate_exit(rdata: *mut kvm_run) {
    // SAFETY: rdata may be aliased by the kernel right now, so it's
    // not safe to construct a mutable reference to it. Use an
    // atomic store to carefully write without requiring a mutable
    // reference.
    unsafe {
        (*(std::ptr::addr_of!((*rdata).immediate_exit).cast::<AtomicU8>()))
            .store(1, Ordering::Relaxed);
    }
}

pub struct DebugRegisters {
    /// DR0-3.
    pub db: [u64; 4],
    pub dr6: u64,
    pub dr7: u64,
}