ide/drive/
atapi_drive.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

//! Implements atapi commands handler of optical drive.

use super::DriveRegister;
use crate::DmaType;
use crate::protocol;
use crate::protocol::DeviceControlReg;
use crate::protocol::DeviceHeadReg;
use crate::protocol::ErrorReg;
use crate::protocol::IdeCommand;
use crate::protocol::Status;
use guestmem::AlignedHeapMemory;
use guestmem::GuestMemory;
use guestmem::ranges::PagedRange;
use ide_resources::IdePath;
use inspect::Inspect;
use safeatomic::AtomicSliceOps;
use scsi::AdditionalSenseCode;
use scsi::SenseKey;
use scsi_buffers::RequestBuffers;
use scsi_core::AsyncScsiDisk;
use scsi_core::ScsiResult;
use scsi_defs as scsi;
use std::future::Future;
use std::pin::Pin;
use std::sync::Arc;
use std::task::Context;
use std::task::Poll;
use std::task::Waker;
use zerocopy::FromZeros;
use zerocopy::IntoBytes;

// This disk supports 12-byte CDBs.
const COMMAND_PACKET_SIZE: usize = 12;

const MAX_TRANSFER_LEN: usize = 128 * 1024;

#[derive(Debug, Copy, Clone, PartialEq, Inspect)]
struct Sense {
    #[inspect(debug)]
    sense_key: SenseKey,
    #[inspect(debug)]
    additional_sense_code: AdditionalSenseCode,
    additional_sense_code_qualifier: u8,
}

impl Default for Sense {
    fn default() -> Self {
        Self {
            sense_key: FromZeros::new_zeroed(),
            additional_sense_code: FromZeros::new_zeroed(),
            additional_sense_code_qualifier: Default::default(),
        }
    }
}

impl Sense {
    fn new(
        sense_key: SenseKey,
        additional_sense_code: AdditionalSenseCode,
        additional_sense_code_qualifier: u8,
    ) -> Self {
        Self {
            sense_key,
            additional_sense_code,
            additional_sense_code_qualifier,
        }
    }
}

/// The device command and control register sets.
///
#[derive(Debug, Inspect)]
struct Registers {
    error: ErrorReg, // N.B. this may have a value even if !error_pending
    #[inspect(hex)]
    features: u8,
    device_head: DeviceHeadReg,
    #[inspect(hex)]
    lba_low: u8, // Linux writes to it
    #[inspect(hex)]
    byte_count_low: u8,
    #[inspect(hex)]
    byte_count_high: u8,
    #[inspect(hex)]
    sector_count: u8,
    device_control_reg: DeviceControlReg,
    status: Status,
}

impl Registers {
    fn at_reset() -> Self {
        Self {
            byte_count_low: protocol::ATAPI_RESET_LBA_MID,
            byte_count_high: protocol::ATAPI_RESET_LBA_HIGH,
            lba_low: 1, // CHS mode
            device_head: DeviceHeadReg::new(),
            error: ErrorReg::new().with_amnf_ili_default(true),
            features: 0,
            sector_count: protocol::ATAPI_READY_FOR_PACKET_DEFAULT,
            device_control_reg: DeviceControlReg::new(),
            status: Status::new(),
        }
    }

    fn reset_signature(&mut self, reset_dev: bool) {
        self.byte_count_low = protocol::ATAPI_RESET_LBA_MID;
        self.byte_count_high = protocol::ATAPI_RESET_LBA_HIGH;
        self.lba_low = 1;
        self.sector_count = 1;
        let dev = if reset_dev {
            false
        } else {
            self.device_head.dev()
        };
        self.device_head = DeviceHeadReg::new().with_dev(dev);
    }
}

#[derive(Debug)]
struct CommandBuffer {
    buffer: Arc<AlignedHeapMemory>,
}

#[derive(Debug)]
struct CommandBufferAccess {
    memory: GuestMemory,
}

impl CommandBuffer {
    fn new() -> Self {
        Self {
            buffer: Arc::new(AlignedHeapMemory::new(MAX_TRANSFER_LEN)),
        }
    }

    fn access(&self) -> CommandBufferAccess {
        CommandBufferAccess {
            memory: GuestMemory::new("atapi_buffer", self.buffer.clone()),
        }
    }
}

impl CommandBufferAccess {
    fn buffers(&self, offset: usize, len: usize, is_write: bool) -> RequestBuffers<'_> {
        // The buffer is 32 4KB pages long.
        static BUFFER_RANGE: Option<PagedRange<'_>> = PagedRange::new(
            0,
            MAX_TRANSFER_LEN,
            &[
                0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
                23, 24, 25, 26, 27, 28, 29, 30, 31,
            ],
        );

        RequestBuffers::new(
            &self.memory,
            BUFFER_RANGE.unwrap().subrange(offset, len),
            is_write,
        )
    }
}

#[derive(Debug, Inspect)]
struct BufferState {
    /// The current byte into the buffer.
    current_byte: u32,
    /// The total number of bytes in buffer.
    total_bytes: u32,
    /// If this buffer can be accessed via DMA, the direction of access.
    dma_type: Option<DmaType>,
}

impl BufferState {
    fn new(len: u32, dma: Option<DmaType>) -> Self {
        assert!(len != 0);
        assert!((len as usize) <= MAX_TRANSFER_LEN);
        Self {
            current_byte: 0,
            total_bytes: len,
            dma_type: dma,
        }
    }

    fn range(&self) -> std::ops::Range<usize> {
        self.current_byte as usize..self.total_bytes as usize
    }

    /// Returns true if the buffer is exhausted.
    #[must_use]
    fn advance(&mut self, n: u32) -> bool {
        self.current_byte += n;
        assert!(self.current_byte <= self.total_bytes);
        self.is_empty()
    }

    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    fn len(&self) -> u32 {
        self.total_bytes - self.current_byte
    }
}

enum IoPortData<'a> {
    Read(&'a mut [u8]),
    Write(&'a [u8]),
}

#[derive(Debug, Inspect)]
struct AtapiDriveState {
    regs: Registers,
    pending_software_reset: bool,
    pending_interrupt: bool,
    error_pending: bool,
    pending_packet_command: bool,
    buffer: Option<BufferState>,
}

impl AtapiDriveState {
    fn new() -> Self {
        Self {
            regs: Registers::at_reset(),
            pending_software_reset: false,
            pending_interrupt: false,
            error_pending: false,
            pending_packet_command: false,
            buffer: None,
        }
    }
}

struct Io(Pin<Box<dyn Send + Future<Output = ScsiResult>>>);

impl std::fmt::Debug for Io {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.pad("io")
    }
}

#[derive(Inspect)]
pub(crate) struct AtapiDrive {
    scsi_disk: Arc<dyn AsyncScsiDisk>,
    state: AtapiDriveState,
    disk_path: IdePath,

    #[inspect(skip)]
    command_buffer: CommandBuffer,

    #[inspect(skip)]
    io: Option<Io>,
    #[inspect(skip)]
    waker: Option<Waker>,
}

impl AtapiDrive {
    pub fn reset(&mut self) {
        tracing::debug!(path = ?self.disk_path, "drive reset");
        self.state = AtapiDriveState::new();
    }

    pub fn pio_read(&mut self, data: &mut [u8]) {
        if self.is_selected() {
            self.data_port_io(IoPortData::Read(data));
        }
    }

    pub fn pio_write(&mut self, data: &[u8]) {
        if self.is_selected() {
            self.data_port_io(IoPortData::Write(data));
        }
    }

    pub fn read_register(&mut self, register: DriveRegister) -> u8 {
        tracing::trace!(path = ?self.disk_path, ?register, "read_register");
        if !self.is_selected() {
            // Align with ATA-7 "If the device implements the PACKET Command feature set, a read of the Control Block or
            // Command Block registers shall return the value 00h." in a single device configuration where Device 0 is
            // the only device and the host selects Device 1.
            // Note: legacy implementation returns Device 0's content on DeviceHead & SectorCount and 0x7f on StatusCmd &
            // AlternateStatusDeviceControl in this case.
            return 0;
        }

        let regs = &self.state.regs;
        match register {
            DriveRegister::ErrorFeatures => regs.error.into_bits(),
            DriveRegister::SectorCount => regs.sector_count,
            DriveRegister::LbaLow => regs.lba_low,
            DriveRegister::LbaMid => regs.byte_count_low,
            DriveRegister::LbaHigh => regs.byte_count_high,
            DriveRegister::DeviceHead => regs.device_head.into(),
            DriveRegister::StatusCmd => {
                let status = self.state.regs.status;
                tracing::trace!(status = ?status, path = ?self.disk_path, "status query, deasserting");
                self.request_interrupt(false);
                status.into_bits()
            }
            DriveRegister::AlternateStatusDeviceControl => {
                let status = self.state.regs.status;
                tracing::trace!(status = ?status, path = ?self.disk_path, "alter status query");
                status.into_bits()
            }
        }
    }

    pub fn write_register(&mut self, register: DriveRegister, data: u8) {
        tracing::trace!(path = ?self.disk_path, ?register, ?data, "write_register");
        let regs = &mut self.state.regs;
        match register {
            DriveRegister::ErrorFeatures => regs.features = data,
            DriveRegister::SectorCount => regs.sector_count = data,
            DriveRegister::LbaLow => regs.lba_low = data,
            DriveRegister::LbaMid => regs.byte_count_low = data,
            DriveRegister::LbaHigh => regs.byte_count_high = data,
            DriveRegister::DeviceHead => {
                self.write_device_head(data);
            }
            DriveRegister::StatusCmd => {
                // Ignore commands targeted at the wrong disk due to missing media.
                //
                // EXECUTE DEVICE DIAGNOSTIC command sets error register for both attachments on channel
                if self.is_selected() || data == IdeCommand::EXECUTE_DEVICE_DIAGNOSTIC.0 {
                    self.handle_command(data);
                }
            }
            DriveRegister::AlternateStatusDeviceControl => {
                let v = DeviceControlReg::from_bits_truncate(data);
                self.state.regs.device_control_reg = v.with_reset(false);
                if v.reset() && !self.state.pending_software_reset {
                    if !self.state.regs.status.bsy() {
                        self.reset();
                    } else {
                        self.state.pending_software_reset = true;
                        self.state.regs.status.set_bsy(true);
                    }
                }
            }
        }
    }

    pub fn interrupt_pending(&self) -> bool {
        self.state.pending_interrupt
            && !self.state.regs.device_control_reg.interrupt_mask()
            && self.is_selected()
            && !self.state.pending_software_reset
    }

    pub fn dma_request(&self) -> Option<(&DmaType, usize)> {
        if let Some(buffer) = &self.state.buffer {
            buffer
                .dma_type
                .as_ref()
                .map(|ty| (ty, buffer.len() as usize))
        } else {
            None
        }
    }

    pub fn dma_transfer(&mut self, guest_memory: &GuestMemory, gpa: u64, len: usize) {
        let buffer = self.state.buffer.as_ref().unwrap();
        assert!(len <= buffer.len() as usize);
        let dma_type = *buffer.dma_type.as_ref().unwrap();
        tracing::trace!(
            ?dma_type,
            gpa,
            len,
            cur_byte = buffer.current_byte,
            "performing dma"
        );
        let range = buffer.range();
        let buffer_ptr = &self.command_buffer.buffer[range][..len];
        let r = match dma_type {
            DmaType::Write => guest_memory.write_from_atomic(gpa, buffer_ptr),
            DmaType::Read => guest_memory.read_to_atomic(gpa, buffer_ptr),
        };
        if let Err(err) = r {
            tracelimit::error_ratelimited!(
                error = &err as &dyn std::error::Error,
                "dma transfer failed"
            );
        }
        if self.state.buffer.as_mut().unwrap().advance(len as u32) {
            match dma_type {
                DmaType::Write => self.read_data_port_buffer_complete(),
                DmaType::Read => self.write_data_port_buffer_complete(),
            };
            if self.state.buffer.is_none() {
                assert!(!self.state.regs.status.bsy());
                assert!(!self.state.regs.status.drq());
                self.request_interrupt(true);
            }
        }
    }

    pub fn dma_advance_buffer(&mut self, len: usize) {
        let buffer = self.state.buffer.as_ref().unwrap();
        assert!(len <= buffer.len() as usize);
        let dma_type = *buffer.dma_type.as_ref().unwrap();
        tracing::trace!(
            ?dma_type,
            len,
            cur_byte = buffer.current_byte,
            "advancing dma buffer"
        );
        if self.state.buffer.as_mut().unwrap().advance(len as u32) {
            match dma_type {
                DmaType::Write => self.read_data_port_buffer_complete(),
                DmaType::Read => self.write_data_port_buffer_complete(),
            };
            if self.state.buffer.is_none() {
                assert!(!self.state.regs.status.bsy());
                assert!(!self.state.regs.status.drq());
                self.request_interrupt(true);
            }
        }
    }
}

impl AtapiDrive {
    fn request_interrupt(&mut self, v: bool) {
        tracing::trace!(pending_interrupt = v, "request_interrupt");
        self.state.pending_interrupt = v;
    }

    fn write_device_head(&mut self, data: u8) {
        let old_device_head = self.state.regs.device_head;
        self.state.regs.device_head = data.into();
        tracing::trace!(
            path = ?self.disk_path,
            old_device = old_device_head.dev() as u8,
            new_device = self.state.regs.device_head.dev() as u8,
            "write_device_head"
        );
        // After the device select, update status for the selected device.
        if self.is_selected() && self.state.regs.status.into_bits() == 0 {
            // Update the status of the device if it is 0
            self.state.regs.status = Status::new().with_drdy(true).with_dsc(true);
        }
    }

    fn read_data_port_buffer_complete(&mut self) {
        if self.state.pending_packet_command {
            self.signal_atapi_command_done(Sense::default());
        } else {
            self.complete_data_port_read();
        }
    }

    fn complete_data_port_read(&mut self) {
        self.state.regs.status.set_bsy(false);
        self.state.regs.status.set_err(false);
        self.state.regs.status.set_drq(false);
        self.state.regs.status.set_drdy(true);
        self.state.regs.status.set_dsc(true);

        self.state.regs.sector_count = protocol::ATAPI_COMMAND_COMPLETE;
        self.state.buffer = None;
    }

    fn write_data_port_buffer_complete(&mut self) {
        self.handle_atapi_packet_command()
    }

    fn handle_command(&mut self, command: u8) {
        self.handle_atapi_command(command);
    }

    /// Returns whether this device is currently selected.
    ///
    /// This will be false when this device is being targeted due to the other
    /// device being missing.
    fn is_selected(&self) -> bool {
        self.state.regs.device_head.dev() as u8 == self.disk_path.drive
    }

    fn data_port_io(&mut self, mut io_type: IoPortData<'_>) {
        let Some(buffer_state) = &mut self.state.buffer else {
            tracelimit::warn_ratelimited!("no buffer available");
            return;
        };

        let length = match io_type {
            IoPortData::Read(ref data) => {
                tracing::trace!(
                    cur_byte = buffer_state.current_byte,
                    total_bytes = buffer_state.total_bytes,
                    length = data.len(),
                    path = ?self.disk_path,
                    "data port read"
                );

                data.len()
            }
            IoPortData::Write(data) => {
                tracing::trace!(
                    cur_byte = buffer_state.current_byte,
                    total_bytes = buffer_state.total_bytes,
                    length = data.len(),
                    path = ?self.disk_path,
                    "data port write"
                );
                data.len()
            }
        } as u32;

        let range = buffer_state.range();
        let current_buffer = &self.command_buffer.buffer[range];

        let length = length.min(current_buffer.len() as u32);
        if length == 0 {
            return;
        }

        // Any buffer size errors at this point are fatal.
        match io_type {
            IoPortData::Read(ref mut data) => {
                current_buffer[..length as usize].atomic_read(&mut data[..length as usize]);
                tracing::trace!(?data, "data payload");
            }
            IoPortData::Write(data) => {
                current_buffer[..length as usize].atomic_write(&data[..length as usize]);
                tracing::trace!(?current_buffer, ?data, "data_port_io");
            }
        }

        if self.state.buffer.as_mut().unwrap().advance(length) {
            match io_type {
                IoPortData::Read(_) => self.read_data_port_buffer_complete(),
                IoPortData::Write(_) => self.write_data_port_buffer_complete(),
            }
        }
    }
}

impl AtapiDrive {
    pub fn new(scsi_disk: Arc<dyn AsyncScsiDisk>, disk_path: IdePath) -> Self {
        Self {
            scsi_disk,
            state: AtapiDriveState::new(),
            disk_path,
            command_buffer: CommandBuffer::new(),
            io: None,
            waker: None,
        }
    }

    fn state(&self) -> &AtapiDriveState {
        &self.state
    }
    fn state_mut(&mut self) -> &mut AtapiDriveState {
        &mut self.state
    }

    pub fn handle_read_dma_descriptor_error(&mut self) -> bool {
        // Check if there's any pending IO
        if self.io.is_none() {
            if self.state.pending_software_reset {
                self.reset();
            }
            self.state.regs.status.set_bsy(false);
            self.state.regs.status.set_drq(false);
            return true;
        }

        // yet to clear out dma_error
        false
    }

    fn handle_atapi_command(&mut self, command: u8) {
        let command = IdeCommand(command);
        tracing::debug!(path = ?self.disk_path, ?command, ?self.state.regs, "atapi command");

        if self.state.regs.status.bsy() {
            tracelimit::warn_ratelimited!(new_command = ?command, "A command is already pending");
            return;
        }

        if self.state.regs.status.drq() {
            tracelimit::warn_ratelimited!(new_command = ?command, "data transfer is in progress");
            return;
        }

        self.state.regs.status.set_drdy(false);
        self.state.regs.status.set_bsy(true);
        self.state.regs.error = ErrorReg::new();
        self.state.regs.status.set_err(false);

        match command {
            IdeCommand::DEVICE_RESET => {
                // Needn't issue interrupt
                return self.handle_soft_reset(false);
            }
            IdeCommand::EXECUTE_DEVICE_DIAGNOSTIC => {
                // As specified by ATA-6 9.12.
                self.state.regs.reset_signature(true);
                self.state.regs.error = ErrorReg::new().with_amnf_ili_default(true);
            }
            IdeCommand::PACKET_COMMAND => {
                // Needn't issue interrupt
                return self.prepare_atapi_command_packet();
            }
            IdeCommand::IDENTIFY_PACKET_DEVICE => {
                self.read_features();
            }
            // Checks whether the drive is actually spinning or idle.
            // Specify that drive is actively spinning (i.e. in "idle"
            // state vs. the "standby" state).
            IdeCommand::CHECK_POWER_MODE => {
                self.state.regs.sector_count = protocol::DEVICE_ACTIVE_OR_IDLE;
            }
            IdeCommand::SET_FEATURES => {
                // Nothing for optical drive.
            }
            IdeCommand::IDENTIFY_DEVICE | IdeCommand::READ_SECTORS => {
                // As specified by ATA-6 9.12.
                self.state.regs.reset_signature(false);
                self.state.regs.status.set_err(true);
                self.state.regs.error = ErrorReg::new().with_unknown_command(true);
            }
            command => {
                tracing::debug!(?command, "unknown command");
                self.state.regs.status.set_err(true);
                self.state.regs.error = ErrorReg::new().with_unknown_command(true);
            }
        };

        self.state.regs.status.set_bsy(false);
        self.state.regs.status.set_drdy(true);
        self.state.regs.status.set_dsc(true);
        self.request_interrupt(true);
    }

    fn get_dma(&self) -> Option<DmaType> {
        if self.state.regs.features & 0x1 != 0x0 {
            Some(DmaType::Write)
        } else {
            None
        }
    }

    // This function is called when an IDE CmdPacket command is sent
    // to the IDE controller. This tells the controller that an
    // ATAPI command is going to follow in the write buffer.
    fn prepare_atapi_command_packet(&mut self) {
        let dma = self.get_dma();
        tracing::trace!(?dma, "prepare atapi command");
        // Specify that the buffer is ready to receive bytes
        self.state.buffer = Some(BufferState::new(COMMAND_PACKET_SIZE as u32, dma));
        self.state.regs.sector_count = protocol::ATAPI_READY_FOR_PACKET_DEFAULT;
        self.state.regs.status.set_bsy(false);
        self.state.regs.status.set_drdy(true);
        self.state.regs.status.set_dsc(true);
        self.state.regs.status.set_drq(true);
    }

    fn handle_soft_reset(&mut self, reset_dev: bool) {
        tracing::debug!(path = ?self.disk_path, "Command Soft Reset");
        self.state.buffer = None;

        self.state.regs.reset_signature(reset_dev);
        self.state.regs.error = ErrorReg::new().with_amnf_ili_default(true);
        self.state.regs.status = Status::new();
    }

    /// IDENTIFY DEVICE command enables the host to receive parameter information
    /// from the device. The features structure is 256 words of device identification
    /// data that can be transferred to the host by reading the Data register.
    fn read_features(&mut self) {
        let features = protocol::IdeFeatures {
            config_bits: 0x85C0, // Indicate Accelerated DRQ
            serial_no: *b"                    ",
            buffer_size: 0x0080,
            firmware_revision: *b"        ",
            model_number: "iVtrau lDC                              ".as_bytes()[..]
                .try_into()
                .unwrap(),
            capabilities: 0x0300,          // LBA and Dma are supported
            pio_cycle_times: 0x0200,       // indicate fast I/O
            dma_cycle_times: 0x0200,       // indicate fast I/O
            new_words_valid_flags: 0x0003, // indicate next words are valid
            multi_sector_capabilities: 0x0100_u16 | protocol::MAX_SECTORS_MULT_TRANSFER_DEFAULT,
            single_word_dma_mode: 0x0007, // support up to mode 3, no mode active
            multi_word_dma_mode: 0x0407,  // support up to mode 3, mode 3 active
            enhanced_pio_mode: 0x0003,    // PIO mode 3 and 4 supported
            min_multi_dma_time: 0x0078,
            recommended_multi_dma_time: 0x0078,
            min_pio_cycle_time_no_flow: 0x01FC, // Taken from a real CD device
            min_pio_cycle_time_flow: 0x00B4,    // Taken from a real CD device
            ..FromZeros::new_zeroed()
        };

        self.command_buffer.buffer[..protocol::IDENTIFY_DEVICE_BYTES].atomic_write_obj(&features);
        self.state.buffer = Some(BufferState::new(
            protocol::IDENTIFY_DEVICE_BYTES as u32,
            None,
        ));
        self.state.regs.sector_count = protocol::ATAPI_DATA_FOR_HOST;
        self.state.regs.status.set_drq(true);
    }

    // This function handles ATAPI commands. These are only used
    // for CD-Rom devices currently.
    fn handle_atapi_packet_command(&mut self) {
        assert!(self.state.buffer.is_some());

        if self.state.pending_packet_command {
            tracelimit::error_ratelimited!(path = ?self.disk_path, "Unexpected: pending_packet_command at beginning of atapi packet command");
        }

        self.state.regs.status.set_drdy(false);
        self.state.regs.status.set_drq(false);
        self.state.regs.status.set_bsy(true);

        self.state.regs.byte_count_high = 0;
        self.state.regs.byte_count_low = 0;
        self.state.regs.sector_count = protocol::ATAPI_COMMAND_COMPLETE;

        let len = COMMAND_PACKET_SIZE;
        let buffer_ptr = &self.command_buffer.buffer[..len];

        let mut cdb = [0_u8; size_of::<scsi::Cdb16>()];
        // Copy from CommandPacket into the CDB.
        buffer_ptr.atomic_read(&mut cdb[..len]);
        tracing::debug!(path = ?self.disk_path, ?buffer_ptr, ?cdb, "Handle ATAPI packet command");

        self.state.buffer = None;
        let request = scsi_core::Request { cdb, srb_flags: 0 };
        self.set_io(request);
    }

    fn process_atapi_command_result(&mut self, result: ScsiResult) {
        // Command Completed: If error, signal it and return
        let sense = if let Some(sense_data) = result.sense_data {
            Sense::new(
                sense_data.header.sense_key,
                sense_data.additional_sense_code,
                sense_data.additional_sense_code_qualifier,
            )
        } else {
            Sense::default()
        };

        if sense != Sense::default() {
            tracing::debug!(path = ?self.disk_path, ?sense, "Issue ATAPI command error");
            return self.signal_atapi_command_done(sense);
        }

        // These commands do not need to signal any data
        if result.tx == 0 {
            self.signal_atapi_command_done(sense);
        } else {
            self.signal_atapi_data_ready(result.tx);
        }
    }

    // This function is called when an ATAPI command is complete.
    // Unlike normal IDE commands, ATAPI uses a final interrupt
    // to tell the host that the operation is complete and the
    // status can be read.
    fn signal_atapi_command_done(&mut self, sense: Sense) {
        tracing::debug!(path = ?self.disk_path, "Signal ATAPI Command done");

        // We are done with the operation, but we now need to
        // signal the status can be read. We do this by updating
        // the status and requesting an interrupt.
        self.state.regs.error = (sense.sense_key.0 << 4).into();
        self.state.regs.status.set_bsy(false);
        self.state.regs.status.set_err(false);
        self.state.regs.status.set_drq(false);
        self.state.regs.status.set_drdy(true);
        self.state.regs.status.set_dsc(true);

        if self.state.regs.error != ErrorReg::new() {
            // Set error flag
            if sense.sense_key == SenseKey::ILLEGAL_REQUEST
                || sense.sense_key == SenseKey::ABORTED_COMMAND
            {
                self.state.regs.error.set_unknown_command(true);
            }

            self.state.regs.status.set_err(true);
        }

        self.state.regs.sector_count = protocol::ATAPI_COMMAND_COMPLETE;
        self.state.buffer = None;
        self.state.pending_packet_command = false;
        self.request_interrupt(true);
    }

    // This function is called when an ATAPI command has been
    // processed and is ready to return data to the PC.
    fn signal_atapi_data_ready(&mut self, tx: usize) {
        assert!(tx > 0);
        tracing::trace!(path = ?self.disk_path, tx, "Signal ATAPI data ready");
        let use_dma = (self.state.regs.features & 0x1) != 0;
        if use_dma {
            assert!(tx <= MAX_TRANSFER_LEN);
        }
        self.state.buffer = Some(BufferState {
            current_byte: 0,
            total_bytes: tx as u32,
            dma_type: if use_dma { Some(DmaType::Write) } else { None },
        });

        // Prepare the IDE Controller state to return the data
        // this cast is safe because of the above max-check
        self.state.pending_packet_command = true;
        self.state.regs.byte_count_low = (tx & 0x00FF) as u8;
        self.state.regs.byte_count_high = ((tx & 0xFF00) >> 8) as u8;
        self.state.regs.sector_count = protocol::ATAPI_DATA_FOR_HOST;

        self.state.regs.status.set_bsy(false);
        self.state.regs.status.set_drq(true);
        self.state.regs.status.set_drdy(true);
        self.request_interrupt(true);
    }

    /// Sets the asynchronous IO to be polled in `poll_device`.
    fn set_io(&mut self, request: scsi_core::Request) {
        assert!(self.io.is_none());
        let scsi_disk = self.scsi_disk.clone();
        let access = self.command_buffer.access();
        let fut = async move {
            let buffers = access.buffers(0, MAX_TRANSFER_LEN, true);
            scsi_disk.execute_scsi(&buffers, &request).await
        };
        self.io = Some(Io(Box::pin(fut)));
        // Ensure poll_device gets called again.
        if let Some(waker) = self.waker.take() {
            waker.wake();
        }
    }

    pub fn poll_device(&mut self, cx: &mut Context<'_>) {
        if let Some(io) = self.io.as_mut() {
            if let Poll::Ready(result) = io.0.as_mut().poll(cx) {
                self.io = None;
                self.process_atapi_command_result(result);

                // Wait until the command that initiated this IO is completed
                if !self.state.regs.status.bsy() && self.state.pending_software_reset {
                    self.reset();
                }
            }
        }
        self.waker = Some(cx.waker().clone());
    }
}

pub(crate) mod save_restore {
    use self::state::SavedAtapiDriveState;
    use self::state::SavedDmaType;
    use self::state::SavedRegisterState;
    use super::*;
    use std::sync::atomic::Ordering;
    use vmcore::save_restore::RestoreError;
    use vmcore::save_restore::SaveError;

    pub mod state {
        use mesh::payload::Protobuf;
        use scsi_core::save_restore::ScsiSavedState;

        #[derive(Protobuf)]
        #[mesh(package = "storage.ide.device.atapi")]
        pub struct SavedRegisterState {
            #[mesh(1)]
            pub error: u8,
            #[mesh(2)]
            pub features: u8,
            #[mesh(3)]
            pub device_head: u8,
            #[mesh(4)]
            pub lba_low: u8,
            #[mesh(5)]
            pub byte_count_low: u8,
            #[mesh(6)]
            pub byte_count_high: u8,
            #[mesh(7)]
            pub sector_count: u8,
            #[mesh(8)]
            pub device_control_reg: u8,
            #[mesh(9)]
            pub status: u8,
        }

        #[derive(Protobuf)]
        #[mesh(package = "storage.ide.device.atapi")]
        pub enum SavedDmaType {
            #[mesh(1)]
            Read,
            #[mesh(2)]
            Write,
        }

        #[derive(Protobuf)]
        #[mesh(package = "storage.ide.device.atapi")]
        pub struct SavedAtapiDriveState {
            #[mesh(1)]
            pub registers: SavedRegisterState,

            // Miscellaneous state
            #[mesh(2)]
            pub pending_interrupt: bool,
            #[mesh(3)]
            pub error_pending: bool,

            // Scsi State
            #[mesh(4)]
            pub scsi: ScsiSavedState,

            // Buffer state
            #[mesh(5)]
            pub dma_type: Option<SavedDmaType>,
            #[mesh(6)]
            pub command_buffer: Vec<u8>,

            // New states are added at the end of the struct to be compatible

            // There is an ATAPI packet command in progress, meaning specifically:
            //   The IDE controller has indicated that data is available to the guest
            //   (signal_atapi_data_ready), but the guest did not yet finish reading
            //   all the data associated with the command.
            #[mesh(7)]
            pub pending_packet_command: bool,
            #[mesh(8)]
            pub pending_software_reset: bool,
        }
    }

    impl AtapiDrive {
        pub fn save(&self) -> Result<SavedAtapiDriveState, SaveError> {
            let AtapiDriveState {
                regs:
                    Registers {
                        error,
                        features,
                        device_head,
                        byte_count_low,
                        byte_count_high,
                        lba_low,
                        sector_count,
                        device_control_reg,
                        status,
                    },
                pending_software_reset,
                pending_interrupt,
                error_pending,
                pending_packet_command,
                buffer,
            } = self.state();

            let scsi = self.scsi_disk.save()?.unwrap();

            let command_buffer = if let Some(buffer_state) = &self.state.buffer {
                self.command_buffer.buffer[buffer_state.range()]
                    .iter()
                    .map(|val| val.load(Ordering::Relaxed))
                    .collect()
            } else {
                Vec::new()
            };

            Ok(SavedAtapiDriveState {
                registers: SavedRegisterState {
                    error: error.into_bits(),
                    features: *features,
                    device_head: (*device_head).into(),
                    lba_low: *lba_low,
                    byte_count_low: *byte_count_low,
                    byte_count_high: *byte_count_high,
                    sector_count: *sector_count,
                    device_control_reg: device_control_reg.into_bits(),
                    status: status.into_bits(),
                },
                pending_interrupt: *pending_interrupt,
                error_pending: *error_pending,
                scsi,
                dma_type: match buffer {
                    Some(buffer_state) => buffer_state.dma_type.as_ref().map(|dma| match dma {
                        DmaType::Read => SavedDmaType::Read,
                        DmaType::Write => SavedDmaType::Write,
                    }),
                    None => None,
                },
                command_buffer,
                pending_packet_command: *pending_packet_command,
                pending_software_reset: *pending_software_reset,
            })
        }

        pub fn restore(&mut self, state: SavedAtapiDriveState) -> Result<(), RestoreError> {
            let SavedAtapiDriveState {
                registers:
                    SavedRegisterState {
                        error,
                        features,
                        device_head,
                        lba_low,
                        byte_count_low: lba_mid,
                        byte_count_high: lba_high,
                        sector_count,
                        device_control_reg,
                        status,
                    },
                pending_interrupt,
                error_pending,
                scsi,
                dma_type,
                command_buffer,
                pending_packet_command,
                pending_software_reset,
            } = state;

            self.scsi_disk.restore(&scsi)?;

            *self.state_mut() = AtapiDriveState {
                regs: Registers {
                    error: error.into(),
                    features,
                    device_head: device_head.into(),
                    byte_count_low: lba_mid,
                    byte_count_high: lba_high,
                    lba_low,
                    sector_count,
                    device_control_reg: DeviceControlReg::from_bits(device_control_reg),
                    status: Status::from_bits(status),
                },
                pending_software_reset,
                pending_interrupt,
                error_pending,
                pending_packet_command,
                buffer: if command_buffer.is_empty() {
                    None
                } else {
                    self.command_buffer.buffer[..command_buffer.len()]
                        .atomic_write(command_buffer.as_bytes());

                    Some(BufferState {
                        current_byte: 0,
                        total_bytes: command_buffer.len() as u32,
                        dma_type: dma_type.map(|dma| match dma {
                            SavedDmaType::Read => DmaType::Read,
                            SavedDmaType::Write => DmaType::Write,
                        }),
                    })
                },
            };

            Ok(())
        }
    }
}